Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия квантов тепловая

    Квантовый генератор, излучающий в тепловом диапазоне, является единственным источником инфракрасного излучения, который излучает монохроматичные и когерентные колебания. Кроме того, луч квантового генератора на небольшом участке может создать наивысшую по сравнению с другими источниками концентрацию энергии. Квантовые генераторы сложнее других нагревательных устройств и используются пока для решения специальных задач, но по мере их отработки они будут находить все большее применение. Наиболее целесообразная область применения квантовых генераторов— контроль небольших объектов или их частей, особенно при тепловом контроле в динамических условиях. При работе с инфракрасными квантовыми генераторами необходимо соблюдать определенные правила техники безопасности, учитывая, что это излучение несет в очень тонком пучке энергию с большой плотностью. Работать на установках, использующих квантовые генераторы, следует в защитных очках со светофильтром, задерживающим [c.167]


    Теория Эйнштейна. Эйнштейн попытался объяснить резкое уменьшение теплоемкости твердых тел при низких температурах (при Т—>-0), исходя из простой модели. Он предположил, что для объяснения тепловых свойств при низких температурах кристаллическую решетку твердого тела, состоящую из N колеблющихся атомов, можно рассматривать как систему ЗМ независимых одномерных гармонических осцилляторов, имеющих одинаковую собственную частоту V. Гармонические осцилляторы, использованные Эйнштейном, отличались от классических гармонических осцилляторов. Классический гармонический осциллятор может иметь любую амплитуду колебаний и, следовательно, любую энергию. Квантовые гармонические осцилляторы, с которыми оперировал Эйнштейн, могут иметь лишь строго определенные, дискрет- [c.106]

    КИХ температурах заселенности всех состояний становятся одинаковыми. При неограниченном возрастании энергии системы все ее состояния должны были бы стать равновероятными и энтропия системы должна была бы достичь максимума в соответствии с третьим правило.м о вероятностях. Это объясняет наблюдаемую для неравновесных систем общую тенденцию к превращению всех видов энергии в тепловую. Превращение всех видов энергии в тепло приводит к выравниванию вероятностей заполнения всех квантовых уровней и, следовательно, к наиболее вероятному состоянию системы. [c.324]

    Кроме того, если уровень локализации лежит достаточно глубоко (< )> возможна непосредственная рекомбинация свободной дырки с локализованным электроном. При этом излучение может и не наблюдаться, а выделившаяся энергия будет тепловой. Подобного рода процессы являются причиной (правда, не единственной) уменьшения квантового выхода рекомбинационного излучения. [c.64]

    Температуру Г отсчитывают по шкале абсолютных температур (шкала Кельвина) от такого значения, принятого за нуль, по мере приближения к которому энергия хаотического теплового движения молекул также стремится к нулю. При этом сильно проявляются различные квантовые эффекты. При температуре, приближающейся к абсолютному нулю, наблюдается быстрое спадение теплоемкости, у ряда металлов проявляется сверхпроводимость, жидкий гелий делается сверхтекучим. [c.29]

    Немецкий физик Макс Планк (1858—1947), исследуя тепловые излучения нагретыми твердыми телами, допустил существование квант-энергии. По этой гипотезе, изменение энергии при тепловом излучении — прием и отдача энергии — соверщается не беспрерывно, а частями, атомами или квантами , порциями энергии. Они кратны самому малому количеству энергии, названному элементарным квантом энергии . Эта гипотеза, созданная для объяснения одного физического явления, оказалась очень полезной для дальнейшего развития науки и получила название квантовой теории. На ее основе развилась квантовая механика и современная теория строения материи. [c.355]


    Электронная теория объясняет зависимость теплового эффекта хемосорбции от величины адсорбции и ряд других закономерностей катализа. Однако без использования основных положений квантовой теории химической связи нельзя объяснить специфику взаимодействия катализатора с конкретной молекулой. Электронная теория катализа описывает состояние катализатора. Квантовая теория химической связи описывает взаимодействие молекул, осуществляющееся через взаимодействие атомов. Рассматривая взаимодействие молекулы субстрата с поверхностью катализатора, завершающееся возникновением химической связи, необходимо определить реакционные центры, т. е. атомы в молекуле и на поверхности катализатора, которые могут взаимодействовать. При определении реакционных центров и качественной оценке энергии взаимодействия между ними можно руководствоваться основными положениями метода возмущенных орбиталей (см. 214), положением о необходимости соответствия взаимодействующих орбиталей. [c.659]

    Квантовая теория теплоемкости Эйнштейна. В 1907 г. Эйнштейн впервые применил квантовую теорию для описания колебаний атомов в кристалле. В модели, которую рассматривал Эйнштейн, предполагается, что все атомы твердого тела колеблются независимо друг от друга около своих положений равновесия с одной и той же частотой ломаке- Это дает возможность систему из N атомов заменить для теоретического рассмотрения системой из ЗЛ независимых одномерных гармонических осцилляторов. Основой успеха теории Эйнштейна явилось сделанное им предположение о том, что энергия, сообщенная телу, распределяется между осцилляторами целыми квантами, в связи с чем он применил выражение Планка для средней энергии осциллятора к тепловым колебаниям. [c.70]

    Концепция реорганизации растворителя приводит к следующему механизму элементарного акта в стадии разряда — ионизации. Согласно принципу Франка — Кондона, переход электрона без излучения или поглощения квантов энергии возможен лишь при условии, что полные энергии электрона в начальном и конечном состояниях приблизительно одинаковы. Выравнивание электронных уровней начального и конечного состояний происходит под действием тепловых флуктуаций растворителя. Когда в результате этих флуктуаций распределение диполей растворителя в зоне реакции оказывается таким, что оно одновременно соответствует и начальному, и конечному состояниям (см. рис. УП1.10, точка А), то появляется вероятность квантово-меха-нического (туннельного) перехода электрона из металла на реагирующую частицу. Если такой переход осуществляется, то система переходит на потенциальную кривую конечного состояния и релаксирует по ней до равновесной координаты у . Таким образом, в наиболее простых электродных процессах энергия активации обусловлена реорганизацией диполей растворителя, необходимой для квантово-механического перехода электрона из начального в конечное состояние. Напомним, что точно такой же механизм имеют и простейшие ионные реакции в объеме раствора (см. гл. IV). Характерной особенностью электродных процессов является то, что в них начальный уровень электрона можно варьировать в широком интервале, изменяя потенциал электрода. [c.220]

    В твердом кристаллическом теле молекулы (атомы или ионы) совершают упругие тепловые колебания около своих положений равновесия. Частота колебания определяется постоянной упругости и массой частицы. Расстояния между соседними энергетическими уровнями будут тем больше, чем выше частота колебания. Очевидно, разница между выводами классической и квантовой механики будет проявляться при низких температурах, при которых средняя энергия теплового движения молекул сравнима с величиной /IV. [c.69]

    Составить систему уравнений зарождения и развития цепи в газовой смеси H2 + I2 при фотоимпульсе. Достаточно ли освещения от источника с длиной волны = 47 580 нм для инициирования цепи Каковы тепловые эффекты в элементарных актах Рассчитать количество поглощенной лучистой энергии при образовании 1 моль НС и квантовом выходе y=10 эрг. Свободные радикалы отметить точкой. [c.351]

    В процессе образования кристалла происходит перекрывание внешних электронных облаков атомов по аналогии с образованием химической связи в молекулах. В соответствии с методом МО при взаимодействии двух атомных электронных орбиталей образуются две молекулярные орбиТали связывающая и разрыхляющая. При одновременном взаимодействии N микрочастиц образуется N молекулярных орбиталей. Величина N в кристаллах может достигать огромных величин (порядка 10 ). Поэтому и число электронных орбиталей в твердом теле чрезвычайно велико. При этом разность между энергиями соседних орбиталей будет ничтожно мала. Так, в кристалле натрия разность энергетических уровней двух соседних орбиталей имеет порядок 10 Дж. Таким образом, в кристалле металла образуется энергетическая зона с почти непрерывным распределением энергии, называемая зоной проводимости. Каждая орбиталь в этой зоне охватывает кристалл по всем его трем измерениям. Заполнение орбиталей зоны проводимости электронами происходит в соответствии с положениями квантовой механики. Так, из условий минимума энергии электроны будут последовательно заполнять все орбитали, начиная с наинизшей, причем на каждой орбитали в соответствии с запретом Паули может располагаться лишь два электрона с антипараллельными спинами. С повышением температуры за счет теплового возбуждения электроны будут последовательно перемещаться на более высокие энергетические уровни, передавая тепловую энергию с одного конца кристалла на другой и обеспечивая таким образом его теплопроводность. [c.82]


    Молекулярные спектры. В молекулярных спектрах также наблюдаются дискретные изменения энергии. Излучение с частотой 10 —Гц (10 — 10 см ) может вызвать вращение молекул газа. Вращательный импульс квантован (вращательное квантовое число У), количество энергии (около 150 кал-моль" ) зависит от момента инерции молекулы и является величиной одного порядка с тепловой энергией та НТ 2 ЪОО кал-моль- на одну степень свободы при Т = 300 К). Вращательные спектры наблюдают при помощи микроволновой техники (тяжелые молекулы) или методов инфракрасной спектроскопии (более легкие молекулы). Для аналитических целей они имеют небольшое значение. [c.178]

    Такое описание относится к возбужденному состоянию кристалла. При температуре абсолютного нуля тепловое возбуждение кристалла отсутствует. Согласно классической механике, система находится в состоянии полного покоя, имеет минимум энергии, равный нулю. В квантовой механике такой ситуации быть не может. [c.14]

    ХИМИЯ высоких ЭНЕРГИЙ, изучает кинетику и механизм р-ций, к-рые характеризуются существенно неравновесными концентрациями быстрых, возбужденных или ионизиров. частиц, обладающих избыточной энергией по сравнению с энергией их теплового движения, а часто и с энергией хим. связей. Термин введен в СССР в нач. 60-х гг. 20 в. Осн. разделы X. в. э. радиационная химия, фотохимия, плазмохимия, лазерная химия, а также изучение хим. р-цнй в пучках быстрых атомов, ионов или молекул, ряд проблем механохимии и ядерной химии. Хотя р-ции, изучаемые в разл. разделах Х.в. э., инициируются или ускоряются под действием разл. факторов, их объединяет общность элементарных хим. процессов с участием электроиов, ионов, радикалов, ион-радикалов, электронно-возбужденных и быстрых атомов и молекул. Реализуются новые механизмы р-ций, мало вероятные в равновесных сист. нри обычных т-рах. Др. характерная черта X. в. э.— общность методов исследования в разных ее направлениях. Широко распространены оптич. методы, масс-спектрометрия, радиоспектроскопия, а также эксперим. методы квантовой электроники, атомной и ядерной физики. [c.653]

    Таким образом, различие кривых спектрального распределе-иия вспышечного действия видимого света в возбужденных и невозбужденных кристаллах Na l при различных температурах объясняется сильной зависимостью квантового выхода фотодиссоциации F-центров от температуры и независимостью от нее процесса диссоциации F -центров. В частности, при температуре жидкого воздуха вспышка определяется преимущественно электронами из F -центров, для оптической диссоциации которых не требуется дополнительной тепловой энергии активации, как в случае F-центроБ. При комнатной температуре F -центры не могут долго существовать, так как энергия их тепловой диссоциации составляет всего лишь 0,1—0,3 эв [54]. [c.68]

    Так, например, при облучении бромистого этила СбНзВг медленными нейтронами образуются два радиоактивных изотопа бромав соответствии с реакциями Bг(/г, у) Вг и Вг(/г,у) Вг. Свободные радиоактивные ионы и атомы изотопов Вг и Вг легко выделяются путем отмывания водой (встряхивания бромистого этила с водой в обычной делительной воронке) и последующего (после отстаивания) разделения водной и органической фракции. Сечение данной реакции (п, у) зависит от энергии нейтронов. Эта реакция типична для медленных нейтронов. Термин медленные применяется обычно к нейтронам с энергией менее 1000 эв. Медленные нейтроны поглощаются ядрами главным образом при малых значениях энергии нейтронов. При очень низких значениях энергии, порядка теплового движения, эффективное сечение обратно пропорционально скорости нейтрона ( закон 7 )- Объяснениём этому служит то, что время, в течение которого нейтрон и ядро пребывают на достаточно близком для реакции расстоянии, пропорционально 7 - Во многих случаях на эту простую закономерность накладываются резонансные эффекты. Если возбуждение Е составного ядра, образовавшегося из бомбардируемого ядра и нейтрона, равно энергии одного из его квантовых квазистационарных состояний, то сечение реакции резонансно возрастает при соответствующих значениях кинетической энергии нейтрона. Напомним, что [c.166]

    Макс Планк (1858—1947) — крупный немевдиЯ физик, лауреат Нобелевской премии. Основные труды Пл-атса посвящены термодинамике и тепловому излучению. Введенное Планком представление о квантовом характере излучения и поглощения энергии сыграло весьма важную роль в развитии современного естеетвозиания. [c.63]

    Составьте систему уравнений зарождения и развития цепи в газовой Mii H На + I2 при фотохимическом процессе. Достаточно ли светового готока от источника с длиной волны А, = 475,8 нм для инициирования цепи Каковы тепловые эффекты в элементарных актах Расс штате количество поглощенной лучистой энергии при образовании 1 мсшь НС1 и квантовом выходе 7 = 10 . Свободные радикалы отмерьте точкой. [c.395]

    Вывод классических уравнений движений из квантовых показывает, что классическая механика применима при условии малости длины волны де-Бройля X по сравнению с характерным размером I об.тасти действия потенциала, в котором движется частица. Из правил квантования следует, что условие к (ШР) <5 эквивалентно условию Пк для связанных состояний системы (колебательное и вращательное движение). Для тепловых энергий Т 1000 К) и молекул среднего атомного веса [М 20) X, составляет величину ппр>[дка К)" см, что заметно меньше размера молекул (3-10 сж). Для этих же условий наиболее вероятные значения вращательных квантовых чисел ] обычно превышают 10, тогда как для колебаний условие 1 к 1. как правило, не выполняется. Таким образом, описание поступательного и вращательного движения молекул в рамках классической механики полностью оправдано. Что касается колебательного движения, то опо может быть описано классически только в случае, когда колебательная энергия заметно превышает величину колебательного кванта, например в случае сильно г1Кзотермнческих реакций. [c.57]

    В элементарных актах, протекающих с изменением электронных термов системы и получивших название неадиабатических, изменения квантовых чисел и электронной плотности происходят скачкообразно, например при изменении мультиплетности или в результате поглощения квантов /гv. Особенности каждого элементарного акта определяются числом молекул, участвующих в нем, их строением и характером реакционных центров. Рассмотрим некоторые общие закономерности элементарного акта на примере адиабатической бимолекулярной реакции типа А + В О + Е, протекающей в газовой фазе. Молекулы реагентов, находясь в тепловом хаотическом движении, периодически сталкиваются между собой. При столкновении может происходить перераспределение энергии как между сталкивающимися молекулами, так и по внутримолекулярным степеням свободы движения в молекуле. Отдельные молекулы могут переходить в энергетически возбужденное состояние. Тепловое движение столь интенсивно, так велика частота столкновений, что в системе практически мгновенно устанавливается равновесное распределение молекул по энергиям и можно пользоваться уравнением Больцмана (см. 96) [c.558]

    При 25—40° энергии теплового движения, равной примерно 4 кдж1моль, недостаточно для возбуждения внутримолекулярного движения. Поэтому практически все молекулы при обычных условиях находятся на нулевом колебательном квантовом уровне. [c.69]

    Кратко рассмотрим конвективный механизм передачи тепла от внутренней стенки нагретой трубы к нефтепродукту. Он содержит две составляющие непосредственно передачу тепловой энергии от нагретой стенки к нефтепродукту в пределах теплового пограничного слоя и конвективную теплопередачу за счет движения макроскопических объемов среды. Если отвлечься от представлений квантовой механики, передача тепловой энергии в пределах теплового пофаничного слоя рассматривается упро- [c.24]

    Интересующие нас квантовые системы, как мы видели, обладают свойством изменять частоту излучения, вообще трансформировать энергию. Их внутренняя энергия складывается из электронной и вибрационной (тепловой) энергии, причем запас ее может пополняться или уменьщаться при взаимодействии, с излучением и с соприкасающимися веществами — другими квантовыми системами. Изменение уровня электронной энергии сопровождается изменением уровня вибрационной энергии и, наоборот, увеличение или уменьшение запаса последней влечет за собой соответствующее изменение электронной энергии. Дело в том, что упругие силы, действующие между атомами, зависят от энергетического состояния электронов в то же время шругие колебания атомов деформируют электронные оболочки, т. е. изменяют уровень энергии электронов. Другими словами, в твердом веществе существует электронно-фононное взаимодействие, причем передача и трансформация энергии происходят путем столкновения электронов с фононами. Представляя собой систему большого числа взаимосвязанных вибраторов, твердое вещество имеет сплошные спектры поглощения. Благодаря этому соударение с твердым телом возбужденных молекул или комплексов, в частности продуктов экзотермических реакций, позволяет им освобождаться от избыточной энергии, прежде чем наступает их диссоциация. Твердое тело может вместе с тем легко передавать из своих запасов дополнительную энергию адсорбированным молекулам или атомам и таким путем активировать их, что при определенных условиях позволяет ему служить катализатором химических реакций. [c.132]

    В связи с приведенным примером весьма интересно сопоставить значения ДС/ и АНт и остановиться на весьма существенном термине химическое сродство . Химики второй половины XIX в. и начала текущего века называли этим термином причины (можно было бы сказать силы), под влиянием которых вещества вступают в химические реакции. В настоящее время эта задача решается, как принято говорить, на молекулярном уровне методами квантовой механики. Термодинамике же, которая не рассматривает взаимодействий между отдельными молекулами, надлежало найти некоторую макроскопическую меру действия химических сил, меру, которую можно было бы оценить по явлениям, происходящим во всей системе в целом. Первоначальная точка зрения, принадлежащая Томсену (1853) и в более ясной форме сформулированная Бертло (1867), предлагала в качестве меры химического сродства рассматривать тепловой эффект реакции. Бертло принадлежит следующая формулировка всякое химическое превращение, соверишющееся без вмеилательства посторонней энергии, [c.114]

    В годы второй мировой войны в связи с потребностями радиолокационной техники были разработаны детекторы из германия и кремния. Исследование этих полупроводниковых материалов привело американских ученых Бардина и Браттейна в 1948 г. к созданию транзистора, теория которого была разработана В. Шокли. С этого времени начинается промышленный выпуск многих типов полупроводниковых приборов и, в первую очередь, диодов,, усилительных триодов, мощных выпрямителей, индикаторов излучения, а также преобразователей световой и тепловой энергии в электрическую. За последние годы на основе полупроводников созданы магниточувствительные приборы, измерители механических деформаций, излучатели света и в том числе квантовые генераторы — лазеры, позволяющие получать направленный луч света высокой интенсивности. Одним из весьма перспективных направлений является использование полупроводников в качестве управляемых катализаторов химических реакций. [c.10]

    Обычно различают три типа процессов поглощение, вынужденное излучение и спонтанное излучение. Предположим, что химическая частица имеет два квантовых состояния I и т с энергиями е и вт- Если частица первоначально находится в нижнем состоянии I, то она может взаимодействовать с электромагнитным излучением и поглощать энергию, переходя в состояние т. В обычных процессах поглощение происходит одноступенчато, так что разность между исходным и конечным уровнями точно равна энергии одного фотона излучения следовательно, поглощение излучения происходит лишь при условии 8т—Е1 = Н условие Бора ), Процесс поглощения состоит в потере интенсивности электромагнитного излучения и получении энергии поглощающей частицей. Обратный процесс, когда частица, находящаяся в верхнем состоянии, отдает энергию электромагнитному излучению, известен как вынужденное излучение слово вынужденное указывает, что существует взаимодействие между излучением и возбужденными частицами, вызывающее потерю энергии. Хотя мы не рассматриваем природу взаимодействия частицы и излучения, ясно, что скорость (интенсивность) поглощения или вынужденного излучения пропорциональна скорости столкновений фотонов с поглощающими или излучающими частицами, т. е. изменение интенсивности пропорционально плотности излучения р и концентрации химических частиц. Коэффициент пропорциональности определяет так называемые коэффициенты Эйнштейна В , й/т — коэффициент для процесса поглощения, Вт1 — для вынужденного излучения согласно принципу микроскопической обратимости, Вш = Вт1, и этот же результат можно получить при строгом следовании теории излучения. Скорости поглощения и вынужденного испускания равны В/тПгр и Вт1Птр = = В1тПтр) соответственно, где щ и Пт — концентрации частиц в низко- и высоколежащих состояниях. В случае теплового равновесия Пт всегда меньше, чем П1 [см. уравнение Больцмана (1.4)], и вклад поглощения оказывается более существенным, чем вынужденного испускания. Различие вкладов поглощения и вынужденного испускания определяется соотношением между величиной (вт—е ) и температурой Т. Уже упоминалось, что характерными для фотохимии являются уровни энергии ът--е.1) >кТ и Пт<.П1, поэтому вклад вынужденного испускания в фотохимические процессы в условиях теплового равновесия пренебрежимо мал. Однако в неравновесных ситуациях вынужденным испусканием уже нельзя пренебрегать, и если инверсия заселенности (/гт> () возрастает, то процессы испускания начинают преобладать над поглощением, и в [c.29]

    Здесь мы в большей степени касаемся применения фотохимии в промышленном синтезе. Очевидно, что фотохимический процесс должен превосходить по выходу или чистоте продукта обычные методы производства, чтобы конкурировать с ними. Особенно подходящими кандидатами для промышленного применения являются цепные реакции (часто с радикальными переносчиками цепи) с фотохимической начальной стадией. Мы уже рассматривали такое их использование в связи с фотополимеризацией (разд. 8.8.2). Заметим, что фотохимическая реакция может быть экономически оправданной даже в том случае, когда ее квантовый выход низок, если выход химического продукта выше, чем у обычных процессов. В производстве веществ тонкой химической технологии расходы на свет составлявот незначительную часть общей стоимости продукта высокого качества. Более того, вследствие относительно малых количеств используемого материала серийный процесс часто может представлять увеличенную копию лабораторного метода. При использовании фотохимии в широкомасштабном валовом химическом производстве возникают несколько большие трудности, так как плата за энергию может теперь составлять существенную часть стоимости конечного продукта. В широкомасштабном производстве часто применяются реакторы непрерывного действия, ставящие перед фотохимией проблемы, связанные с их конструкцией. В частности, необходимо использовать прозрачные реакторы или прозрачные кожухи ламп, стенки которых часто загрязняются образующимися смолообразными (и светопоглощающими) побочными продуктами. Размер реактора также может серьезно ограничиваться поглощением света реагентами. Этим недостаткам фотохимического синтеза должна быть противопоставлена более высокая селективность получения продуктов и лучший контроль за их образованием. Процесс производства отличается меньшими тепловыми нагрузками, поскольку реагенты не нужно нагревать, а затем охлаждать. Выли разработаны и технологии преодоления проблем, связанных с фотохимическими реакторами. Они включают освещение поверхности падающих тонких слоев реагентов использование ламинарных потоков несмешивающихся жидкостей, причем ближайшей к стенке реактора должна быть жидкость, поглощающая свет применение пузырьков газа, вызывающих турбулентность, для улучшения обмена реагента. И на- [c.283]

    По оси абсцисс отложены значения волнового вектора 1 1== р , по оси ординат величина энергии в единицах Е р)1кв, где — постоянная Больцмана. Модуль волнового вектора й имеет размерность (aнг тpeм) , а Е/кь выражена в градусах шкалы Кельвина. На этом графике кривая Ландау уточнена экспериментальными данными Коули и Вудса. Поскольку гелий II при Т > О К представляет собой в значительной мере упорядоченную, квантово-когерентную систему, неудивительно, что тепловое движение в гелии II во многом напоминает тепловое движение твердых тел при температурах, близких к О К-Тепловое движение в твердых телах при низких температурах можно представить как совокупность гармонических колебаний звуковых квантов, или фононов. Такая совокупность упрощенно может рассматриваться как идеальный фононный газ. [c.245]

    При достаточно низких температурах средняя энергия теплового движения частиц сравнима с величинами hv. В теле, которое перешло в вырожденное состояние, практически все частицы находятся на самом низког.1 энергетическом уровне. Если средняя энергия молекул газа, находящегося в контакте с телом, значительно меньше, чем величина кванта hv, то она недостаточна для перевода частиц кристалла на более высокие энергетические уровни, и передачи энергии не происходит. Если бы частицы твердого тела подчинялись законам классической механики, то их энергия могла бы изменяться непрерывно, следовательно, описанное явление вырождения обусловлено квантовыми законами. [c.43]

    В 1905 г. А. Эйнштейн установил закон фотохимической эквивалентности каждая молекула, реагирующая иод влиянием света, поглощает только один квант излучения hv, который вызывает ее превращение. Система, в которой прореагировало N молекул, должна получить Nh квантов, т. е. энергию E=Nhv. Отношение числа фактически прореагпровавших молекул к числу поглощенных квантов называется квантовым выходом. Если эта величина меньше единицы, т. е. число поглощенных квантов больше числа распадов, то часть лучистой энергии превращается в тепловую. Во многих фотохимических реакциях квантовые выходы очень велики. Так, в реакции образования НС1 квантовый выход имеет норядок 10- . Это наблюдение привело к идее цепного механизма реакций, при котором фотохимический акт лишь начинает цепь п не играет роли в дальнейшем развитии процесса. Действительно, реакция Н2(г)+СЬ(г) =2СН1(г) начинается через короткое время после освещения смеси, а затем продолжается в темноте. Механизм такой реакции может быть представлен следующей схемой СЫ-/гг = ==2С1 С1+Н2 = НС1+Н Н+СЬ = НС1 + С1 и т. д. [c.246]

    Квантово-химические расчеты в приближении MP4/6-31G(i/)//UHF/ 6-31G( i) показывают [71], что для гомолиза по О-О-связи требуется на 94 кДж/моль больще, чем для гомолиза HOONO2 по О—N-связи. Таким образом, в реальных атмосферных условиях вторым каналом распада можно пренебречь. В приближении MP4/6-31G( /,p) тепловой эффект гомолиза по реакции (1) равен 88.3 кДж/моль, что хорощо согласуется как с DFT-расчетами на уровнях теории B3LYP/6-31 + G d) (85.4 кДж/моль) и BLYP/6-31 + G d) (98.3 кДж/моль) [73], так и с экспериментальной энергией активации 92.9 7.2 кДж/моль (см. табл. 3.5). [c.190]

    При магнитной обработке водных сред, по мнению А. X. Мир-заджанзаде, С. Н. Колокольцева, А. Л. Бучаченко, Р. 3. Сагдеева, К. М. Салихова, сравниться с энергией теплового движения и упорядочить внутреннюю структуру могут только структурные химические связи, которые характеризуются взаимодействием двух или нескольких атомов. Они обусловливают образование устойчивой многоатомной системы и сопровождаются существенной перестройкой электронных оболочек связывающих атомов. При этом необходимо учитывать динамику процесса, ведь все электронные орбиты, составляющие оболочку, непрерывно совершают колебательные движения. Чтобы существовала устойчивая и стабильная связь атомов, необходима определенная корреляция в движении электронов, то есть колебания электронных орбит взаимодействующих атомов должны быть синхронны. Синхронность колебаний электронов в атомах свидетельствует о наличии дисперсионного взаимодействия между атомами. Дисперсионные силы имеют электромагнитную и квантовую природу и являются одной из разновидностей межмолекулярного взаимодействия, называемого силами Ван-дер-Ваальса. Дисперсионные силы возникают в результате колебаний электронов соседних атомов или молекул в одинаковой фазе, при этом взаимное притяжение приводит к сближению этих атомов или молекул и образованию между ними связи. [c.36]

    Другой общеизвестный пример проявления спинов, в данном случае ядерных спинов, - это орто- и зра-водород. В молекуле водорода суммарный спин двух ядер (протонов) может быгь нуль (шро-водород) или единица (орто-водород). В иорд-водороде молекула может находиться только в состояниях с четными значениями вращательного квантового числа, в то время как в орто-водороде разрешены только нечетные значения вращательного квантового числа. Из этого следует, что молекула орто-водорода даже в основном состоянии, в состоянии с наименьшей энергией, на самом деле находится во вращательно-возбужденном состоянии. Тепловой эффект образования пара- и орто-водорода отличается на величину вращательного кванта, соответственно отличаются константы скорости реакции с участием пара- и орто-водорода. [c.2]

    Надо отметить, что клеточный эффект есть и тогда, когда можно пренебречь взаимодействием партнеров пары между собой. Но в принципе может быть и связанное состояние пары, обусловленное притяжением между ними. И тогда уже образование пары, клеточный эффект, обусловлены не только столкновениями с молекулами растворителя, повторными сближениями партнеров в процессе их диффузии, но и притяжением. Для иллюстрации рассмотрим квантовый выход ионизации молекул, вызванной радиацией. В результате ионизации образуется молекулярный катион и электрон. Между ними имеется кулоновское притяжение. Расстояние Гд между катионом и электроном, на котором кулоновское притяжение равно тепловой энергии кТ, называется онзагеровским радиусом и оно находится из условия [c.16]


Смотреть страницы где упоминается термин Энергия квантов тепловая: [c.135]    [c.107]    [c.82]    [c.98]    [c.368]    [c.348]    [c.12]    [c.454]    [c.269]   
Биогенный магнетит и магниторецепция Новое о биомагнетизме Т.2 (1989) -- [ c.320 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия тепловая



© 2025 chem21.info Реклама на сайте