Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активация реальная

    Энергетические кривые для реального процесса совпадают с кривыми а ш Ъ только в области, далекой от пересечения кривых. Там, где кривые сближаются, пренебрежение делокализацией электронов становится слишком грубым приближением. Учет делокализации электронов приводит к деформации кривых, как показано сплошной линией. Величина е (рис. 55) представляет собой энергию резонанса (энергию сопряжения) в переходном состоянии. Таким образом, для энергии активации реального процесса получаем выражение [c.188]


    НО отнести к )1. Вторым низшим разрыхляющим уровнем азулена является 1 )2, но я -орбиталь этилена подошла бы для этого еще лучше. Таким образом, как уже отмечалось ранее, состояние с переносом заряда или я — я -состояние этилена является характеристическим в зависимости от того, какая орбиталь ниже отсюда,. предсказывается наличие энергии активации. Реальные МОХ-рас-четы дают орбитальную корреляционную диаграмму, показанную, на рис. 8-11, в хорошем согласии с ожидаемым. [c.339]

    На первом уровне рассматриваются процессы, протекающие в единичном структурном элементе — поре — с учетом ее реальных геометрических характеристик и их влияния на процессы переноса. Элемент характеризуется коэффициентами переноса, константами скорости химических реакций, адсорбции, энергиями активации, условиями возникновения межфазных границ и т. д., для него должны быть определены внешние условия — температура, давление, концентрации исходных веществ и продуктов и др. В средах с неоднородной пористой структурой, характеризующейся распределением пор по размерам, учитывается также влияние неравномерности распределения размеров пор на характер протекающих в них процессов. [c.141]

    Практическое значение имеет развитие представлений о механизме адсорбции па неоднородных поверхностях. Эффектом неоднородности могут быть объяснены основные закономерности реального адсорбированного слоя характер адсорбированного равновесия (изотермы адсорбции), кинетика адсорбционных процессов, характер изменений теплот адсорбции и энергии активации. [c.151]

    Поскольку определение энергии активации приобретает самостоятельное значение, представляет практический интерес ее независимое определение по результатам нескольких опытов в реальном неизотермическом реакторе. Проиллюстрируем такое определение. Пусть в реальном реакторе при двух различных профилях температур получены конверсии х- и х . Тогда имеем [c.248]

    К сожалению, теория в настоящее время не может ответить на вопрос, будет ли реально протекать данная молекулярная реакция. Расчет может дать низкое значение энергии активации, в то время как реакция не проходит. Например, для реакции дегидрирования парафинов расчет дает = 43 ккал/моль (180 кДж/моль), между тем дегидрирование этана проходит по цепному механизму (см. ниже) с гораздо более высокой энергией активации (около 70 ккал/моль, т. е. 294 кДж/моль), а термическое дегидрирование парафинов С4 и выше не протекает вообще. [c.32]


    Соотношение теплот реакции передачи протона карбоний-ионом (I) пропилену с образованием 4-метилпентена-1 и 4-метилпентена-2 такое же, как и при передаче протона катализатору. Реакции (3) и (4) приводят к одинаковым продуктам, и указать, какая из них реально протекает, затруднительно. Реакция (4) экзотермична, а равновесие реакции (3), по-видимому, довольно сильно смещено вправо, так как кислотность катализатора относительно невелика (см. ниже). Видимо, реакция (3) протекает с большей скоростью, так как эта реакция мономолекулярная, с высоким значением пред-экспоненты в выражении константы скорости, а реакция (4) — реакция второго порядка, и разница в энергиях активации их не должна быть большой. [c.191]

    Отдельные попытки обобщения экспериментальных данных о числе действующих центров парообразования не учитывают, как правило, реальных свойств поверхности теплообмена. Кроме того, задача существенно усложняется вследствие сильной зависимости условий активации (т. е. начала действия) центров парообразования от таких трудно контролируемых в экспериментах параметров, как загрязнение поверхности теплообмена поверхностно активными веществами, локальное ухудшение смачиваемости и т. п. [100]. [c.215]

    Приведен анализ различных способов активации катализаторов, показаны их преимущества и недостатки. На реальных примерах продемонстрированы возможности использования конструктивных особенностей установок и учета физико-химических характеристик перерабатываемого сырья для получения нефтепродуктов с заданными показателями качества. [c.43]

    Большинство реакций углеводородов нефти характеризуется небольшими скоростями и соответственно значительными энергиями активации. Для увеличения скорости реакции приходится повышать температуру или применять катализаторы. Как известно, для большинства реакций при повышении температуры на 10 °С скорость реакции увеличивается в 2—4 раза. Повышением температуры и достигается требуемая степень превращения исходного сырья. На практике часто бывают случаи, когда даже в ущерб термодинамической вероятности приходится повышать температуру, с тем чтобы получить реальный выход продуктов реакции хотя бы и с малыми равновесными концентрациями, т. е. с небольшим значением Кр для данной реакции. [c.172]

    Исходя из экспериментальных доказательств неоднородности строения реальных твердых веществ, неупорядоченности поверхности, наличия активных участков и возможности перераспределения поверхности путем поверхностного ползания или миграции, С. 3. Рогинский считает, что эти сложные явления оказывают непосредственное влияние на силовое поле и физические свойства поверхностей. На неоднородных поверхностях величины теплот адсорбции Q и энергий активации Е зависят от того, на каких участках поверхности протекает процесс. [c.155]

    Централизованный сбор, позволяющий в настоящее время получить наибольшие объемы ОМ для переработки, в основном проводят по величине вязкости, поэтому в масла группы МИО, например, неизбежно попадают моторные масла с повышенной диспергирующей способностью. Это обстоятельство является причиной неэффективности широко используемого в настоящее время коагулянта — метасиликата натрия. Предлагаемая комплексная схема устраняет этот недостаток и предусматривает возможные пути совершенствования технологии переработки, в частности путем более квалифицированного применения сорбентов. Это предполагает, во-первых, кислотную и термическую активацию сорбентов и, во-вторых, более полное использование их адсорбционной емкости за счет применения частично отработанного сорбента. В первом случае достигается значительно большая степень очистки, во втором — реально получение масел, близких по качеству к свежим, с экономически приемлемым расходом сорбента до 10% мае. [c.335]

    В работах [75, 76] оценивалась степень ассоциации молекул простых и сложных жидких систем по их вязкости. Сделано предположение, что наименьшими структурными единицами, участвующими в процессе массопереноса и передачи импульса являются не молекулы, а их комплексы, что проявляется, очевидно, при условии превышения энергии связи между молекулами, входящими в состав комплексов, над энергией теплового движения. В этом случае формулы для расчета вязкости остаются неизменными, а смысл входящего в них молярного объема будет определять объем комплексов. Кроме этого дополнительно принимается еще одно предположение — форма комплексов близка к сфере. Подобные рассуждения были положены нами в дальнейшем для описания нефтяных дисперсных систем при изучении их методом ротационной вискозиметрии. Указанные исследования получили развитие и были взяты за основу при создании метода оценки степени ассоциации молекул в нефтяных системах [77]. Изучались реальные нефтяные системы. Степень ассоциации рассчитывалась на основе значения энергии активации вязкого течения. Показано, что в диапазоне температур 20-50°С усть-балыкская нефть, например, является сильно ассоциированной жидкостью. При повышении температуры степень ассоциации монотонно снижается, а энергия вязкого течения стремится к постоянству. Предполагается, что подобное поведение системы обусловлено не распадом существующих агрегатов, а отделению от агрегатов периферийных молекул, тепловая энергия ко- [c.85]


    В реальных системах ни субстрат, ни фермент не являются жесткими молекулами. Поэтому при связывании претерпевают конформационные изменения, как правило, молекулы обоих реагентов, о означает, что провести четкую грань между различными механизмами катализа (рис. 17, II и III) не представляется возможным. Более того, даже обычный механизм ориентации реагирующих групп (см. 3 этой главы) в ряде случаев можно трактовать как создание некоторых напряжений в структуре молекул реагентов. Поэтому, чтобы не дать себя дезориентировать изобилием предложенных теорий и механизмов (а также поправок и уточнений к ним), важно помнить, что отличие между ними состоит лишь в используемых терминах (таких как принудительная ориентация, индуцированное соответствие, механизм дыбы , щелевой эффект и т. п.) и некоторых частных предпосылках о строении активного центра. Термодинамическая же сущность всех этих теорий одна потенциальная свободная энергия связывания (сорбции) субстрата на ферменте тратится на понижение барьера свободной энергии активации последующей химической реакции. [c.60]

    Скорость реакции может изменяться также за счет сольватации исходных веществ или активированного комплекса. При сольватации исходных веществ энергия активации реакции возрастает (т. е. скорость убывает), при сольватации активированного комплекса энергия активации убывает, т. е, скорость реакции возрастает. Различие в реальной системе энергетических эффектов сольватации исходных веществ и активированного комплекса затрудняет расчет скорости реакции. [c.348]

    Подставляя уравнения (49.15), (49.16), (49.18) и (49.19) в (49.17), получаем зависимость между реальной и истинной энергиями активации A=W—aQ. (49.20) [c.249]

    В,(нм.з.] сорбции водорода оказывается невозможным. Рассчитать теплоту адсорбции водорода на ртути можно из реальной энергии активации в области безбарьерного разряда. Можно показать, что при Т1=0 [c.274]

    Подставляя уравнения (49.18), (49.19), (49.21) и (49.22) в (49.20), получаем зависимость между реальной и истинной энергиями активации  [c.265]

    Здесь величина 7 отвечает энергии активации при Т1 = 0, т. е. при равновесном потепинале. В (17.118) и (17.119) оигурируют так называемые реальные энергии активации, измеряемые при заданном постоянном перенапряжении  [c.372]

    Этот термин основан на том соображеннн, что Снят- не является энер-гнен, необходимой для перехода алсорбирова1нюго состояния исходных веществ в активное. С другой стороны, именно эта энергия реально необходима для перевода пеадсорбнрованных исходных веществ в активное, адсорбированное ма катализаторе состояние. Последнее обстоятельство и делает неудачным термин кажущаяся энергия активации. [c.304]

    Зная энергию активации при любых профилях температур по длине реактора (рис. УП-1), можно найти и Удкн- При температурах 800—1000 °С значения эквивалентных температур л отношения эквивалентных объемов к полному объему реактора приведены в литературе [11]. Найдено, что эквивалентная температура ниже максимальной на 5—10 °С при 800 °С и на 40— 50 °С — при 1000 °С, а эквивалентный объем составляет 73—84% от полного объема реактора. Это означает, что кинетическая обработка данных реального реактора без использования эквивалентных величин (например, по или приведет к ошибке в расчете конверсии примерно на 1,5% при 800 °С и примерно на 7% при 1000 °С. [c.248]

    В этой первой промежуточной области кажущаяся онергия активации полного превращения равна примерно половине хилптческой энергии активации. В случае частиц катализатора с относительно малой внутренней новерхностью возможно существование второй промежуточной области с химической энергией активации (кривая 5, участок (н) . В этой области внутренняя поверхность не сильно активна и скорость превращения определяется химической реакцией на внешней поверхности. Таким образом, приходим к выводу, что экспериментально определяемые величины энергии активации гетерогенных реакций (каталитических или некаталитических) часто не соответствуют реальной энергии активации хилшческой реакции, и, следовательно, нельзя экстраполировать экспериментальные результаты на другую температуру. Также нельзя проводить экстраполяцию на частицы другого размера. [c.178]

    Температура. С повышением температуры скорость реакций гидрирования увеличивается. Однако при применяемых обычно да влениях повышение температуры выше 400—420 °С ограничивает возможную степень очистки термодинамическим равновесием гидрирования тиофенов и, вероятно, азоторганических соединений типа хияолииа, бензхинолина и др. Повышение температуры увеличивает скорость гидрокрекинга на алюмокобальтмолибденовом катализаторе, проходящего со значительно более высокой кажущейся энергией активации — 190—250 кДж/моль (45— 60 ккал/моль), чем гидроочистка. Увеличивается также термодинамически возможный и реально достигаемый выход непредельных углеводородов и продуктов дегидрирования полициклических нафтенов. В зависимости от качества исходного сырья и требуемого качества очищенного продукта применяют температуры 250—420°С минимальные температуры применяют тогда, когда недопустимы реакции гидрокрекинга и дегидрирования. [c.269]

    Так, концентрации атомов Н, измеренные при термическом крекинге этана и пропана методом орто-параводородной конверсии, оказались на три порядка ниже вычисленных на основании радикальных схем распада, которые согласуются с экспериментально найденными порядком и энергией активации [359, 360]. Измеренные концентрации радикалов в зоне распада СаНе и СдНд значительно превышали равновесные концентрации в реакциях На 2Н или СН4 = -СНз + Н при температурах крекинга, что является прямым доказательством участия радикалов в процессе. Однако указанное расхождение между вычисленной и экспериментальной концентрациями радикалов свидетельствует о том, что радикально-цепные схемы Райса и Герцфельда не описывают реального крекинга. Последнее обстоятельство послужило даже поводом к отказу некоторых исследователей [359] от радикально-цепной концепции распада в пользу чисто молекулярного механизма разложения. [c.216]

    Ответ. Величина АЕр имеет строгий физический смысл лищь при условии идентичности всех частиц жидкости. Вместе с тем растворы и расплавы полимеров не являются в этом смысле однородными системами частицы различаются по форме, размерам, а в случае растворов - и природой растворителя. Значение АЕр для реальных растворов и расплавов представляет собой по существу температурный коэффициент вязкости полимерной системы, выраженный в тепловых единицах, и строгого физического смысла не имеет. Это предопределяет возможность описания АЕр как кажущейся величины энергии активации процесса течения. [c.188]

    Любопытно, что функция интенсивности отказов (1.10) и кинетическое уравнение (1.1) имеют один и тот же экспоненциальный характер. Это свидетельствует о том, что большинство отказов оборудования, работающего в коррозионных средах, обусловлено МХПМ в процессе эксплуатации. Тем не менее в расчетах на прочность реальные процессы механической активации коррозии не учитываются. Коррозионное воздействие среды учитывается путем введения двух коэффициентов надбавки на коррозию Ск и коэффициента уровня допускаемых напряжений К( . Последний определяет уровень пороговых напряжений, выше которых возможно коррозионное растрескивание металла (водородное, сульфидное, щелочное и др.). Надбавка на коррозию учитывает степень снижения толщины стенок при эксплуатации и определяется по коррозионному проникновению Vo и нормятив сму сроку службы 1н  [c.28]

    Конформационный анализ посвящен рассмсп рению тех бесчисленных молекулярных структур, которые возникают и результате вращения в молекуле групп атомов вокруг ординарных связей эти структуры называются конформациями. Каждая конформация характеризуется определенным пространственным расположением атомов н, в связи с этим, определенным содержанием энергии. При вращении группы атомов вокруг ординарной связи потенциальная энергия молекулы претерпевает изменение, которое может быть описано синусоидальной кривой. Те конформации, которым на этой кривой соответствуют минимумы, способны реально существовать и называются поворотными изомерами или у с т о н ч и з ы ми к о н ф о р м а-циями . Остальные конформации представляют такие энергетические состояния, которые молекула должна пройти для превращения одной устойчивой конформации в другую. Относительно низкие значения энергии активации взаимного превращения устойчивых конформаций, как правило, являются причиной невозможности разделения поворотных изомеров при обычных температурах (исключением являются некоторые производные дифенила и аналогичные нм соединения, рассмотренные на стр. 490). Так как разные поворотные изомеры обычно энергетически неравноценны, то большинство молекул каждого соединения существует преимущественно в одной или лишь в очень немногих устойчивых конформациях. Однако под действием специфических сил в условиях химической реакции соединение может также временно принять какую-либо из энергетически менее выгодных конформаций. [c.800]

    Для сложных реакций характерным является ход реакции через промежуточные простые этапы (цепной механизм), который в дальнейшем будет рассмотрен более подробно. Стехиометрическое соотношение для сложной реакции, например для тримолекулярной реакции 2На + О2 = 2Н2О, отражает только материальный баланс совокупности простых промежуточных реакций. Протекание простых реакций, например со столкновением двух молекул, реально. Однако вероятность тройного столкновения молекул невелика. Кроме того, сложные прямые реакции, как правило, требуют больших энергетических затрат на разрушение исходных молекул — энергии активации для них велики. Поэтому реакция протекает через промежуточные этапы, в которых часто принимают участие активные центры — отдельные атомы, радикалы, возбужденные молекулы. Для реакций с активными центрами значения энергии активации меньше. Для простых реакций, слагающих сложную, применимы приведенные зависимости для скорости реакции. Однако и для многих сложных реакций формально можно записать, что скорость реакции пропорциональна произведению концентраций в некоторых степенях, необязательно совпадающих со стехиометрическими коэффициентами. (Совпадение было бы, если бы протекание реакции строго соответствовало стехиометрическому уравнению и удовлетворяло теории соударений). Коэффициенты и степени подбираются так, чтобы удовлетворить опытным данным (если это возможно). Сумма показателей степени при концентрациях носит название порядка реакции. Константа скорости реакции для такого уравнения, которую можно назвать кажущейся или видимой, обычно все же с той или иной степенью точности удовлетворяет закону Аррениуса. [c.99]

    Однако по уравнению (49.15) истинную энергию активации определить нельзя, так как невозможно осуществить условие Д ф=сопз1 для измерения тока при различных температурах. Поэтому экспериментально определяют так называемую реальную энергию активации А, для которой уравнение Аррениуса записывается в виде [c.248]


Смотреть страницы где упоминается термин Активация реальная: [c.1815]    [c.176]    [c.182]    [c.182]    [c.372]    [c.41]    [c.348]    [c.565]    [c.150]    [c.46]    [c.25]    [c.104]    [c.126]    [c.282]    [c.565]    [c.276]    [c.289]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Энергии активации реальная

Энергия активации в реальном поверхностном слое



© 2024 chem21.info Реклама на сайте