Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флокуляция барьер

    Скорость флокуляции и теория энергетического барьера [c.106]

    Флокуляция особенно характерна для обратных эмульсий, в которых силы дальнего электростатического отталкивания обычно иеве-лики из-за малых значений заряда капель. - Однако и для заряженных капель в обратной эмульсии электростатическое отталкивание при достаточной их концентрации может не обеспечивать устойчивости к флокуляции это связано с тем, что 1из-за небольшого содержания электролитов в системе и низкого значения диэлектрической проницаемости среды толщина ионной атмосферы может быть очень велика (микроны и десятки микрон), что соизмеримо с расстоянием между каплями. Напомним, что положение энергетического барьера взаимодействия частиц, определяемого равновесием сил молекулярного притяжения и электростатического отталкивания (см. 4 гл. IX), отвечает толщине зазора, близкой к удвоенной толщине ионной атмосферы поэтому капли в достаточно концентрированных обратных эмульсиях как бы уже с самого начала расположены на расстояниях, соответствующих преодолению энергетического барьера. Устойчивость обратных эмульсий к флокуляции возможна при наличии структурно-механического барьера, обеспечивающего достаточно малую величину энергии взаимодействия капель при этом электростатическое отталкивание может содействовать уменьшению сил притяжения частиц. Проблема стабилизации обратных эмульсий против флокуляции капель приобрела в последнее время большое значение в связи с попытками использования подобных систем в виде водно-топливных эмульсий, содержащих до 30% воды. Введение эмульгированной воды в бензин и другие топлива, помимо более эффективного использования горючего, обеспечивают повышение его октанового числа и улучшение состава выхлопных газов при работе двигателя внутреннего сгорания. [c.290]


    Зависимость концентрации частиц N от концентрации полимерной добавки при равенстве частиц покрытых и не покрытых полимером, во всех случаях происходит через минимум, т. е. возрастающие добавки полимера приводят сначала к флокуляции золя, а затем к его стабилизации. Это объясняется тем, что при низких концентрациях полимера толщина адсорбционного слоя покрытых частиц еще недостаточна для наступления флокуляции, тогда как при высокой концентрации часть полимера остается неадсорбированной и покрывает свободные частицы, приводя к их стабилизации. Эффективность действия полимера мало зависит от молекулярной массы, поскольку толщина полимерной оболочки, т. е. средний размер петель и хвостов, при данной величине адсорбции, не связана непосредственно с молекулярной массой. Иными словами, флокуляция наступает прн приблизительно одной и той же степени покрытия поверхности дисперсной фазы полимером. Для возникновения адсорбционных связей между частицами необходимо, разумеется, беспрепятственное сближение покрытых и непокрытых частиц, которое может быть достигнуто при исчезновении потенциального барьера между частицами, обусловленного отталкиванием двойных электрических слоев, либо смещением этого барьера на расстояние, заведомо меньшее толщины полимерной оболочки (А). [c.32]

    Таким образом, флокуляция дисперсной системы полимером будет определяться соотношением А и радиуса действия электрических сил отталкивания. Сжатие двойного электрического слоя при увеличении концентрации электролита приводит к тому, что в какой-то момент он разместится внутри полимерного слоя. При этом находящиеся на поверхности защищенных частиц петли и хвосты приобретают возможность связываться с непокрытой поверхностью достаточно близко подходящих частиц, что и приводит к их агрегированию. Следовательно, для флокуляции при введении полимера не обязательно полное исчезновение потенциального барьера, обусловленного отталкиванием двойных слоев достаточно лишь его смещение на расстояние меньше толщины полимерной оболочки [43]. [c.32]

    Выше было показано, что при определенных условиях образование непосредственного контакта между коллоидными частицами может оказаться невозможным или существенно затрудненным, так как на пути к установлению такого контакта находится трудно преодолимый потенциальный барьер. Однако, как следует из результатов многочисленных опытов, отсутствие прямого контакта не исключает возможности коагуляции (точнее, флокуляции) некоторых коллоидных систем с образованием агрегатов с небольшой энергией связи между частицами. Будучи агрегированными, частицы оказываются отделенными друг от друга относительно толстой прослойкой дисперсионной среды, что позволяет им сохранять взаимную подвижность внутри ассоциатов (агрегатов) [1]. [c.153]


    Эмульсии Пикеринга устойчивы лишь по отношению к коалесценции, когда заряд твердых частиц недостаточен для появления барьера отталкивания против флокуляции их коалесценция достигается добавлением ПАВ, которые не являются стабилизаторами и одновременно сильно уменьшают краевой угол смачивания твердой поверхности одной из жидких фаз. Поэтому твердые частицы переходят с межфазной границы в объем и капли могут объединяться. Вероятно, особый случай структурномеханического барьера, обусловленного капельками микроэмульсий, наблюдала Никитина [232, 233]. Его возникновение связано с турбулентным массообменом через межфазную границу, причем направление переноса вещества определяло тип эмульсий. Разрушение последних проводилось обычными способами. [c.116]

    Результирующая энергия взаимодействия V вычислена как функция расстояния между частицами с учетом электрического отталкивания Уд и притяжения за счет сил Ван-дер-Ваальса Уд. Авторами с помощью вычислительной техники было определено значение Ум — высоты энергетического барьера, препятствующего флокуляции. Скорость флокуляции характеризовалась соотношением устойчивости Фукса [136]. [c.123]

    Предполагается также [139—140], что фактором, препятствующим флокуляции, является структурно-механический барьер, возникающий в том случае, если защитная адсорбционно-сольватная оболочка обладает структурной вязкостью, во много раз превышающей вязкость среды. [c.124]

    Однако для того чтобы устойчивость дисперсий имела практическую значимость, они должны быть устойчивы не только по отношению к флокуляции, связанной с обычным броуновским движением, но и по отношению к соударениям, связанным со сдвигом, и к ортокинетической флокуляции [4]. При этом виде флокуляции частицы не имеют одинаковой средней энергии (распределенной по экспоненциальному закону Больцмана), а имеют одинаковые скорости, изменяющиеся только в соответствии со сдвиговым градиентом. В результате, необходимая для преодоления потенциального барьера энергия пропорциональна массе частицы М, т. е. пропорциональна а при заданной плотности частиц. Отсюда следует, что сопротивление ортокинетической флокуляции стабилизируемых кулоновскими силами частиц резко падает с ростом размера их. Из-за того, что при заданном сдвиговом градиенте интервал разброса частиц по скоростям мал, существует критический размер частиц, при котором кинетическая энергия  [c.30]

    Во многих случаях, однако, когда для стабилизации используют дифильные привитые сополимеры, избыточный полимер будет находиться в жидкой фазе в виде агрегатов или мицелл (см. раздел VI.4). В этом случае изменение активности десорбированного полимера пренебрежимо мало, а работа, выделяемая за счет мицеллообразования, должна быть вычтена из работы десорбции. На практике работы мицеллообразования и адсорбции на поверхности частицы каждой молекулы стабилизатора часто близки, так что суммарное отталкивание при равновесии стремится к нулю. Из последнего следует, что тогда, когда работа мицеллообразования равна (или даже больше) работе адсорбции, лондоновское притяжение между частицами значительно превышает пренебрежимо малую (или даже отрицательную) величину барьера при равновесии, и соответственно, наступает флокуляция. [c.49]

    В противоположность электростатически стабилизируемым системам, стерический барьер имеет конечный размер, так что обусловленная растворимым полимером очень большая энергия отталкивания уменьшается до нуля вне эффективной области взаимодействия растворенных цепей (см. рис. II.6, б). Таким образом, можно предполагать что для определенных комбинаций толщины полимерного слоя и размера частицы, в этой области кривой может существовать впадина (рис. II.6, б, вторичный минимум III сравни также с рис. II.7, а). Такие системы должны, следовательно, обнаруживать поведение, соответствующее слабой флокуляции за счет вторичного минимума, подобно наблюдаемому [c.52]

    Как видно из рисунка, ход теоретической зависимости почти совпадает с начальным участком экспериментальной кривой для скорости быстрой коагуляции под действием ПЭ, что свидетельствует об отсутствии энергетического барьера на пути сближения частиц и эффективности всех соударений в данном отрезке времени, как и при коагуляции электролитами. Результаты изучения кинетики флокуляции позволили также выявить взаимосвязь между содержанием дисперсной фазы в коллоидном растворе и эо-фективностью действия ПЭ [127, 133. Из рис. 5.9 видно, что с ростом продолжительности контакта макроионов с части- [c.140]

    Теоретической интерпретации лучше всего поддается флокуляция в условиях равновесия адсорбции ВМС. Этот случай реализуется при введении флокулянта в дисперсию по методу двойной добавки, так как здесь к половине объема исходного золя добавляется коллоидный раСтвор, частицы которого содержат равновесные слои адсорбированного полимера. Зависимость степени флокуляции золя, осуществленной по этому методу, от содержания электролитов в системе может быть объяснена на основе анализа потенциальных кривых взаимодействия частиц, вычисленных по формулам теории ДЛФО и найденных независимым методом толщин адсорбционных полимерных слоев [6, 127, 138]. При расчетах электрических сил отталкивания между частицами Au и Agi принимали, что адсорбированный полимер не влияет на распределение зарядов в ДЭС, поэтому покрытых и непокрытых частиц можно уподобить таковым для незащищенных частиц. Расчеты показали [6, 131], что условием флокуляции неионным полимером при равновесной адсорбции ВМС является не исчезновение потенциального барьера между частицами, а его смещение к поверхности на расстояние, заведомо меньшее Д, т. е. когда этот барьер спрятан внутри полимерной оболочки. С помощью этих представлений удалось объяснить закономерности флокуляции золей Au и Agi добавками поливинилового спирта и полиэтиленоксида [6, 130]. [c.144]


    Обнаруженное для этих систем совпадение начальных участков зависимостей No/N i), найденных экспериментально и вычисленных по теории кинетики коагуляции Смолуховского (см. рис. 5.8), можно рассматривать Как свидетельство того, что в самый начальный период флокуляция под действием полиэлектролитов протекает по такому же механизму, как коагуляция неорганическими противоионами в условиях исчезновения энергетического барьера между частицами. Однако по мере увеличения продолжительности контакта макроионов с частицами эксперимен тальные кривые No/N x) все больше отклоняются от теоретической (см. рис. 5.8), что свидетельствует об изменении механизма коагуляции (флокуляции). [c.147]

    О стабилизации глобулы эмульсии типа В/М за счет двойного электрического слоя можно говорить только применительно к сильно разбавленным эмульсиям. Связано это с тем, что в отличие от прямых эмульсий, в которых толщина двойного электрического слоя находится, примерно, в пределах 10 —10 мкм, в эмульсиях В/М она достигает нескольких микрометров. Эта толщина того же порядка, что и расстояние между глобулами в умеренно концентрированной эмульсии. Если расстояние между глобулами меньше толщины двойного электрического слоя, энергетический барьер понижен и устойчивость против флокуляции также уменьшается. [c.50]

    Кривая 2 указывает на наличие достаточно высокого потенциального барьера и вторичного минимума. В системе, находяш,ейся в таком состоянии, происходит быстрая флокуляция частиц иа рас" стояниях, соответствующих вторичному минимуму. Благодаря наличию потенциального барьера частицы во флокулах не имеют непосредственного контакта и разделены прослойками средьь Очевидно, что такое состояние отвечает обратимости коагуляции, Пептизация возможна после устранения вторичного минимума или его уменьшения до значения меньше кТ. [c.331]

    Если поверхностный потенциал уменьшается или ионные силы увеличиваются (одновременно), то энергетический барьер понижается до значения, сравнимого с величиной кТ, показывая, что система будет подвергаться медленной флокуляции. Переход от высокой стабильности через медленную флокуляцию к быстрой (т. е. к исчезновению потенциального энергетического барьера) является непрерывным, без резкой флокуляцион-ной точки. Поэтому важно рассмотреть зависимость между кривой потенциальной энергии п скоростью флокуляции. При этом надо учитывать, что величина общей энергии является разностью между двумя большими (почти равными) значениями. Следовательно, вычисленная кривая очень чувствительна к игнорированию различных факторов. Сопоставление теоретических и экспериментальных данных нри медленной коагуляции связано с большими трудностями. Тем не менее, это единственное средство проверки теории стабильности, так как пределы высокой стабильности или быстрой флокуляции являются независимыми переменными. [c.99]

    Особенно интересные наблюдения проведены на эмульсиях со значениями и-потенциала 20 мвили —20 мв. Обнаружено почти постоянное соотношение одиночных и двойных капель, что указывает на обратимое равновесие между флокуляцией п диспергированием. Авторы считают, что этп результаты соответствуют теории ДЛВО. Для капель диаметром 2 мкм п -ф 20 мв энергетический барьер должен быть таким высоким, чтобы предотвратить соприкосновение, а вторичный минимум — неглубоким ( —8 кГ), чтобы вызвать обратимую агрегацию (см. рис. П.З). Кроме того, установлено, что соотношение дуплетов увеличивалось примерно на вычисленную величину нри изменении -потенциала от —20 до —23 мв. [c.116]

    Поскольку одним из этапов процесса флокуляции является столкновение частиц, то очевидно, что скорость флокуляции зависит в большей степени от числа частнц в единице объема раствора, чем от массовой концентрации кремнезема. Таким образом, при концентрации кремнезема 1 % в золе с размером частпц 10 нм в единице объема содержится в 1000 раз больше частиц, чем в золе с частицами 100 нм в диаметре. К тому же частицы меньшего размера перемещаются с большими скоростями (броуновское движение), что влияет на силу соударения частиц, причем такая сила должна быть достаточно большой, чтобы преодолеть ионный барьер. [c.521]

    Сама агрегативная устойчивость может быть двух видов (или подвидов) устойчивость, обусловленная практически пренебрежимо малой скоростью коагуляции - исходное состояние относится к замороженным состояниям агрегативная устойчивость вследствие уравновешивания процесса агрегации процессом дезагрегации (также под влиянием броуновского теплового движения). Такое равновесие устанавливается достаточно быстро тогда, когда процессы дезагрегации и агрегации не тормозятся слишком высоким потенциальным барьером или происходят за счет фиксации частиц в дальней потенциальной яме. В последнем случае иногда говорят о флокуляции. Усложнение в эту область вносит возможность коалесценции (слияния) частиц, составляющих агрегат, в результате которой может измениться дисперсный состав системы, или даже все частицы сольются в одну, если процесс кoaJ e цeнции не уравновешен противоположным процессом распада частиц. Последнее, однако, реализуется, только когда поверхностное натяжение частиц достаточно мало. Отсюда следует, что обьсчно агрегативное равновесие является промежуточным между состоянием неагрегированной системы и состоянием термодинамического равновесия. При этом время перехода в равновесное состояние из агрегированного может быть весьма велико, если процесс коалесценции сильно заторможен потенциальным барьером, в особенности если вероятность коалесценции пары частиц мала по сравнению с вероятностью дезагрегации. [c.20]

    Состояние дисперсионных коллоидов характеризуется избытком свободной энергии, причем укрупнение частиц происходит самопроизвольно, обусловливая уменьшение величины Следовательно, дисперсионные коллоиды термодинамически неустойчивы их временная стабильность может быть связана с наличием энергетического барьера, предотвращающего сближение и взаимную фиксацию частиц на сравнительно малых расстояниях друг от друга (флокуляция) или полное объединение микрообъектов (коалесценция). Исходя из этого, различают дисперсии, устойчивые к флокуляции, и дисперсии, устойчивые к коалесценции. Во флокулированном, но устойчивом к коалесценции состоянии отдельные частицы объединены в очень крупные агрегаты и образуют так называемую коагуляционную структуру. Они сохраняют индивидуальность и разделены тонкими прослойками дисперсионной среды, содержащей в ряде случаев поверхностно-активные и макромолекуляриые вещества. Разрушение таких слоев, сопровождающееся либо полным объединением частиц в пенах и эмульсиях, либо возникновением [c.10]

    Во всех современных теориях коллоидной устойчивости принимают, что она зависит от взаимодействия сил притяжения и отталкивания между частицами. Природа сил тритяжения одна и та же во всех дисперсиях, но существует по крайней мере два различных барьера флокуляции частиц электростатический и стери-ческий. [c.122]

    Если поверхностны потенциал уменьшается или ионные силы увеличиваются (од1 овременпо), то энергетический барьер понижается до значения, сравнимого с величиной кТ, показывая, что система будет подвергаться медленной флокуляции. Переход от высокой стабильности через медленную флокуляцию к быстрой (т. е. к исчезновению потенциального энергетического барьера) является непрерывным, без резкой флокуляцион-пой точки. Поэтому важно рассмотреть зависимость между кривой потенциальной энергии скоростью флокуляции. Пр 1 этом надо учитывать, что величина общей энергии является разностью между двумя большими (почти равными) значениями. Следовательно, вычисленная кривая очень чувствительна к игнорированию различных факторов. Соноста- [c.99]

    В ходе разработки процессов дисперсионной полимеризации было испытано много таких веществ, и почти всегда также безуспешно, как при использовании растворимых полимеров. На поверхности частиц большинства промышленных полимеризационных (например, винильных, акриловых) и полнконденсационных полимеров отсутствуют полярные или легко поляризуемые группы, имеющиеся у неорганических и органических пигментов. В результате стабилизаторы лишь слабо адсорбируются на поверхности частиц таких полимеров и не обеспечивают необходимого барьера флокуляции. Достаточно сильное взаимодействие между частицами полимера и стабилизаторами возникает при введении в полимер соответствующих функциональных групп (см. стр. 83). Хотя таким образом и могут быть получены устойчивые [c.57]

    Растворимый компонент, создавая в разбавленном растворе на поверхности каждой частицы слой полимера, ответственен за стабилизацию дисперсии, предотвращающую флокуляцию. Химическая природа диспергируемых частиц не имеет большого значения, так как образующийся стерический барьер столь эффективен, что различие в притяжении между частицами становится несущественным. Например, поли(гидроксистеариновую кислоту) с молекулярной массой в интервале 1500—1800 успешно использовали для стабилизации дисперсий таких различных материалов, как полиметилметакрилат и полиакрилонит-рил [7], найлон и полиэтилентерефталат [8], двуокись титана и [c.59]

    В случае растворимых полимеров, с более высокой молекулярной массой, образующийся стерический барьер толще, уверенности, однако, что при этом полимерная дисперсия более устойчива к флокуляции, пет. На практике, если в случае неводных дисперсий наблюдается флокуляция, то для данной непрерывной фазы она неизменно вызывается либо неправильным выбором растворимого полимера, либо неполным покрытием поверхности частиц (раздел И.4). Стерически стабилизированные частицы прочно адсорбируются на нестабилизированных поверхностях, как это наблюдается при погружении необработанных стеклянных пластинок в неводные дисперсии [10]. Следовательно, для стабилизации против флокуляции необходимо, чтобы поверхность каждой частицы была покрыта полностью. [c.60]

    Образование хлопьев при введении в воду минеральных коагулянтов следует рассматривать как совместную коагуляцию гидроксидов алюминия и Железа с находящимися в воде коллоидными частицами минеральными (глинистые минералы, кварц) и органическими (гумусовые и дубильные вещества). Эти частицы в большинстве случаев отрицательно заряжены, а частицы гидратированных гидроксидов алюминия и железа несут положительный заряд. Следовательно, в основе образования хлопьев лежит взаимодействие разноименно заряженных коллоидных частиц— процесс, наиболее энергетически вероятный. Этот процесс можно рассматривать и как адсорбцию высокодисперсных первичных частиц положительно заряженных гидроксидов на активных отрицательно заряженных центрах поверхности более крупных частиц природных коллоидов. Последующая кoaгy Iяцйя может происходить благодаря уменьшению термодинамического потенциала (заряда) поверхности и снижению энергетического барьера между самими коллоидными частицами либо, что более вероятно, между адсорбированными на одних частицах гидроксидами металлов и свободной поверхностью других частиц. При этом образуются агрегаты мозаичной структуры, аналогичные агрегатам, образующимся при флокуляции. [c.117]

    Физическое взаимодействие двух бактерий является суммой широкого спектра сил притяжения и отталкивания, каждая из которых действует в большей или меньшей степени. Две дискретно диспергированные бактериальные клетки слипнутся, если их кинетическая энергия превзойдет некий энергетический барьер, в то время как флокулообразование имеет место, если их энергии недостаточно для преодоления того же барьера в обратном направлении [147], как это видно из рис. 3.2. Следовательно, если бактериальная флокула разрушается под действием больших усилий среза, то при восстановлении исходных условий бактерии совсем не обязательно будут рефлокулиро-вать. Кроме того, растут ли бактерии в виде флокул или в виде дискретно диспергированных клеток, указывает не на присутствие или отсутствие энергетического барьера флокуляции, но на глубину первичного минимума. Для того чтобы произошла фло-куляция дискретно диспергированных бактерий, необходимо усиление сил притяжения в первичном минимуме и, возможно, [c.97]


Смотреть страницы где упоминается термин Флокуляция барьер: [c.194]    [c.99]    [c.285]    [c.350]    [c.503]    [c.84]    [c.99]    [c.285]    [c.137]    [c.595]    [c.98]    [c.99]   
Дисперсионная полимеризация в органических средах (1979) -- [ c.57 ]




ПОИСК





Смотрите так же термины и статьи:

Барьер

Флокуляция



© 2025 chem21.info Реклама на сайте