Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хром III определение аскорбиновой кислотой

    Из приведенных металлов многие образуют комплексы с хромазуролом 5 в тех же условиях, что и алюминий, следовательно, мешают определению алюминия. Например, ванадий (V) мешает мало, допустимы до 4 мг его [5921, но допустимы лишь равные количества V (IV). Хром (VI) не мешает до 10 мг [820], а по другим данным [592], только до 1 жг это противоречие несуш,ественно, так как в условиях применения аскорбиновой кислоты Сг (VI) восстанавливается до трехвалентного. Сг (III) и Мо (VI) при pH 5 не мешают до 20-кратных количеств, большие количества ослабляют окраску комплекса алюминия [164]. Влияние Сг (III) слабее при меньших pH так, при pH 5,8 допустимо содержание лишь равных количеств Сг (III). При pH 5 не мешают 100-кратные количества 2п, Мп, Со, N1, Аз (V), V (V), Сс1, РЬ, 8Ь (III) [164]. Кальций и магний не мешают до соотношения к алюминию соответственно 10 ООО 1 и 2500 1, ш,елочные металлы допустимы в значительных количествах [417]. [c.106]


    При определении в соединениях хрома [319, 320], а также в системе алюминат — лантан — титанат кальций экстрагируют в виде роданидного комплекса из кислой среды трибутилфосфатом [138]. Сг (VI) при этом восстанавливают до Сг(П1) аскорбиновой кислотой [319]. [c.58]

    Кроме сообщения [4] об использовании аскорбиновой кислоты для определения хрома после предварительного окисления хрома (III) до бихромата, других работ пока нет. [c.69]

    III), титана, молибдена (VI) и вольфрама (VI). Однако в ряде работ индийских исследователей показано, что в определенных условиях молибден (VI) и вольфрам (VI) также могут быть оттитрованы аскорбиновой кислотой и что шестивалентный хром легко восстанавливается ею, как и следовало ожидать, исходя из величины нормального окислительного потенциала бихромата. [c.183]

    Определение вольфрама по методу окисления — восстановления затруднено невысоким нормальным потенциалом системы Поэтому для амперометрического его определения приходится прибегать к очень сильным восстановителям, нанример к двухвалентному хрому . Условия восстановления вольфрама (VI) аскорбиновой кислотой описаны в разделе Ванадий (см. стр. 183, ссылка 27), однако в присутствии молибдена (VI) это определение [c.193]

    Метод был применен для определения циркония в алюминиевомагниевых сплавах. Погрешность определения сотых долей процента циркония составляет около +2%. Большинство элементов не мешает определению циркония. Завышенные результаты получаются в присутствии более чем 30-кратных количеств UOa . Трехвалентное железо восстанавливают до Fe аскорбиновой кислотой. Шестивалентный хром восстанавливают до Сг (П1) сульфитом. Преимущество метода — возможность определения циркония в присутствии ионов F . [c.157]

    Применение тиогликолевой кислоты создает возможность определения алюминия в присутствии 100-кратного избытка железа, 10-кратного количества хрома и ванадия и двукратного количества меди. Аскорбиновая кислота способна устранить влияние 100-кратных количеств железа и несколько меньших количеств хрома. Алюминий определяют ализариновым мето- [c.236]

    Марганец, хром, никель, кобальт не мешают определению в соотношении 10 1, алюминий 40 1, титан 50 1 медь и железо мешают. Влияние меди и железа устраняют добавлением тиомочевины и аскорбиновой кислоты. Предельно допустимая концентрация окиси цинка в воздухе 0,5 мг/м . [c.312]

    Присутствие цинка и хрома не мешает определению. Влияние железа и меди устраняют добавлением аскорбиновой кислоты и тиомочевины. [c.347]


    При введении восстановителей (аскорбиновой кислоты) и комплексообразователей (цитратов, комплексона 1П) [68] определение долей микрограмма бериллия в 10 мл конечного раствора возможно в присутствии до 25 мг алюминия, кальция, марганца, до 0 мг магния, молибдена, свинца и цинка, до 0,35 мг железа и 0,25 мг титана и хрома. При наличии значительных количеств золота и серебра их следует восстановить и отфильтровать в процессе разложения пробы 36, 51]. Миллиграммовые содержания ванадата и меди уменьшают яркость свечения бериллиевого комплекса на 10—20% такие же количества германия, олова, ртути и уранила снижают ее в 1,5— [c.209]

    Метод основан на экстракционном выделении кальция трибутилфосфатом (ТБФ) в виде роданида пз кислой среды [1, 2] с последующим его комплексонометрическим определением в реэкстракте. Мешающее влияние хрома устраняют добавлением аскорбиновой кислоты. [c.156]

    Не мешают определению титана магний, алюминий, цинк, кадмий, марганец, медь, цирконий, церий, р.з.э. кобальт, ванадий (17), железо (П), молибден (У). Никель, хром (Ш) мешают только собственной окраской. Железо (Ш), ванадий (У), молибден (У1)- образуют с реактивом окрашенные соединения, их мешающее действие устра-няется восстановлением аскорбиновой кислотой. [c.23]

    Изучены помехи появляющиеся вследствие присутствия хрома при титровании других металлов, и найдено, что они могут быть легко устранены. Исключительная реакционная инертность хрома оказывается в этом случае выгодной, так как упомянутые другие металлы полностью оттитровываются, пока хром успеет прореагировать с титрантом в количестве, мешающем определению-. Рейли очень метко назвал это кинетическим маскированием . При титровании в щелочном растворе хром может мешать вследствие образования осадка гидроокиси. Однако добавка винной кислоты предотвращает выпадение осадка. Вопросами химического маскирования неоднократно занимался Пршибил [61 (94)]. Продолжительным кипячением (5 мин) с триэтаноламином хром можно перевести в триэтаноламиновый комплекс, окрашенный в темный рубиново-красный цвет. Однако, несмотря на то, что хром маскируется, он мешает, перекрывая переход окраски индикатора в точке эквивалентности, за исключением случаев, когда присутствует в малых количествах. Максимальная концентрация хрома, не вызывающая помех, зависит от применяемого индикатора и еще от возможного сильного разбавления анализируемого раствора в процессе титрования. В качестве одной из возможностей маскирования упоминается длительное кипячение с аскорбиновой кислотой. Раствор приобретает синевато-зеленый цвет, и после добавки аммиака выделения гидроокиси хрома не происходит. Предполагается, что образуется комплексное соединение. Окраска его довольно слабая, и, например, Са, Мп или № можно титровать в аммиачном растворе в присутствии хрома в концентрации до [c.220]

    При определении железа этим способом двухвалентные ионы окисляются током в трехвалентные. Кулонометрическое определение мышьяка основано на реакции окисления ионов АзО до ионов АзО . Разработаны также методы определения урана, ванадия, церия, хрома, сурьмы, селена и др., основанные на электрохимическом окислении-восстановлении ионов этих элементов в растворе. Метод применим и для определения органических вещ,еств, например аскорбиновой и пикриновой кислот, новокаина, оксихинолина и др. [c.271]

    Примечание. Применение аскорбиновой или лимонной кислоты позволяет определить молибден в присутствии вольфрама, ванадия, хрома, никеля и кобальта. Присутствие ионов NOg до 0,15 моль/л также не мешает определению. [c.115]

    В условиях определения бериллия (в растворе, содержащем комплексон III, аскорбиновую и лимонную кислоты, а также пиросульфит натрия) возникает также флуоресценция скандия, иттрия, циркония, гафния и тория. Однако со скандием и иттрием яркость флуоресценции раствора в 200 раз слабее, чем с бериллием, а для остальных элементов—в 2000—3000 раз слабее бериллия. В описанных условиях слабая флуоресценция для лития, кальция и цинка, возникающая при возбуждении флуоресценции ультрафиолетовым светом, не была обнаружена . Определение долей микрограмма бериллия еще возможно в присутствии алюминия, кальция, магния, марганца, молибдена, кадмия, свинца и цинка до 5 мг 350 мкг железа и 30 мкг хрома. При содержании титана более 200 мкг раствор становится мутным, и вследствие рассеивания света измеренная флуоресценция оказывается повышенной на 10—15%. [c.251]

    При определении железа этим способом двухвалентные ионы окисляются током до трехвалентных. Кулонометрическое определение мышьяка основано нз реакции окисления нонов АзО до ионов ЛзОГ Разработаны также методы определения урана, ванадия, церия, хрома, сурьмы, селена и других элементов, основанные на электрохимическом окислении — восстановлении ионов этих элементов в растворе. Метод применим и для определения органических веществ, например аскорбиновой и пикриновой кислот, новокаина, оксихинолина и др. Так, определение пикриновой кислоты основано на ее восстановлении Н 1 ртутном катоде в соответствии с уравнением  [c.513]


    В условиях определения алюминия Ре (III), 2г, Н/, Оа, Тп, Рс1, ТЬ и Т образуют окрашенные соединения с арсеназо и, следовательно, мешают определению алюминия. Влияние железа устраняют аскорбиновой кислотой. Медь (до 10-кратного избытка) можносвязать вбесцветный комплекс с тиомочевиной [214]. 25-кратный избыток цинканемешает [214]. Бериллий сильно мешает (0,7 мкг его эквивалентны 1 ж/сг алюминия) [656]. Не мешают до 10 мкг хрома [656], 40 мкг вольфрама [503]. Не мешают значительные количества щелочных и щелочноземельных металлов, магний и марганец. Фториды, фосфаты, оксикислоты и другие вещества, связывающие алюминий в комплекс, мешают. Сульфаты оказывают слабое влияние. [c.127]

    Электролизом на ртутном катоде отделяются следующие металлы Ре, Сг, Со, N 1 Си, 2п, Мо, Сс1, 5п, РЬ, В , Н , Т1, 1п, Ga, Ge, Ag, Аи, Pt, Рс1, КЬ, 1г, Ке. Не отделяются А1, Т , 2г, V, и, ТЬ, Ве, NЬ, Та, W, Р, Аз, 8с, У, РЗЭ, Mg, щелочные и щелочноземельные металлы. Марганец отделяется неполностью, часть его окисляется до МпОа и выделяется на аноде, может также окислиться до Мп04", окрашивая раствор в малиновый цвет. Дюбель и Флюршютц [689] считают, что если во время электролиза в электролит добавить несколько капель 30%-ной перекиси водорода, то достигается количественное отделение марганца. Хром медленно удаляется при электролизе. Поэтому при анализе сталей, содержащих > 5% хрома, большую часть его рекомендуется отделять до электролиза в виде хлорида хромила [555]. Небольшая часть железа всегда -остается в электролите. Однако эти остающиеся количества железа не мешают во многих фотометрических методах определения алюминия, если восстановить железо аскорбиновой кислотой до Ре (П). В электролите могут остаться также следы хрома и молибдена. [c.191]

    Определению содержания титана не мешают магний, алюмиий, цинк, кадмий, марганец, РЗЭ, медь, цирконий, церий, кобальт, молибден (V), ванадий (IV). Молибден (VI) образует с реактивом окрашенное соединение и его мешающее влияние устраняют также, как и мешающее влияние железа рП) и ванадия (V), восстановлением аскорбиновой кислотой, гидроксиламином. Никель, хром (III) мешают определению содержания титана собственной окраской. [c.123]

    Отбирают аликвотную часть раствора в мерную колбу вместимостью 50 мл, добавляют 1 мл 1 %-ного раствора аскорбиновой кислоты, 1 каплю раствора р-нитрофеиола и 2 и. раствора NaOH до появления желтого окрашивания Нейтрализуют точно НС1 (1 3) и дают 2 капли избытка. Добавляют 10 мл 0,035 %-иого раствора эриохром-цианина R и 5 мл 32 %-ного раствора H3 OONH4. Доводят до метки, перемешивают и через 10 мин измеряют оптическую плотность при Х = 530 нм. Мешают определен-ию большие количества хрома (III) и циика.,  [c.28]

    За последние годы предложено несколько вариантов этого метода для определения ванадия в различных объектах в металлическом ванадии, в хромитев урансодержащих веществах по-прежнему много внимания уделяется этому методу при анализе легированных сталей причем особенно для одновременного определения нескольких компонентов — ванадия, хрома и марганца Предложен этот метод и для определения ванадия и хрома в силико-алюминиевых катализаторах крекинга нефти, причем вместо обычного в таких случаях селективного окисления хрома пользуются восстановлением его до трехвалентного при помощи азида натрия хром (III) не мешает титрованию ванадия солью Мора. Можно селективно определять ванадий и железо при совместном их присутствии в растворе сперва титруют ванадий солью Мора, затем — общее содержание железа аскорбиновой кислотой. Из общего содержания железа вычитают то количество железа, которое было израсходовано (в виде соли Мора) на титрование ванадия [c.181]

    Второй метод — титрование индия комплексоном HI оказался весьма удобным благодаря высокой устойчивости комплексоната индия в кислой среде. Таким образом, индий можно титровать почти без предварительного отделения от других элементов. Трейндл применял для этого титрования ртутный капельный электрод и среду с pH 2, охлаждая раствор до 4° С, однако дальнейшие исследования показали, что титровать можно при обычной комнатной температуре. В. М. Владимирова установила, что титрование на ртутном капельном электроде по току восстановления индия лучше всего проводить при —0,7 в (Нас. КЭ) и при pH 1. В этих условиях метод обладает наилучшей избирательностью и индий можно титровать в присутствии очень многих элементов — магния, кальция, стронция, бария, цинка, кадмия, кобальта, марганца, хрома, алюминия. Железо (HI), также образующее весьма прочный комплексонат, надо восстанавливать до железа (II) аскорбиновой кислотой. Медь, свинец, мышьяк восстанавливаются на ртутном электроде при потенциале титрования индия и поэтому могут мешать, если будут присутствовать в относительно больших количествах. Однако при обычном разложении проб и подготовке раствора к анализу мышьяк и свинец удаляются при обработке соляной и серной кислотами, а медь переходит в комплексный аммиакат При осаждении полуторных окислов (вместе с которыми осаждается и индий). Этот метод был затем применен для определения индия в продуктах металлургического производства и в сфалери-товых концентратах с малым содержанием индия. В последнем случае индий приходится отделять экстракцией, при анализе же более богатых индием материалов отделять его обычно не требуется. [c.214]

    Значительно реЖе Для определения примесей в нефти исполь зуется радиохимический вариант нейтронно-активационного анализа [4, 25, 395—398]. Патек и Билдстейн [395] предлагают радиохимическую методику, включающую обычное сухое озоление нефти, растворение сухого остатка в 8 н. соляной кислоте, экстракцию из 8 н. НС1 изопропиловым эфиром железа и сурьмы, осаждение селена аскорбиновой кислотой, из среды 0,1 н. азотной кислоты осаждение серебра в виде хлорида серебра, измерение хрома в 2 н. соляной кислоте и дальнейшее разделение скандия, кобальта и цинка на смоле Дауэкс 1X8- Химический выход определяемых элементов составлял от 83 до 94%. Схема анализа опробована только на искусственных смесях элементов. [c.115]

    Окислительно-восстановительное равновесие Pt(IV) ггР1(П) используется в анализе для объемного определения платины. Способность платинитов и платинатов восстанавливаться до металлического состояния сильными восстановителями используется для количественного весового определения платины или для извлечения платины из растворов, содержащих некоторые неблагородные металлы. В качестве восстановителей применяют в этих Случаях водород в момент выделения (цинк, магний, железо в кислой среде), гидразин, гидроксиламин, муравьиную кислоту или формиат натрия, каломель, хлористый хром, хлористый титан, аскорбиновую кислоту и др. [c.13]

    Таким образом, алюминоновый метод определения алюминия применим к анализу сталей без предварительного отделения мешающих компонентов. Аскорбиновая кислота дает положительные результаты при анализе сталей с незначительным содержанием хрома (соотношение алюминия к хрому не должно превышать 1 2). [c.238]

    Германий может быть также определен по разработанному нами [И] дифференциальному фотоколориметрическому методу, основанному на восстановлении германиймолибденового комплекса аскорбиновой кислотой в присутствии ацетона. Другие компоненты в ряде случаев могут быть определены такими же методами, как и при анализе силикатов. Это установлено нами на примере германатов редких земель и германатов кальция, содержащих хром. Осложнений, по-видимому, можно ожидать в случае определения алюминия из-за возможности образования комплексоната германия. [c.298]

    Титранты, полученные из металлоактивных электродов — олово(11), железо 11), хром(П)—используют для определения нитро-, нитрозо-, азосоединений, трифенилфосфина, цистеина, меркаптанов и аскорбиновой кислоты в различных органических растворителях. В качестве фоновых электролитов используют хлорид и перхлорат лития или натрия, хлорную кислоту, ацетат натрия, галогениды тетраалкиламмония [649]. [c.81]

    Кроме работ, отмеченных в обзорах [53, с. 321 235, 236, 249], упомянем следующие определение молибдена (VI) в системах Мо —СЮз —бензиловая кислота [250] и Мо — СЮз — миндальная кислота [251], германия(ТУ)—в системе Ое —пирогаллол—V [252], железа (II) в системе Ре — гид-роксиламин [253], хрома (IV) в системе Сг —4-аминоантипи-рин—N 2 [254], ниобия (V) в системе N5 —4-(2-пиридилазо)-резорцин — СЮз [255], мыщьяка в системе Аз—Со —5СМ-— аскорбиновая кислота [256], циркония (IV) в системе — Оз [257], кобальта(II) в системе Со —1,10-фенантролин—КОг 258, 259], железа(III) в системе Ре —оксикислоты—КОг 260], кремния по каталитической волне молибде-нa(VI) ( + С10з ) [261], индия(1П) в системе 1п лиганд—вольфрам (V) [262], лимонной кислоты в системе —СЮз — лимонная кислота [263], перхлорат-ионов в системе Мо —С104 ([264]. [c.109]

    Большая часть титриметрических методов определения золота основана на осаждении его в виде металла или соли золота (I). Во всех методах, кроме иодометрического, конечную точку титрования определяют потенциометрически или обратным титрованием избытка реагента. Как следует из величины окислительно-восстановительных потенциалов солей золота, для восстановления их пригодны многие реагенты. Наиболее употребительны гидрохинон, железо(П), арсенит натрия и аскорбиновая кислота. Такие восстановители, как титан(1П), олово(П), хром(II), медь(1), соли гидразиния, двуокись серы и т. п., применяются в некоторых специальных случаях, но не рекомендуются для общего употребления. [c.117]

    Железо предварительно восстанавливают до двухвалентного аскорбиновой кислотой. Однако при большом содержании железо все же накладывает буроватый тон на окраску алюминпя с хром-азуролохм С. Поэтому при определении алюминия необходимо учитывать содержание железа во взятой навеске и строить калибровочную кривую в присутствии соответствующего его количества. [c.92]

    Определению алюминия посредством эриохромцианина К мешает Ре(П1). После восстановления (при помощи тиогликолевой или аскорбиновой кислоты) до Ре(П) оно не мешает определению, даже если его содержится в растворе в 50 раз больше, чем алюминия. При стократном избытке железа результаты определения алюминия завышаются на 7%. Результаты определения алюминия также бывают завышены, если содержание титана в анализируемом растворе превышает содержание алюминия (например, если титана в два раза больше, результаты завышены примерно на 20%). Лантан и индий не мешают определению алюминия. Избыток хрома(1П) мешает появлению окраски. Прп иятидесятпкратном избытке хрома степень окрашивания системы А1 — ЕН уменьшается в два раза. Медь, образующая окрашенный комплекс с эриохромцианипом, маскируется гипосульфитом [37]. Цинк, свинец, никель, олово и марганец не мешают определению алюминия [55]. Бериллий, ванадий и цирконий следует отделять от алюминия до проведения определения. В присутствии комплексона И эриохромцианин образует окрашенные комплексы только с бериллием и цирконием, в присутствии же фторидов комплекс с эриохромцианипом дает только ванадий. Тартраты и цитраты мешают реакции эриохромцианина с алюминием. [c.106]

    Комплексон III хорошо маскирует d, Со, Си, Fe, Mg, Мп, Мо, РЬ, V(IV), W, Zn. При содержании меди в количестве 2 мг результаты определения бериллия завышаются на 2%. Добавляя аскорбиновую кислоту, можно восстановить Fe(III) до Fe(II) и V(V) до V(IV) и тем самым значительно снизить их мешающее влияние. В присутствии алюминия и хрома(1П), комплексонаты которых образуются медленно, после прибавления колптлек-сона III раствор необходимо нагреть для ускорения этого процесса. Цнрко-ний мешает определению бериллия даже в присутствии комплексопа III. Влияние циркония устраняют добавлением винной кислоты. [c.112]

    Этот реагент часто используют для определения небольшого количества алюминия в сплавах железа. Железо маскируют аскорбиновой кислотой, а калибровочную кривую строят в присутствии соответствующих количеств железа и хрома. Значительное количество титана (>0,1 мг) необходимо предварительно отделить 5,7-дибром-8-оксихинолином [1194]. Но и в данном случае более эффективно разделение электролизом на ртутном катоде с последующей экстракцией раствором купферона в хлороформе [1002]. [c.271]

    Известные методы синтеза хроманолов в ряду убихинонов осложняются нежелательной внутримолекулярной циклизацией изопреноидной цепи [54]. Описан синтез хрома-нола Сю под влиянием хлорного железа и аскорбиновой кислоты [55]. Однако точное повторение указанных условий для синтеза менахроманола-3 и определение характера протонов по спектру ЯМР свидетельствуют о возможной частичной циклизации изопреноидной цепи и этим методом [56]. [c.126]


Смотреть страницы где упоминается термин Хром III определение аскорбиновой кислотой: [c.387]    [c.55]    [c.72]   
Новые окс-методы в аналитической химии (1968) -- [ c.240 ]




ПОИСК





Смотрите так же термины и статьи:

Аскорбиновая кислота

Аскорбиновая кислота, определени



© 2025 chem21.info Реклама на сайте