Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность металлов и оксидов металлов (электронные свойства)

    В механизме гетерогенных реакций окисления важную роль играет адсорбция реагентов на поверхности контакта. На металлах кислород сорбируется очень быстро с последующим более медленным прониканием в приповерхностный слой. Неблагородные металлы дают в результате оксиды, а для серебра процесс ограничивает- я хемосорбцией с глубоким изменением свойств приповерхностного слоя. Считают, что кислород сорбируется на контакте без диссоциации или с диссоциацией молекулы, причем металл поставляет требуемые электроны и переводит адсорбированный кислород в состояние ион-радикала  [c.412]


    По каталитической активности ферриты различных металлов мало отличаются друг от друга, т.е. природа двухвалентного металла, входящего в состав феррита, не очень сильно влияет на его активность. В то же время замена трехвалентно-го железа на трехвалентный кобальт резко увеличивает активность каталитическая активность кобальтитов в реакции глубокого окисления метана примерно на два порядка выше активности соответствующих ферритов. Как и в случае простых оксидов, между каталитической активностью ферритов в глубоком окислении метана и прочностью связи кислорода поверхности существует антибатная зависимость. Для объяснения высокой каталитической активности шпинелей следует остановиться на особенностях их структуры и электронных свойств. [c.56]

    При исследовании коррозии железа большое внимание было уделено изучению пассивации железа в кислых, нейтральных и щелочных растворах. На пассивном железе всегда имеется тонкая (3—5 нм) оксидная пленка, которая по структуре и свойствам отличается от известных оксидов железа (см. разд. 18.3). Эта пленка беспориста и изолирует поверхность металла от раствора. Она обладает заметной электронной проводимостью при анодной поляризации рост пленки продолжается за счет миграции в ней ионов железа и электронов. В то же время в кислых растворах наружная сторона пленки непрерывно растворяется с некоторой постоянной скоростью. Устанавливается стационарное состояние, при ко- [c.339]

    И ИЗНОС В глубоком вакууме Таблица 55. Влияние влажности (табл. 55). Электронно-микро-скопические исследования по-казывают, что в процессе трения пакеты слоев графита образуют ролики на смазываемой поверхности. В соответствии с теорией происходит ориентация кристаллитов параллельно поверхности с последующим образованием (при достаточно высоком давлении) роликов, которые обеспечивают низкий коэффициент трения [7.13]. В глубоком вакууме трение обезгаженного графита снижается при повышении температуры в присутствии водорода, кислорода и т. д. вследствие ослабления действия сил Ван-дер-Ваальса между плоскостями решеток [7.14]. При 600 °С графит в присутствии соответствующих оксидных слоев сохраняет хорошие смазочные свойства. Смеси оксидов металлов (РЬО) или солей металлов характеризуются хорошей адгезией к поверхностям металлов и эффективно снижают коэффициент трения [7.15—7.17]. [c.169]


    Поверхность металлов и оксидов металлов (электронные свойства) [c.127]

    К этой же категории окислителей относятся вещества, содержащие катионы металлов, внешние электронные соли которых лишены валентных электронов. Однако катионы активных металлов (N3 , К+, a +, А1 + и др.) весьма слабо проявляют себя окислителями. Поэтому восстановить их удается преимущественно из расплавов оксидов, гидроксидов, солей катодным действием тока и действием еще более активных металлов. В отличие от упомянутых катионы пассивных металлов (В1 +, Аи2+, Си +, Н 2+ и др.) восстанавливаются довольно легко Это свойство их используется в качественном анализе для металлизации поверхностей и в других целях. На пример, технология изготовления печатных схем офсетно электрохимическим методом включает процесс химиче ского меднения плат, который основан на способности Си + восстанавливаться нз растворов комплексных солей при действии фор .,альдегида. [c.225]

    Эти краски имеют пористую структуру и обеспечивают удовлетворительную защиту только в присутствии электролита (например, воды, содержащей следы соли, или кислоты), который обеспечивает электрохимическое взаимодействие двух металлов. Казалось бы, что защитное действие этих красок ограничено периодом электронного контакта между частицами цинка и железа однако это не так. При нормальных условиях электроны, поставляемые цинком стальной поверхности, расходуются в результате реакции этой поверхности с водой и кислородом с образованием гидроксильных ионов (катодная реакция). Вследствие этого на поверхности образуются гидроокиси или гидрокарбонаты цинка, кальция или магния, которые закрывают поры в пленке и придают ей непроницаемость, сцепление, плотность и компактность. Таким образом, хотя на первоначальной стадии после нанесения покрытия контакт между стальной поверхностью и частицами цинковой пыли существен, впоследствии красочная пленка приобретает высокие защитные свойства, которые сохраняются и в отсутствие контакта. Рецептуры красок, содержащие меньшее количество цинковой пудры, были известны давно. Однако с уменьшением концентрации цинковой пудры соответственно уменьшается и защита, в особенности на дефектных местах, т. е. царапинах, проколах и т. д. В то же время такие краски часто обеспечивают хорошую общую защиту, благодаря образованию на металле поверхностных отложений, содержащих оксиды и карбиды. [c.474]

    Таким образом, различными методами показано, что шпинели отличаются от других оксидов легкостью перестройки структуры, наличием в ней дефектов и особым механизмом электронного обмена- перескока электронов между соседними ионами. Эти свойства и приводят к повышенной активности шпинелей в окислительных реакциях. В окислении углеводородов особенно активны шпинели, содержащие ион кобальта. Трехвалентный кобальт в октаэдре находится в сильном поле лигандов (конфигурация и имеет максимальную энергию стабилизации кристаллическим полем. При переносе электрона в результате окислительно-восстановительного процесса (такой перенос может быть облегчен благодаря присутствию в системе другого катиона переходного металла) Со переходит в Со. После осуществления каталитического цикла система воз-. вращается в устойчивое состояние Со [26, с. 120-124]. Электронный обмен между ионами Со по механизму перескока позволяет передать заряд адсорбированной молекуле кислорода, превратить ее в активный ион-радикал. Условия быстрого подвода кислорода облегчены на поверхности катализатора, способного быстро перестраивать поверхностный слой с сохранением объема катализатора в устойчивом состоянии. Эти условия осуществляются в шпинелях, содержащих ион Со, в которых, как указано выше, энергия разупорядочения в объеме относительно невелика (см. табл. 2.8), а на поверхности должна быть еще меньше. [c.58]

    Среди элементов этой подгруппы только магний и кальций имеют большое значение. В то время как металлический кальций бурно реагирует с влагой воздуха и с водой, магний покрыт пленкой оксида, которая защищает его от дальнейшего разрушения. С помощью подходящих добавок можно еще более повысить устойчивость магния. Благодаря этому свойству его используют в сплавах, из которых изготовляют изделия, работающие в тяжелых погодных условиях (несущие поверхности самолетов и т. д.), а также корпуса двигателей сгорания. Важнейшие сплавы магния известны под названием электрон. Так называют группу сплавов, которые содержат около 90% магния и различное количество добавок марганца, алюминия, цинка или других компонентов. Тонкими полосками такого сплава можно пользоваться в большинстве опытов наряду с чистым металлом. [c.70]

    В последнее время в области механизма гетерогенного катализа все более распространяются взгляды, получившие широкое подтверждение в гомогенном катализе и основывающиеся на структуре и свойствах отдельных активных центров поверхности и их взаимодействии с реагентом. В связи с этим наряду с ранее принятым термином кислотно-оснбвного катализа на твердых поверхностях получает признание и точка зрения, что катализ на переходных металлах и их оксидах аналогичен гомогенному металлокомплексному катализу. Таким образом, классификация на гомо- и гетеролитические механизмы, ионный и электронный катализ утрачивает свое значение. [c.278]


    В случае полупроводников (оксиды, сульфиды никеля, молибдена, вольфрама и некоторых других переходных металлов) свободные валентности (свободные электроны и электронные дырки) появляются вследствие неполной координированности атомов поверхности кристаллической решетки и в результате различных дефектов кристалла полупроводника. Например, узел кристалла, в котором отсутствует катион, ведет себя как отрицательный заряд, отталкивая электроны в ближайших узлах. В результате эти электроны могут быть вытеснены из валентной зоны в зону проводимости. Появление электронов (или дырок) в зоне проводимости может быть вызвано также присутствием в кристалле различных примесей, обладающих электро-нодонорными (или электроноакцепторными) свойствами, а также нарушениями стехиометрического состава. На поверхности кристалла электроны (или дырки) проводимости будут играть роль свободной валентности или активных центров. [c.313]

    Структура и свойства поверхности, включающей слой или более атомов металлов или их оксидов, значительно отличаются от отдельных атомов или атомных кластеров на поверхности. Поскольку появляется двумерная структура (а в действительности свойства поверхности распространяются вглубь твердого тела на десятки нанометров), то для характеристики свойств используются уже не отдельные атомные или молекулярные орбитали, их магнитные моменты и характеристические частоты, а электронные зоны, валентные зоны и зоны проводимости, фононные и маг-нонные возбуждения. Однако поверхностные состояния имеют энергии, отличные от массивных твердых тел. Одна из причин — это нарущение трехмерной периодичности на поверхности. В кристаллическом поле или поле лигандов пониженной симметрии для поверхности оксидов переходных металлов вырождение -уровней снимается и их энергия становится ниже энергии вырожденных d-электронов (орбитали вд и <23) массивного оксида. Качественные оценки энергии поверхностных уровней можно сделать, например, с помощью формулы АЕ, = (1 - Р)Ед/2 [12], которая характеризует расстояние пониженного одноэлектронного донорного уровня до зоны проводимости (или повыщенного акцепторного уровня до валентной зоны). [c.127]

    Полученные результаты показывают сходство каталитических свойств Мп-содержащих систем и оксидов непереходных металлов. Причины такого сходства не вполне ясны. Известно, что Мп имеет электронную конфигурацию при которой отсутствуют дополнительная стабилизация кристаллического поля. Отсюда - сходство Мп с ионами непереходных металлов в реакциях с участием лигандов. Однако, согласно вышеприведенным данным, во многих системах марганец находится в высшем окислительном состоянии. Возможно также, что причиной селективного действия МпО является его основность и образование на поверхности умеренно прочных карбонатов. Но тогда непонятна его высокая активность. [c.241]

    При таком механизме действия катализатора всегда наблюдается симбатность между скоростью каталитического окисления RH и скоростью распада ROOH в этих условиях в отсутствие кислорода [330]. Среди оксидов металлов наиболее активны по отношению к гидропероксиду кумила оксиды Мп и Ni, на -оболочках которых находится соответственно 3 и 7 электронов [330]. На поверхности оксидов металлов существуют активные центры двух типов с электродонорными и электроакцепторны-ми свойствами. Поверхность катализатора можно модифицировать предварительной адсорбцией на ней молекул с электродонорными или электроакцепторными свойствами. Предварительная адсорбция на AgO (РЬОг, NiO, СггОз) молекул с электродонорными свойствами, таких, как NH3, Нг, СО заметно повышает каталитическую активность поверхности оксида. [c.205]

    Это уравнение называют логарифмическим. Соответственно, график, построенный в координатах у — g t + onst) или у — — Ig t (при t > onst) имеет вид прямой линии. Логарифмическое уравнение, впервые полученное Тамманном и Кестером [11], отражает поведение многих металлов (Си, Fe, Zn, Ni, Pb, d, Sn, Mn, Al, Ti, Та) на начальных стадиях окисления. Вначале справедливость этого уравнения ставилась под сомнение. Были сделаны попытки вывести уравнения на основе предположений о существовании специфических свойств оксидов, таких как наличие диффузионных барьеров и градиентов ионной концентрации и других. Эти предположения не получили экспериментального подтверждения. С другой стороны, было показано, что логарифмическое уравнение можно вывести из условия, 4TQ скорость окисления контролируется переходом электронов из металла в пленку продуктов реакции, причем эта пленка имеет пространственный электрический заряд во всем своем объеме [7, 12]. Преобладание заряда, обычно отрицательного, в оксидах вблизи поверхности металла, подобно электрическому двойному слою в электролитах, было установлено экспериментально. Таким образом, любой фактор, изменяющий работу выхода электрона (энергию, необходимую для удаления электрона из металла), например ориентация зерен, изменения кристаллической решетки или магнитные превращения (точка Кюри), изменяет скорость окисления, что и наблюдалось в действительности [13—15. Когда толщина пленки превышает толщину пространственно-заряженного слоя, определяющим фактором обычно становится скорость диффузии или миграции сквозь пленку. При этом начинает выполняться параболический закон, и ориентация зерен или точка Кюри перестают оказывать влияние на скорость окисления. Исходя из этого, можно сказать, что в начальной стадии оксидная пленка на металлах [c.193]

    Химические свойства. Металлы этой подгруппы, имея на внешнем квантовом слое атомов два электрона, легко их отдают и потому являются сильными восстановителями. Все они окисляются кислородом воздуха, но в различной степени, причем для бериллия и магния корка оксида настолько Лрочна и так плотно пристает к поверхности, что предохраняет металл от дальнейшего окисления способность окисления у остальных металлов постепенно возрастает с повышением порядкового номера или радиуса атома. [c.252]

    Образование активных центров на поверхности капилляров обусловлено рядом причин, в том числе наличием в стекле примесей и особенностями структуры стекла. Содержащиеся в поверхностном слое оксиды металлов, которые добавляют в стекло на стадии его получения, проявляют свойства льюисовых кислот [20, 71, ПО, 226] и способствуют адсорбции молекул с неподеленной электронной парой, например аминов и кетонов. Молекулы, содержащие л-электроны, например ароматические углеводороды и олефины, также взаимодействуют с льюисовыми кислотами. Оксиды бора и алюминия являются более сильными лКюисовьши кислотами, чем оксиды магния и кальция, и более слабыми. [c.79]

    Во-первых, должен быть установлен механизм образования связей С—С на таких обычных катализаторах, как восстановленное железо или кобальт. Трактовка механизма, как включающего полимеризацию поверхностных соединений и конкуренцию между полимеризацией и реакцией обрыва, регулирующей длину углеводородной цепочки, в какой-то мере является спекулятивной, поскольку она основана на косвенном Доказательстве. Как при метанировании, так и в синтезе Фищера — Тропша было постулировано образование частично гидрогенизиро-ванного на поверхности энола в форме радикала НСОН , а его реакции с образованием метана или конденсация с образованием углеводородной связи С—С были приняты в качестве медленной стадии. Недавние данные, однако, показывают, что наиболее медленной стадией может быть разрыв связи С—О в адсорбированном оксиде углерода. Ряд последних экспериментальных результатов подтверждает правильность этого частного механизма. Измерение кинетического изотопного эффекта показало, что на нанесенных N1, Ки и Р1 реакции Н2 + СО—>- и Оа+СО—>- протекают при идентичных скоростях, откуда следует, что водород не участвует в стадии, определяющей скорость [51]. Исследования на N1 и на N1—Си-сплавах показали, что необходимый для катализа ансамбль из смежных активных мест вызывает диссоциацию СО перед реакцией с водородом [52]. В соответствии с последними измерениями на никеле, проведенными методами ДМЭ и УФЭС, совместная адсорбция Нг и СО не приводит к образованию поверхностного энольного комплекса, поэтому может потребоваться предварительный распад СО, чтобы могло произойти гидрирование СО [53]. Эти данные согласуются с данными, полученными методом инфракрасной спектроскопии при изучении активных мест на Ки-, КЬ- и Pt-катализаторах, нанесенных на оксид алюминия, которые указывают на то, что в течение реакции Нг и СО поверхность покрыта преимущественно адсорбированным СО без каких-либо признаков существования поверхностного комплекса формила НСО— [54]. Должны быть выяснены такие важные свойства поверхности, как энергия связи СО, возможность одновременной адсорбции СО и Нг, а также необходимость придания катализаторам других структурных или электронных свойств. Они должны помочь в понимании вариаций селективности, наблюдаемых при сравнении действия различных металлов, а также вызываемых такими промоторами, как калий. [c.275]

    Электроны могут попасть на ферри-ионы не только непосредственно, перепрыгнув с поверхности металла, но и путем переноса через адсорбированные хлор-ионы ( электронные мостики ). Электронные мостики облегчают перенос электронов, т. е. осуществляют катализ электродной реакции. Ускорение электродной реакции в результате адсорбции катализаторов или реагирующих веществ, промежуточных соединений или продуктов реакции называется электрокатализом. Поскольку металлы как адсорбенты для участников электрокатали-тической реакции весьма отличны друг от друга, каталитический эффект существенно зависит от материала, из которого изготовлен электрод. На каталитические свойства поверхностей электродов сильное влияние оказывает также предварительная обработка электрода (например, анодное окисление с образованием поверхностных оксидов, катодное восстановление поверхности оксидного слоя и т. д.). [c.143]

    Образующиеся в ходе такого взаимодействия гидроксиды и оксиды будут, естественно, изменять свойства металла, в том числе его нулевую точку и работу выхода. Весьма вероятно, что отклонения, наблюдающиеся для галлия и некоторых других металлов, обусловлены именно этой причиной. В пользу такого заключения говорит и уменьшение расхождения при смещении потенциала электрода отрицательнее нулевой точки, т. е. когда становится более вероятным восстановление поверхностных оксидов и переход к чистому металлу. Следует, однако, иметь в ниду, что теория электрокапи.мярных явлений, элементы которой были рассмотрены, относится лишь к случ<1Ю идеально поляризуемых электродов. При переходе к обратимым электродам появляются осложнения, связанные с определением заряда их поверхностей. Во-первых, на обратимых электродах возможно протекание электрохимических реакций и связанный с ними перенос зарядов через границу раздела электрод — раствор. Во-вторых, в этом случае иельз) игнорировать (чего, впрочем, нельзя делать и для любых не идоал1>но поляризуемых электродов) передачу электронов от ионов или от других адсорбированных частиц на электрод и в обратном направлении. Многие [c.259]

    Термин поверхностный центр в хемосорбции определяется как один или микроскопическая группа атомов на поверхности, которая в каком-либо смысле химически активна. Наряду с рассмотренными выше атомами, связанными, например, с дефектами, кристаллографическими ступеньками и т. д., это может быть, например, атом с оборванной связью , катион, неском-пенсированный необходимым числом анионов, кислотный или основной центр . Кислотные центры Льюиса обладают свободными орбиталями с высокой энергией сродства к электронам, кислотные центры Бренстеда обладают тенденцией отдавать протон. Один вид этих центров может переходить в другой. Так, при взаимодействии с водой Ь+ + Н2О = (Ь ОН) + + Нг на поверхности кислотный центр Льюиса Ь+ делит электронную пару с ОН , а остающийся адсорбированный протон Н+ может вступать в химические реакции, представляя собой теперь кислотный центр Бренстеда. Если группа ОН" связана с катионом менее прочно, чем Н+ с решеточным ионом 0 , она становится основным центром Бренстеда и вещество будет проявлять основные свойства. Они связаны с электроотрицательностью металла, и кислотность оксидов уменьшается в следующем ряду  [c.143]

    Противоокислительные свойства наполнителей связаны со свойствами их поверхности, в частности с работой выхода электрона. Когда твердая фаза является донором электронов, а следовательно, возможны катодные реакции восстановления первичных радикалов и оксикислот (К--ЬН+Ч-С —> КН), окисление предотвращается. Напротив, электроположительные металлы и наполнители с высокой работой выхода электронов, например медь, усиливают окисление масла, очевидно, в результате стимулирования анодной поверхностной электрохимической реакции [17—21]. Так, хорошие противоокислительные свойства показывает СаСОз, М 0, МоЗг и порошкообразная сера. Акцепторы электронов — технический углерод, графит, оксид меди и др. — значительно усиливают окисление. [c.167]


Смотреть страницы где упоминается термин Поверхность металлов и оксидов металлов (электронные свойства): [c.427]    [c.141]    [c.72]    [c.38]   
Смотреть главы в:

Физико-химия нанокластеров наноструктур и наноматериалов -> Поверхность металлов и оксидов металлов (электронные свойства)




ПОИСК





Смотрите так же термины и статьи:

Металлы свойства

Оксид металлов

Оксиды свойства

Поверхность металла



© 2025 chem21.info Реклама на сайте