Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платиновые металлы оксиды

    Оксиды платиновых -металлов можно получить непосредственным соединением с кислородом, но для большинства этих металлов они неустойчивы. Устойчивые оксиды дают аналоги железа — рутений и осмий в степенях окисления +4 и - -8. Некоторые свойства их оксидов приведены в табл. 12.40. [c.380]

    В технике платиновые металлы чаще всего используют при высоких температурах (термопары, нагреватели и т. д.), в связи с чем необходимо учитывать возможности их улетучивания. Этому способствует кислород атмосферы, который образует с ними сравнительно летучие оксиды (особенно у осмия). На рис. 37 приведена сравнительная лету- [c.142]


    Рассмотренные свойства оксидов и галидов платиновых металлов необходимо учитывать-при использовании этих материалов в конструкциях, так как в окислительной среде платиновые металлы могут постепенно улетучиваться в виде своих оксидов и особенно галидов, представляющих собой непрочные и летучие соединения. В частности, для платины наиболее опасны температуры 500—600 С при более высоких температурах она более устойчива — оксиды не образуются. [c.395]

    Соединения платиновых металлов Оксиды платиновых металлов [c.188]

    Платиновые металлы разрушаются при нагревании, со щелоча ми в присутствии кислорода, поскольку их оксиды амфотерны. Поэтому в платиновой посуде нельзя плавить щелочи, для этого используют железную, никелевую или серебряную посуду. Плати новые изделия нельзя нагревать во внутреннем конусе пламени газовой горелки и в коптящем пламени, так как с углеродом платина легко образует карбид и разрушается. [c.575]

    Реакции (а) — (г) практически необратимы и поэтому направление процесса определяется соотношением скоростей реакций. В отсутствие катализаторов прн высоких температурах (выше 900°С) окисление аммиака идет в основном с образованием азота по реакции (в). Для производства азотной кислоты необходимо наиболее полное окисление аммиака по реакции (а), поэтому применяют катализаторы, избирательно ускоряющие ее. На практике степень окисления аммиака кислородом воздуха до оксида азота, т. е. селективность процесса, достигает 98%. В качестве избирательных катализаторов, ускоряющих процесс окисления аммиака до оксида азота, могут служить платина и ее сплавы с металлами платиновой группы, оксиды железа, марганца, кобальта и др. До [c.100]

    Каталитическая изомеризация в отличие от других процессов избирательного катализа (циклизация, гидрирование) протекает только на кислотных катализаторах сильных кислотах типа хлорида алюминия, активированного хлоридом водорода, а также на металлах на твердых кислотных носителях (катализаторы гидрирования и дегидрирования). Из катализаторов второй группы для установки изомеризации нормального пентана рекомендован алюмоплатиновый ИП-62 (платиновый на оксиде алюминия, промотированный фтором). [c.26]


    Озон — один из сильнейших окислителей. Он окисляет все металлы, кроме золота и платиновых металлов, а также большинство неметаллов. Он переводит низшие оксиды в высшие, а сульфиды металлов — в их сульфаты. В ходе большинства этих реакций молекула озона теряет один атом кислорода, переходя в молекулу О2. [c.456]

    В химическом отношении палладий отличается от других платиновых металлов значительно большей активностью. При нагревании докрасна он соединяется с кислородом, образуя оксид PdO, растворяется в азотной кислоте, горячей концентрированной серной кислоте и в царской водке. [c.532]

    Железо, кобальт и никель в ряду стандартных электродных потенциалов расположены до водорода, платиновые металлы — после. Поэтому первые распространены в природе в виде соединений (оксиды, сульфиды, сульфаты, карбонаты), в свободном состоянии встречаются редко — в виде железных метеоритов. По распространенности в природе за железом следует никель, а затем кобальт. [c.208]

    Из группы платиновых металлов находят применение платина, родий, иридий и. палладий. Меры предосторожности, необходимые при работе с платиной, общеизвестны о них можно справиться в изданиях фирм, производящих благородные металлы (см. часть П, гл. 29). Родий применяется большей частью в виде сплавов (например, в термоэлементах, нагревательных элементах). При условии принятия особых мер защиты от окисления кислородом воздуха он используется и в чистом виде как материал тиглей для работы при особо высоких температурах. Иридий имеет значительно олее высокую температуру плавления и более низкое давление пара, чем платина. Однако в кислородсодержащей атмосфере оба металла улетучиваются значительно с большей скоростью, чем это соответствует их собственному давлению пара, причем при сравнимых условиях потери иридия значительно больше, чем платины. Все же в особых случаях иридий применяют как материал сосудов для нагревания сильноосновных оксидов, таких, как ВаО, в кислородсодержащей атмосфере. К примеру, из иридия изготовлялись сосуды в виде желоба, нагреваемого непосредственным пропусканием электрического тока [2]. Платино-иридиевые сплавы при достаточном содержании иридия устойчивы к действию хлора. Палладий дешевле платины, он применяется в основном как составная часть сплавов. Высокую п))0-ницаемость палладия для водорода при температуре красного каления используют при получении особо чистого водорода (см. часть П, гл. 1). [c.35]

    Оксиды. Платиновые металлы образуют многочисленные оксидные соединения от Э2О (у Р(1) до ЭО4 (у Ки и Оз). Это в основном твердые, ковалентные соединения, часто малоустойчивые, разлагающиеся при нагревании  [c.507]

    Знаменитый шведский химик Я. Берцелиус (1779—1848) продолжал линию И. Рихтера, на основе анализа оксидов он определил атомные веса почти всех известных тогда элементов, ввел символы элементов, химические формулы, активно проводил аналитические расчеты на основе правил стехиометрии. Берцелиус стоял у истоков метрологии анализа. Он оценивал ошибки определений, разработал точные методы взвешивания, ему принадлежит методика определения платиновых металлов. Шведский ученый пытался создать новую схему качественного анализа. При анализе силикатов Берцелиус применил фтористоводородную кислоту — прием, широко используемый и по сей день использовал возгонку хлоридов дпя разделения металлов. [c.16]

    При сильном измельчении, когда размеры частиц начинают приближаться к размерам атомов и молекул, изменяется удельная каталитическая активность катализаторов [10, 25]. Как правило, их удельная активность ниже удельной активности этих компактных веществ [10, с. 79]. При изменении способа приготовления катализатора изменяется не только дисперсность, но и состав катализатора. В зависимости от исходного соединения и типа восстановителя, готовые катализаторы могут содержать водород, серу, фосфор, бор, углерод и другие вещества [10, с. 104]. Платиновые металлы содержат на поверхности примеси углерода, которые удаляются с большим трудом [28, с. 137]. Скелетные катализаторы могут содержать интерметаллиды и оксиды металлов, водород и другие вещества, поэтому удельная активность катализаторов, приготовленных различными способами, может быть различной. [c.32]

    Многие переходные металлы и их комплексы обладают каталитической активностью и широко применяются в промышленных каталитических системах, например, оксид ванадия(У) при окислении диоксида серы для получения серной кислоты, мелкодисперсное железо, оксид железа(Ш) - при синтезе аммиака. Особенно активны в этом отношении переходные элементы второго и третьего переходных рядов и, в частности, платиновые металлы. Так, мелкодисперсная платина и ее сплавы используются при окислении аммиака, металлорганические соединения родия и иридия - в разнообразных реакциях органического синтеза. В гл. 11 мы отмечали, что среди разнообразных механизмов действия этих и других катализаторов можно выделить несколько стадий, присущих каждому каталитическому процессу. Попытаемся теперь проследить за действием металлокомплексного катализатора на основных стадиях процесса  [c.373]


    Сравнительно легко восстанавливаются до металла оксиды меди, металлов УП1 группы (N1, Р1, Со, Р(1). Например, медные катализаторы восстанавливают при 180-200 °С, никелевые при 250-300 °С, кобальтовые, платиновые, палладиевые при 400-450 °С. Восстановление чаще всего проводят водородом, но иногда применяют для этой цели азото-водородную смесь, оксид углерода, водяной газ и др. [c.669]

    Если потенциал металлического анода имеет более отрицательное значение, чем потенциал ионов ОН или других веществ, присутствующих в растворе, в газовой фазе около электрода или на электроде, то происходит растворение металла. При этом протекает электролиз с растворимым анодом. Если потенциал металлического анода близок к потенциалу других электродных процессов, то наряду с растворением металла на аноде протекают также другие процессы, например разряд ионов 0Н . В этом случае также говорят об электролизе с растворимым анодом, но учитывают и другие анодные процессы. Если потенциал металла или другого проводника первого рода, используемого в качестве анода, имеет более положительное значение, то протекает электролиз с нерастворимым анодом. В качестве нерастворимых анодов применяют золото и платиновые металлы, диоксид свинца, оксид рутения и другие вещества, имеющие положительные значения равновесных электродных потенциалов, а также графит. Некоторые металлы практически не растворяются из-за высокой анодной поляризации, например никель и железо в щелочном растворе, свинец в H2SO4, титан, тантал, нержавеющая сггль. Явление торможения анодного растворения металла из-за образования защитных слоев называется пассивностью металла. [c.210]

    Состав летучих при высоких температурах оксидов платиновых металлов [1] [c.566]

    Представляют интерес данные о возможности катализа процессов замещения лигандов в комплексах платиновых металлов при экстракции их диалкилсульфидами и нефтяными сульфокси-дами [125—127]. Катализ наблюдался при добавлении в раствор веществ, способных генерировать свободные радикалы. Другой способ катализа заключался в обработке бромидного комплекса платины(И) оксидом углерода, ускорявшим процесс и увеличивавшим коэффициент распределения платины при ее экстракции дибу-тилсульфидом [127]. Экстракция сопровождалась быстрым замещением внутрисферного брома в образующемся карбонилбромиде на сульфид с образованием в органической фазе нейтрального соединения [Р1С0Вга дибутилсульфид]. [c.343]

    Эти элементы подразделяются на группу легких (рутений, родий, палладий) и тяжелых платиновых металлов (осмий, иридий, платина). При сравнении с группой железа можно сразу отметить большое разнообразие степеней окисления (табл. В.41). Лишь в оксидах рутения и осмия эти элементы имеют степень окисления +8, соответствующую номеру группы периодической системы. Соединение дикарбонилоктафторид платины Pt( 0)2Fe следует, по-видимому, все же рассматривать как (РСО+)2[Р1Рб]2- [c.642]

    Высшая положительная валентность элементов обычно отвечает номеру группы, причем в высших оксидах и гидроксидах кислотный характер растет слева направо по периодам, а основной — ослабевает. У фтора вообще не обнаружена положительная валентность в соединениях он всегда одновалентен. Положительная валентность кислорода проявляется только в соединениях с фтором и равна двум. Железо, кобальт и никель проявляют высшую валентность соответственно шесть, четыре и три, палладий — четыре, родий, иридий и платина — шесть, бром и астат — пять. У некоторых благородных газов высшая положительная валентность достигает восьми (ХеРв). У элементов подгруппы меди в образовании валентных связей могут участвовать с1-злектроны предпоследнего уровня, поэтому их высшая положительная валентность оказывается больше номера группы — бывает +1, +2, +3. Эти элементы являются неполными аналогами элементов главной подгруппы I группы и вместе с тем продолжают развитие свойств элементов семейства железа и платиновых металлов, к которым они вплотную примыкают в системе элементов. [c.79]

    Наиболее удобным методом отделения рутения и осмия от платиновых металлов и примесей является переведение их в летучие оксиды (УП1) с последующим разделением смеси Ри04 и О3О4. Оксид осмия (IV) после ряда операций переводят в осадок [ОзОг- [c.402]

    Характеристические соединения. Оксиды и гидрсоксиды платиновых металлов мало характеризуют химические свойства этих элементов вследствие малой устойчивости этих соединений для большинства платиноидов, что обусловлено высокой химической благородностью этих металлов. Тем не менее сопоставление состава и свойств оксидов позволяет выделить наиболее характерные степени окисления, свойственные тем или иным элементам. [c.419]

    Соединения с неметаллами. Несмотря иа химическую благородность платиноидов, при нагревании они способны образовывать соединения с галогенами, халькогенами и пниктогеиами (кроме азота), кремнием и бором. Поскольку оксиды и гидроксиды платиновых металлов малостабильны, роль галогенидов как характеристических соединений в этом случае существенно возрастает. В соответствии с общими закономерностями, характерными для галогенидов в целом, в ряду F—С1—Вг—I число известных галогенидов умень- [c.421]

    В соединениях для платиновых металлов наиболее характерна степень окисления -Ь4 (хотя возможны и другие). Осмий и рутений, кроме того, проявляют степень окисления -Ь8. Например, порошки рутения (при высокой температуре) и осмия (при комнатной температуре) окисляются до оксидов Яи04 и 0з04. Последние известны как сильнейшие окислители. [c.432]

    Наиболее устойчивая в обычных условиях валентность платинового металла сильно зависит от природы связанного с ним элемента. Например, формулы наиболее характерных для рутения фторида, оксида и хлорида будут RuFs, RuOa и КиС1з. Принимая, однако, во внимание, что с позиций химической систематики основное значение имеют кислородные соединения, можно в общем считать для рутения наиболее типичным четырехвалентное состояние. [c.454]

    Поскольку эффективность твердых К. часто определяется величиной их уд. пов-сти, К. готовят в виде тел с развитой пов-стью или порошков или наносят на носители, к-рыми служат высокодисперсные термостойкие в-ва (А12О3, ЗгОг, алюмосиликаты, кизельгур и т. п.). Осн. методы получ. оксидных К.— осаждение гидроксидов из р-ров солей непо-средств. разложение солей при высокой т-ре смешение исходных оксидов в виде водных суспензий или паст с послед. фильтрацией, сушкой и прессованием. К. на носителях получают гл. оор. пропиткой носителя р-рами солей, а также соосаждением металла и носителя иэ смеси р-ров их солей. В зависимости от состава реакц. смеси, условий процесса и т. п. К. часто получают разл. способами (см., напр.. Железные катализаторы. Никелевые катализаторы). Спец. методами получают скелетные катализаторы, черни платиновых металлов (см. Платиновые катализаторы) и нек-рые другие К. [c.248]

    ГИДРОДЕАРОМАТИЗАЦИЯ каталитич переработка нефтянврх фракций под давлением водорода, в к-рой осн. р-ция-гидрирований ароматич. углеводородов Сопутствующие р-ции. гидрирование непредельных алифатич. соед, гидрогенолиз серо- и азотсодержащих соед, в ряде случаев-деалкилирование, деструкция и изомеризация нафтеновых и парафиновых углеводородов. Катализаторы-оксиды или сульфиды Со, Мо, № или W, а также платиновые металлы (Р1, Р<1), носители-АЦО3, аморфные алюмосиликаты, цеолиты. Оксиды и сульфиды более устойчивы к отравлению сернистыми, азотистыми и др. соед., но значительно менее активны, в их присутствии процесс проводят при сравнительно высоком давлении водорода (10-30 МПа). На платиновых металлах процесс осуществляется при давлении ниже 5 МПа, но из-за того, что они легко отравляются, требуется предварит, гидроочистка сырья, [c.557]

    Водород, полученный из водяного газа, содержит заметные количества-прнмесей оксида углерода, диоксида углерода, кислорода и азота, а иногда также АзНз и Ре(СО)в. Для поглощения диоксида углерода применяют гидроксид калия или натронную известь АзНз поглощают насыщенным раствором перманганата калия в присутствии избытка твердого КМпО . Для удаления кислорода газ пропускают, как это описано выше, над нагретой медьЮ или раскаленным докрасна платинированным асбестом (способ получения последнего описан в разделе Платиновые металлы , ч. II, гл. 29), причем одновременно происходит термическое разложение Ре(СО)б. Оксид углерода удаляется при пропускании газа через восстановленный В7 5-катализатор (см. выше), а также путем вымораживания жидким азотом. Вообще для получения очень чистого водорода следует по возможности исходить из электролитического водорода. [c.147]

    Соответственно, стабильность может быть увеличина путем устранения указанных причин. При подборе катализатора учитывают не только его активность, но и коррозионную стойкость. К наиболее коррозионно-стойким катализаторам и подложкам для них относят платиновые металлы, золото, титан, тантал, графит. В щелочном растворе к ним добавляются никель, серебро и некоторые оксиды. [c.36]

    Один из методов нанесения металла на катализатор включает покрытие носител кордиерита тонким слоем оксида алюминия, импрегнированного или последовательн покрытого слоями платиновых металлов или сплавов, например платиновой, родие [c.288]

    Катализаторами, способными изомеризовать алканы, могут бы1Ъ декатионированные формы некоторых кристаллических алюмосиликатов (Я-морденит), хлорированный Т1-ОКСИД алюминия. Х юрированный или фторированный у-оксид алюминия приобретает такую способность только в нрисутствии платины, благодаря бифункциональному механизму, связанному с образованием на металле и изомеризацией промежуточного продукта — олефина е последующим гидрированием в изоалкан. Собственно некоторые платиновые металлы YIII группы и вольфрам также могуг вызывать скелетную изомеризацию н-алканов, очевидно через дегидро-циклизацию С5 и Сб, но с незначительным выходом, а при повышении температуры свыше 350 °С — с циклизацией и крекингом (гидрогенолизом) алканов. На порошках металлов активность в изомеризации н-гексана убывает в ряду Pt>Ir>Ru>Rh>Pd, тогда как скорость гидрогенолиза в этом ряду возрастает. Однако [c.894]


Смотреть страницы где упоминается термин Платиновые металлы оксиды: [c.44]    [c.53]    [c.445]    [c.404]    [c.11]    [c.204]    [c.299]    [c.332]    [c.478]    [c.381]    [c.498]   
Химия справочное руководство (1975) -- [ c.188 , c.189 ]




ПОИСК





Смотрите так же термины и статьи:

Оксид металлов

Платиновые металлы



© 2025 chem21.info Реклама на сайте