Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидродинамические свойства полимеров

    Полиэлектролиты. Если звенья макромолекулы содержат боковые ионогенные группы, то полимеры проявляют своеобразные-электрические, конфигурационные и гидродинамические свойства. Такие полимеры называют полиэлектролитами. К ним относятся поликислоты (полиметакриловая, нуклеиновые кислоты и др.) полиоснования полиамфолиты. Полиамфолиты содержат кислотные-и основные группы в одной макромолекуле. Это белки и синтетические полипептиды. Они построены из аминокислот и содержат основные (ЫНзОН) и кислотные (—СООН) группы, которые располагаются не только на концах цепей, но и в боковых ответвлениях. Раствор каждого полиамфолита в зависнмости от его состава имеет определенное значение pH, при котором сумма положительных и отрицательных зарядов в цепи равны. Это значение pH называется изоэлектрической точкой (ИЭТ). При pH ниже ИЭТ в цепи преобладают положительные заряды из-за подавления диссоциации СООН-групп. При достаточно низком pH полиамфолит превращается в полиоснование. При pH выще ИЭТ полиамфолит постепенно переходит в поликислоту. [c.287]


    Поскольку количественного соотношения между коэффициентом поступательного трения и молекулярным весом молекул полимера нет, измерение коэффициента диффузии не дает возможности непосредственно находить молекулярный вес. Это возможно только при сочетании измерения коэффициента диффузии с другими методами, основанными на изучении гидродинамических свойств макромолекул в растворе, например, с измерением седиментации в ультрацентрифуге (см. гл. V) или вязкости [9]. [c.122]

    Гидродинамические свойства разбавленных растворов полимеров [c.111]

    Появление разветвлений отражается на химической структуре и топологии макромолекул, а также на зависящих от этих параметров физико-химических и механических свойствах полиарилатов [23-26]. В работе [22] на примере полиарилата Ф-2 рассмотрено влияние природы растворителей на молекулярно-массовые характеристики и гидродинамические свойства полимеров, получаемых высокотемпературной поликонденсацией. Полимеры, синтезированные в среде дитолилметана (ДТМ), имеют разветвленную структуру и меньшую термическую устойчивость, чем образцы, полученные в а-хлорнафталине. [c.286]

    Средневзвешенная молекулярная масса может быть вычислена из данных, полученных при исследовании гидродинамических свойств разбавленных растворов полимеров (вискозиметрия, диффузия, ультрацентрифугирование), а также их оптических свойств (светорассеяние). Для молекулярных масс, определенных гидродинамическими методами, характерна существенная зависимость полученных значений Му, от степени полидисперсности высокомолекулярного соединения и от применяемого растворителя. Отсюда возникает возможность оценки полидисперсности по результатам изучения гидродинамических свойств в различных растворителях. Применение гидродинамических способов определения Му, требует предварительной калибровки по молекулярным массам. Метод светорассеяния является абсолютным. [c.31]

    В хороших растворителях размеры молекулярных клубков увеличиваются, что приводит к изменению их гидродинамических свойств, а количество кинетически независимых частиц, в роли которых выступают сегменты макромолекул, снижается. Это влечет за собой изменение количественных характеристик растворов полимеров. [c.92]

    Изменение термодинамического качества растворителя, молекулярной массы полимера или температуры раствора вызывает изменение размеров и формы молекулярных клубков. Это приводит к изменению гидродинамических свойств разбавленных растворов полимеров. [c.111]


    Гидродинамические свойства полимерных резистов также являются функцией взаимодействия полимер — растворитель. Подходящей характеристикой является так называемая характеристическая вязкость (или предельное число вязкости) [т)], которая определяется экстраполяцией отношения приведенной вязкости к концентрации полимера в растворе к нулевой концентрации. Величина [т)] является мерой гидродинамического объема полимерного клубка (см /г), а ее взаимосвязь с ММ определяется уравнением Марка — Хувинка  [c.19]

    Современная трактовка природы вязкости разбавленных растворов полимеров основывается на анализе их гидродинамических свойств, т. е. свойств, связанных с их движением в растворе з. Макромолекулы могут двигаться относительно молекул растворителя поступательно. Это движение может быть хаотическим (броуновское движение), направленным (диффузия) или движением в центробежном поле (седиментация). В ламинарном потоке при определенном градиенте скорости различные части макромолекулы передвигаются с различной скоростью, в зависимости от того, ра положены ли они э зоне быстрого илн в зоне сравнительно ме ленного течения. В.результате этого макромолекула подвергает воздействию пары сил, которая заставляет ее вращаться в потоп [c.412]

    Благодаря большой величине молекул и гибкости молекулярных цепей растворы полимеров по своим свойствам существенно отличаются от растворов низкомолекулярных соединений. Молекула растворенного полимера представляет собой беспорядочно свернутый рыхлый клубок, который связывает таким образом большое количество растворителя. Гидродинамические свойства раствора обусловлены размерами такого хаотического клубка , объем которого в зависимости от химической природы полимера и растворителя может во много десятков раз превышать собственный объем макромолекулы. Обычно плотность растворенной полимерной молекулы составляет величину порядка 0,01 г/сл . Таким образом, уже в 1%-ном растворе молекулы находятся в радиусе взаимодействия друг с другом . Поэтому к ним не всегда приложимы законы идеальных растворов (например, закон Рауля, закон Вант-Гоффа и др.). [c.16]

    Гидродинамический подход к описанию процесса вальцевания позволяет установить качественные и количественные зависимости между геометрическими характеристиками рабочего пространства (зазора), свойствами полимера и технологическим режимом. Разработанные в настоящее время математические модели изотермического вальцевания учитывают аномалию вязкости и дают возможность рассчитывать все кинетические характеристики процесса (давление, распорные усилия, напряжение сдвига, вращающие моменты). [c.397]

    Мы рассмотрели роль объемных эффектов, т. е. влияние эффективного расталкивания звеньев цепи (вследствие их конечного объема) на средние размеры. Ясно, что объемные эффекты скажутся на гидродинамических свойствах макромолекул. Величина а может быть непосредственно измерена путем исследования вязкости разбавленных растворов полимеров. Для вязкости, как мы увидим дальше (стр. 148), суш ествует очень надежная и теоретически обоснованная формула Флори—Фокса, связываюш ая средний квадратичный размер макромолекулы в растворе с молекулярным весом и непосредственно измеряемой величиной — характеристической вязкостью [c.90]

    Некоторые из важнейших методов измерения молекулярных весов полимеров основаны на изучении гидродинамических свойств макромолекул. Гидродинамические характеристики макромолекул, выражающие действие сил трения на частицы при движении в среде (растворителе), очень сильно зависят от размеров и формы, принимаемых макромолекулами в растворе, и, кроме того, они сравнительно легко поддаются измерению. Особенно просто измеряется вязкость растворов. Неудивительно, что вязкости растворов полимеров посвящена огромная литература и измерение ее является в настоящее время самым распространенным методом производственного контроля во всех отраслях промышленности, связанных с полимеризацией. Уже лет 30 тому назад Штаудингер показал, что для характеристики свойств [c.142]

    В процессе формирования сетчатого полимера гидродинамические свойства системы изменяются исключительно резко от сантипуаза до 10 пуаз. Естественно, что столь же резко меняются и диффузионные свойства системы, вплоть до полного отсутствия трансляционной подвижности функцио- нальных групп. [c.30]

    Изучение гидродинамических свойств разбавленных растворов полимеров является одним из основных способов определения молекулярных характеристик цепных молекул. Это связано как с доступностью экспериментального оборудования и сравнительной легкостью измерения, так и с наличием теоретических соотношений, количественно описывающих экспериментальные закономерности. В этой главе даются основы теории гидродинамического поведения изолированной цепной молекулы. Методы определения коэффициентов седиментации, диффузии, характеристической вязкости, объема элюирования в гель-проникающей хроматографии приведены в главах 4—6. [c.36]


    Применение полученных соотношений к анализу конформационных и гидродинамических свойств растворов полимеров и олигомеров дано в 3 этой главы. [c.41]

    Иногда при анализе гидродинамических свойств растворов полимеров, их ассоциатов, коллоидных систем частицы моделируют жесткими сплошными образованиями. Поэтому приведем основные соотношения для таких моделей. [c.43]

    Понятие исключенного объема играет важную роль при рассмотрении свойств реальных растворов полимеров. Исключенный объем сегмента Р определяет величину второго вириального коэффициента Ла, величину разбухания клубка в хороших растворителях, а следовательно, суш,ественно сказывается на гидродинамических свойствах и концентрационной зависимости многих свойств разбавленных растворов полимеров. Это приводит к усложнению интерпретации данных при определении структурных параметров линейных молекул и к значительным экспериментальным трудностям. [c.69]

    Метод гель-фильтрации может быть полезной заменой измерению вязкости. Для гидродинамических свойств, упомянутых ранее, объем элюирования линейного полимера в конфигурации статистического клубка является функцией длины его цепи, а следовательно, может служить мерой молекулярного веса. Если ограниченные количества материала не позволяют провести измерение вязкости, то метод гель-фильтрации может стать вполне равнозначной заменой. Если молекулярные веса, оцениваемые методом гель-фильтрации, гораздо ниже получаемых по методу седиментационного равновесия, то следует предположить, что поперечные сшивки (например, дисульфидные связи) по-прежнему сохраняются. [c.427]

    Приведенные здесь данные получены на основе приближенных уравнений, и сами расчеты применимы лишь для частного вида цепей. Тем не менее, эти данные могут рассматриваться как типичные для гибких полимеров. Они будут очень полезны для конкретного рассмотрения термодинамических и гидродинамических свойств таких молекул в последующих главах. [c.208]

    В кристаллических полимерах установлено наличие большого количества структур, обладающих поверхностью раздела и поверхностным натяжением, а изменение их свободной поверхностной энергии, как и в дисперсных системах, играет важную роль в образовании вторичных структур. В явлениях защитного эффекта, в действии наполнителей в полимерах, в водных дисперсиях полимеров поверхностные свойства дисперсных частиц и свойства макромолекул непосредственно связаны между собой. Интересной переходной формой между дисперсными и полимерными систе.мами являются дисперсии полимеров в пластификаторах (гл. IX). Много общего имеется также в диэлектрических свойствах, оптических свойствах (например, в явлениях светорассеяния, в двойном лучепреломлении при течении), гидродинамических свойствах. [c.16]

    Кроме рассмотренных усреднении по мольной или массовой доле молекул, использ ют другие способы усреднения, опредс-чяемые методикой измерения молекулярных масс. По зависимости гидродинамических свойств полимеров от молекулярно " массы, например по изменению вязкости, коэффициента диф-фу ши и других свойств, определяют среднегидродинамичсс1 ( молекулярные массы. К ним относятся средневязкостная Ж,, срслнсднффузкая Мд и др. В общем виде [c.26]

    В результате такой перегруппировки температура начала деструкции повышается на 40°, а энергия активации — на 12 ккал/моль. Лолиарилаты, содержащие серу (№ 162) или фосфор (№ 67, 69, 167, 169, 171, 176), получают сополикоиденсацией с использованием соответствующих мономеров. Термостойкость повышается за счет введения в цепь полиэфира карборановых циклов (№ 32, 33, 66, 98, 99, 107, 108, 117, 118). Изучены полидисперсность и гидродинамические свойства полимеров в зависимости от условий синтеза [115, 139, 170—172]. У полиарилатов на основе бпс-2,2-(З-хлор-4-гидр- [c.342]

    Результаты исследования гидродинамических свойств полимеров показывают, что макромолекулы П-Ы-ИБМИ в связи с наличием циклов в основных цепях обладают значительной жесткостью. Макромолекулы П-М-ИБМИ характеризуются достаточно высокой положительной оп- [c.52]

    К другим типам усреднения приводят методы исследования гидродинамических свойств растворов асфальтенов и соответствующие им срёдние молекулярные массы навываются среднегидродинамическими М г). Их определяют по вязкости растворов, константе седиментации или коэффициенту диффузии. Средние молекулярные массы, полученные различными методами, различаются между собой в тем большей степени, чем шире молекулярно-массовое распределение полимера По относительному значению они располагаются в ряд М < Мш < Мг. Для различных асфальтенов установлена- высокая полидисперсность [306]- Так, для ряда асфальтенов, выделенных из битумов деасфальтизации, значение Мя (определенное криоскопически в бензоле), равно 2200, а Mw, определенная по скорости диффузии в бензольном растворе, составляет 8540. Отношение M lMn — 3,5 указывает на высокую степень полидисперсности асфальтенов. [c.152]

    Растворимость кардовых полиоксадиазолов позволила впервые исследовать гидродинамические свойства, полидисперсность, молекулярно-массовые характеристики этого типа циклоцепных полимеров [178, 179, 270, 271, 282, 287]. Для кардового полиоксадиазола 4,4 -дифенилфталиддикарбоновой кислоты в ДМАА и ТГФ уравнения Марка-Хаувинка имеют вид [т ] = 7,74-Ю и [т]] = [c.144]

    Увеличение числа кинетических единиц в растворе в результате диссоциации и изменения формы макромолекулы полимера приводит к изменению его гидродинамических свойств. Это явление характерно для неорганических полимеров [73], для некоторых типов координационных полимеров [74] и органических полиэлектролигов [75]. [c.30]

    Градация растворов полимеров по их концентрациям особо выделяет случай полуразбавленных растворов. Это растворы, в которых объемная гидродинамическая доля полимера (т. е. доля объема раствора, занятая разбухшими клубками) приближается к единице. Название полуразбавленный раствор подчеркивает, что концентрация собственно полимерного вещества в таком растворе может быть малой (порядка 1 масс. %), а концентрация клубков близка к 100 об. %. Раствор в таком состоянии не является структурированным в обычном смысле этого понятия, в том числе не обнаруживает свойств неньютоновских жидкостей. Специфика полуразбавленных неструктурированных растворов полимеров проявляется в виде эффекта Вайссенберга. Сущность эффекта обычно излагается как появление свободной поверхности жидкости необычной формы во вращающемся стакане, если в жидкость погрузить симметричный предмет на покоящейся оси, например стержень. При вращении стакана жидкость натекает на стержень, поднимается по нему и тем выше, чем больше скорость вращения. Аналогичное явление наблюдается и при вращении стержня в покоящемся стакане с жидкостью. Опыты с предметами различной формы (трубки, диски и пр.) в общих чертах дают один и тот же результат жидкость ведет себя так, как будто она притягивается к оси вращения стакана, и тем сильнее, чем больше скорость вращения. Если удалить из жидкости погруженный в нее предмет, то ее поверхность примет обычную форму воронки, обусловленную действием центробежных сил. Таким образом, суть эффекта Вайссенберга заключается в появлении сил, действующих перпендикулярно направлению течения в сторону оси вращения, т. е. радиальных сил. [c.745]

    Применение высокомолекулярных полимеров обычно связано с необходимостью получения растворов с требуемыми свойствами. Особенностью данного класса полимеров является наличие эффекта полиэлектролитпого набухания, в результате которого размеры макромолекулярного клубка могут изменяться в несколько раз, что в ряде случаев идгеет решающее значение в усилении положительного действия. Целью данной работы явилось изучение влияния pH и температуры па гидродинамические свойства ПМВПМС. [c.94]

    Важнейшей характеристикой механических свойств полимеров является модуль упругости. Рассмотрим-в связи с этим зависимость модуля уцругости наполненного полимера от содержания наполнителя. Большинство работ в этом направлении посвящено наполненным эластомерам, к которым могут быть в известной мере применены гидродинамические представления, лежащие в основе выводов о зависимости модуля от содержания наполнителя. [c.159]

    Основное п55еимущество пористых пластмасс в качестве носителей состоит в сорбции на внутренней поверхности сферических полостей ячеек сорбента, что оказывает положительное влияние на хроматографические процессы адсорбции, обмена и распределения. Это достигается использованием в качестве носителей твердых, жестких или упругих пенообразных синтетических полимеров с ячейками открытого типа. Хроматографические колонки с крупнопористыми полимерными носителями обладают прекрасными гидродинамическими свойствами и хорошей кинетикой процессов распределения, которые реализуются на тонких пленках,, разделяющих ячейки пены. Одним из принципиальных преимуществ таких колонок для серийных анализов является высокая скорость элюирования, которая легко может быть достигнута просто под действием силы тяжести. [c.439]

    К другим типам усреднения приводят методы исследования гидродинамических свойств растворов асфальтенов, и соответствующие им средние молекулярные массы называются среднегидродинамическими (Мг). Их определяют по вязкости растворов, константе седиментации или коэффициенту диффузии. Средние молекулярные массы, полученные различными методами, отличаются между собой в тем большей степени, чем шире молекулярно-массовое распределение полимера. По относительному значению они располагаются в ряд Мп<Ме,<Мг. [c.50]

    Механизм трения и износа твердых полимеров в общем сходен с теми механизмами, представления о которых были развиты при исследовании трения металлов, конечно, с учетом соответствующих различий в их физических свойствах. Значение этих свойств для определения трения и износа зависит от условий, в которых данный полимер будет использоваться. Несколько обзорных работ по трению полимеров опубликовали Аллен и Тейбор " Исчерпывающий обзор (до 1959 г.) по трению полимеров и его связи с трением металлов имеется в прекрасной работе Хаувела, Майцкиса и Тейбора . В ней обсуждаются также вопросы трения волокон и гидродинамической смазки полимеров. [c.326]

    Данные о поглощении и гидродинамических свойствах поли L-глутаминовой кислоты свидетельствуют о том, что при ней тральных pH молекулы этого полимера имеют форму хаотиче ского клубка, а в кислой среде принимают форму а-спирали Переход к а-спирали обусловлен тем, что в кислой среде карбо ксильные группы не несут отрицательных зарядов, благодаря [c.287]


Смотреть страницы где упоминается термин Гидродинамические свойства полимеров: [c.77]    [c.343]    [c.176]    [c.177]    [c.412]    [c.18]    [c.259]    [c.182]    [c.17]    [c.522]    [c.549]    [c.18]    [c.8]   
Высокомолекулярные соединения (1981) -- [ c.524 ]

Высокомолекулярные соединения Издание 3 (1981) -- [ c.524 ]




ПОИСК





Смотрите так же термины и статьи:

Гидродинамические свойства



© 2025 chem21.info Реклама на сайте