Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микроскопы сравнения

    Глобулы синтетических латексов имеют размеры не более 3000 А. Поэтому увидеть частицы и определить их размер можно только с помощью электронного микроскопа. Сравнение диаметров частиц, полученных электронной микроскопией, о данными косвенных измерений (например, определенных по светорассеянию) показывает хорошее соответствие результатов. Однако преимуществом метода электронной микроскопии является то, что он позволяет построить диаграмму распределения частиц латекса по размерам, а также оценить форму частиц. Помимо диаграммы распределения полидисперсная система может быть охарактеризована среднечисловым с  [c.196]


Таблица 6. Микроскопы сравнения Таблица 6. Микроскопы сравнения
    Для сравнительного изучения в поле зрения одновременно двух препаратов используют микроскоп сравнения МС-51 (рис. 7). Он состоит из двух рабочих микроскопов, каждый из которых имеет свой осветитель. В этом микроскопе окуляр с разделенным полем зрения. Осветители позволяют вести на блюдение как в проходящем, так и в отраженном свете. Кроме того, микроскоп снабжен микрофотонасадкой. [c.16]

    Принцип работы компаратора основан на том, что расстояние между спектральными линиями иа фотопластинке сравнивают со шкалой. Сравнение производится ири помощи двух жестко связанных микроскопов. Левый микроскоп имеет в иоле зрения окуляра перекрестие, которое наводится на исследуемую линию в спектре. Спектрограмма помещается на столике и двигается вертикально при помощи маховичка слева. Далее необходимо зеркалом под столиком осветить спектрограмму, маховичком наводки фокуса добиться четкого изобра- [c.60]

    В зависимости от размеров мелких частиц какого-либо вещества, распределенного в другом веществе (среде), двухкомпонентные системы подразделяют на истинные растворы, коллоидные растворы и механические смеси. Свойства этих систем, в первую очередь их стабильность, зависят от размеров распределенных частиц. Если распределенное вещество находится в виде отдельных молекул, системы получаются вполне устойчивые, не разделяющиеся при сколь угодно долгом стоянии. Такие системы называются истинными растворами у них растворенные частицы проходят через все фильтры, не оседают, не обнаруживаются в ультрамикроскопе. Если размеры частиц очень велики по сравнению с молекулами, дисперсные системы непрочны и распределенное вещество самопроизвольно оседает или поднимается вверх. Это — механические смеси (мути, суспензии, взвеси), они не проходят через тонкие фильтры, видимы в обычный микроскоп. Коллоидные растворы занимают промежуточную область размеры распределенных частиц средние между размерами частиц истинных растворов и механических смесей. Коллоидные растворы проходят через самые тонкие фильтры, но задерживаются в ультрафильтрах в таких растворах частицы заметно не оседают, невидимы в обычный микроскоп, но обнаруживаются при помощи ультрамикроскопа. [c.33]


    Электронная микроскопия по сравнению с другими методами, применяемыми для исследования структуры высокодисперсных и пористых тел, отличается тем, что позволяет видеть изучаемый объект. Если данные других методов необходимо так или иначе интерпретировать для получения упрощенных схематизированных представлений о структуре тел, то электронная микроскопия в известной области размеров свободна от этого ограничения [78—97]. [c.308]

    Метод, основан на получении эмиссионных спектров анализируемого вещества на фотографической пластинке, помещенной в фокальной плоскости камерного объектива спектрального прибора (спектрографы различных типов). Спектральные линии элементов (качественный анализ) в полученном спектре идентифицируют относительно спектра известного элемента (обычно железа), фотографируемого рядом со спектром анализируемого вещества. В специальных атласах спектральных линий приведены фотографии спектров л<елеза, где относительно спектральных линий железа указано положение спектральных линий всех элементов с их длинами волн. Для проведения качественного анализа используют спектропроекторы или измерительные микроскопы. Количественный анализ проводят по результатам измерения относительных почернений спектральных линий гомологической пары и их сравнением с соответствующими величинами стандартных образцов. Почернения спектральных линий измеряют при помощи микрофотометров фотоэлектрическим способом. [c.25]

    Структуру коксов до недавнего времени оценивали коэффициентом анизометрии - отношением длины частиц кокса к их ширине. Однако такая оценка давала большие расхождения в результатах измерений. Авторами работы [151] предложено оценивать структуру коксов баллами в зависимости от дисперсности и ориентации структурных элементов (метод ГосНИИЭП). Согласно предложенной классификации, все коксы разделены на 10 типов структур с соответствующим баллом (табл. 12). Метод балльной оценки заключается в сравнении исследуемого кокса, наблюдаемого в микроскоп, со структурой эталонных микрофотографий. [c.88]

    Коллоидные частицы, то есть частицы дисперсной фазы в коллоидной системе, еще не видны в обычный оптический микроскоп, несмотря на их более крупные размеры по сравнению с молекулами в истинных растворах. [c.21]

    Наиболее простое объяснение образования активных центров на поверхности твердых катализаторов заключается в наличии неровностей иа их поверхности. Так, на снимках, полученных с помощью электронного микроскопа, видно, что даже хороню отполированная блестящая поверхность меди или серебра имеет зубцы и выступы порядка 10- —10 м. Нетрудно догадаться, что атомы твердого вещества, расположенные в углублениях, энергетически более уравновешены по сравнению с атомами, находящимися на выступах шероховатой поверхности катализатора. На этих атомах, имеющих свободное силовое поле, в первую очередь происходит адсорбция реагирующих молекул. [c.164]

    Чтобы определить молекулярный вес по понижению давления пара микрометодом, в один конец капилляра помещают каплю раствора вещества с известным молекулярным весом, в другой конец его каплю раствора вещества с неизвестным молекулярным весом. Растворитель в обоих случаях должен быть один и тот же. Если давление пара данных растворов различно, то объем обеих капель будет изменяться, что можно легко обнаружить под микроскопом. Систематически изменяя концентрацию раствора сравнения, добиваются практического равенства давления пара обоих растворов. [c.195]

    При нагревании охлажденных систем все явления повторяются, но только в обратном порядке. Смесь, которая будет плавиться при какой-то менее низкой температуре по сравнению со смесями иных концентраций этой системы называется эвтектической или эвтектикой. Таким образом, термические явления при охлаждении и нагревании эвтектических смесей протекают так же, как и у химических веществ, несмотря на то, что последние представляют собой совершенно однородную систему, в то время как затвердевшая эвтектика есть конгломерат, составные части которого видны под микроскопом и могут быть отделены друг от друга или растворителями, или механическим путем. Эвтектика есть состав из нескольких компонентов, который имеет определенную характерную структуру и дает при плавлении раствор, насыщенный относительно всех компонентов, входящих в его состав. [c.229]

    Определение температуры плавления под микроскопом. Наблюдение плавления под микроскопом имеет определенные преимущества по сравнению с визуальным определением температуры плавления в капилляре. Под микроскопом можно проследить поведение каждого отдельного кристалла и по равномерности плавления сделать вывод об однородности и степени чистоты исследуемого вещества. Кроме того, требуется меньше вещества, чем в капиллярном методе. [c.80]


    Несмотря на некоторую общность оптической схемы, условия формирования изображения в световом и электронном микроскопах принципиально различны. В световом микроскопе изображение получается, главным образом, вследствие различной поглощающей способности световых лучей отдельными элементами объекта. Многие препараты, особенно биологические, во всех своих частях одинаково прозрачны для видимого света, поэтому их наблюдение в микроскопе затруднено. Если предварительно избирательно окрасить объект, то он начинает поглощать больше света по сравнению с окружающим бесцветным фоном и становится ясно видимым. В электронном микроскопе объект не должен заметно поглощать электроны. Взаимодействие электронов с объектом должно носить характер упругих столкновений, т. е. энергия электронов при прохождении через объект не должна существенно изменяться. Формирование контраста изображения связано с разной степенью рассеивания электронов различными участками объекта. [c.171]

    За изменением мениска ртути в капилляре в зависимости от величины ее потенциала наблюдают через микроскоп 8, имеющий микрометрическую сетку в оптической системе. Эта сетка служит для измерения внутреннего диаметра капилляра путем сравнения величины его изображения с изобрал<ением отрезка проволоки, диа- [c.184]

    К микрогетерогенным и грубодисперсным системам относятся суспензии, эмульсии, аэрозоли, порошки см. гл. VI, 2). По сравнению с коллоидными частицами в этих системах частицы дисперсной фазы имеют значительно большие размеры и они уже видны в оптический микроскоп. В микрогетерогенных и грубодисперсных системах не проявляются такие молекулярно-кинетические свойства, как броуновское движение, диффузия, осмотическое давление. [c.221]

    Для выявления причины некоторого потемнения нижнего слоя пленки в сравнении с верхним при помощи биологического микротома были сделаны продольные срезы образцов ленты, снятой с трубопровода, и затем просмотрены в микроскоп в проходящем свете в параллельных поляроидах. Оказалось, что зто потемнение распространяется преимущественно в той части основы ленты, которая соприкасается с битумным праймером. Можно предположить, что основной причиной потемнения пленки в этом месте является диффузионное проникновение в нее молекул битумного праймера. На поперечных срезах при просмотре в отраженном свете этого явления не обнаружили. [c.17]

    Исследуемые куски кокса подвергались дроблению, после 1его строение и форма полученных зерен изучались под микроскопом. Сравнение по величине неравноосности зерен (крупностью более 0,1 мм), обнаруженных нами элементов структуры показало, что для зерен волокнистой структуры эта величина равна 1,6, а для зерен точечной структуры — 1,05. При более тонкой измельчении различие в величине неравноосности уменьшается и практически исчезает для порошков с величиной зерна менее 10 микрон. [c.38]

    Полученные методом взрыва в вакууме пленки обладают дефектами в виде капелек нераспыленного материала, характерными для больших расстояний (в нашем случае 150 мм), и отверстий, играющих определяющую роль на малых расстояниях (70—80 мм). Фотография пленки, полученная в микроскопе сравнения, приведена на рис. 1. Наличие в центрах ряда отверстий капелек нераспыленного материала позволяет считать, что отверстия образуются при попадании капелек нераспыленного материала на сконденсированную пленку, приводя ко вторичному испарению материала пленки, окружающего каплю. [c.268]

    Ю. и. Дытнерским, Н. С. Орловым, Н. С. Снегиревой проведено сравнение результатов исследования ядерных мембран гидродинамическим методом, объединяющим пузырьковый метод и метод продавливания растворителя, и методом растровой электронной микроскопии. Принципиальная схема установки для определения параметров пористой [c.102]

    Путем исследования под микроскопом было проведено сравнение двух образцов металлургического кокса хорошего качества, но значительно различающихся по технологии производства кокса завода Карлинг , полученного с применением метода трамбования из шихты, богатой пламенным углем, и кокса завода Фридрих-Генрих в Рурской области, работающего на шихте из углей, с высокой степенью метаморфизма с применением насыпного метода загрузки Б коксовые печи. [c.152]

    Определение размеров частиц с помощью микроскопа мол<но проводить прямым измерением, методом сравнения, методом счета и др. Для проведения прямого измерения обычно пользуются оку-ляр-микрометром. Он представляет собой круглую стеклянную пластинку, на которой нанесена шкала с делениями. Наиболее точные окуляр-микрометры имеют интервал между штрихами в 50 мкм. При абсолютных измерениях окуляр-микрометр предварительно калибруют относительно применяемых оптических линз и для каждой ДЛ1ШЫ тубуса микроскопа. Измерения удобно прово-. дить и по фотографиям иосле микрофотографирования и фотоуве-личения изображения объекта. [c.249]

    Третий вариант объяснения данных, полученных при ступенчатых деформационных испытаниях, предложили Крист и Петерлин [9]. Они предположили для любого из упомянутых выше экспериментов существование неравномерного распределения деформаций вследствие различия длин нескольких тысяч одновременно напряженных волокон. Эффект неравных длин волокон, несомненно, расширяет имеющиеся распределения относительных длин цепей. Но преждевременные разрушения отдельных волокон и образование поверхностей их разрушения нельзя объяснить числом образовавшихся свободных радикалов. Чтобы в дальнейшем выяснить этот вопрос, Хассель и Деври исследовали свободные радикалы, образованные при деформировании ленты материала найлон-66 с высокоориентированными волокнами [10]. Они получили аналогичные гистограммы, которые оказались даже более широкими по сравнению с пучками волокна найлона-66. На микрофотографии поверхности разрушения ленточного материала, полученной с помощью сканирующего электронного микроскопа, показано, что в ленте, как и в нити, дефекты образуются по всему объему напряженного образца (рис. 7.8 и 7.9). Полученная поверхность разрушения проходит вдоль направления наименьшего сопротивления через ранее образовавшиеся дефектные зоны. Лишь при приближении к значению разрушающей деформации становится заметным различие между деформированием одиночного волокна и пучка волокон. Статистическое объяснение данного факта приведено в гл. 3. [c.196]

    Исследоваиия прочностных и деформационньк свойств кольцевых образцов проводили при торцевом сжатии с записью диафамм деформирования. Высокотемпературное воздействие проводили в диапазоне температур 500-1000 "С с выдержкой при указанных температурах. Получен разный характер деформирования при сжатии образцов при различном содержании пироуглерода, оценена повреждаемость, вносимая предварительным температурным воздействием. Исследованиями микросфуктуры на растровом электронном микроскопе установлена однородность насыщения пироуглеродом каркасов из ТРГ, подтверждена зависимость характера деформирования КМ от содержания пироуглерода. Проведенные исследования показали преимущества разработанных КМ по прочностным и упругим харатеристикам по сравнению с ТРГ при одинаковой плотности материалов. [c.71]

    Полученные экспериментальные данные в виде вольт-амперных характеристик, зарегистрированных при различном давлении (в пределах от 10 до 150 Topp) и концентрации метана (в пределах от 0,5 до 25%), позволили установить эмпирическую формулу, описывающую их взаимосвязь с межэлектродным напряжением и током разряда. Указанные экспериментальные данные были проанализированы в сравнении с результатами исследования фазового состава, структурных характеристик и других свойств ГФХО пленок, методами комбинационного рассеяния света, электронной микроскопии, катодолюминесценции и др. [c.197]

    Как уже указывалось, граница разделения дисперных систем на коллоидные или микрогетерогенные достаточно условна. Микрогетерогенные системы характеризуются более крупными частицами дисперсной фазы, по сравнению с коллоидными, которые составляют не менее 1 мкм и видны в обычный оптический микроскоп. [c.25]

    Микроинтерферометр Линника типа МИИ-4, предназначенный для непрозрачных объектов, имеет следующий ход лучей (рис. 55). Параллельный пучок лучей от коллиматора ра зделяется пластинкой 3 на два пучка одинаковой интенсивности. Пучок сравнения попадает на зеркало 7 и отражается вновь на пластинку 3. Другой пучок попадает на объект н также отражается отраженный пучок света несет информацию о состоянии отражающей поверхности. На пластинке 3 оба пучка соединяются снова в один пучок и интерферируют в фокальной плоскости линзы 4. Получаемую интерференционную картину наблюдают через окуляр. По профилю полос на интерференционной картине можно измерять глубину трещин, ступенек и т. д. Микроскоп МИИ-4 позволяет определять толщины от 0,03 до I мкм и фотографировать изображение. [c.123]

    Фаза — часть системы одного состава, одинаковых физических свойств, ограниченная от других частей поверхностностью раздела. Систему, состоящую из одной фазы, а следовательно, имеющую одинаковые макроскопические свойства во всех ее точках, называют гомогенной. Гетерогенная система состоит из двух и более фаз. Гетерогенную систему, в которой одна из фаз представлена в виде частиц микроскопических размеров, называют микрогете-рогенной. Гетерогенная система может содержать частицы значительно меньших размеров в сравнении с видимыми в оптический микроскоп. Такие частицы наблюдают с помощью специального оптического прибора — ультрамикроскопа. Систему, содержащую столь малые частицы (ко все же их масса превосходит в десятки и сотни тысяч раз массу отдельных обычных молекул и ионов), называют ультрамикрогетерогенной. По предложению Оствальда и Веймарна, фазу, входящую в микрогетерогенную и ультра-микрогетерогенную систему в виде мелких частиц, называют дисперсной. [c.8]

    Наблюдение под микроскопом процесса плавления при 50— 00-кратном увеличении по сравнению с определением температу-Ьы плавления в капилляре имеет ряд преимуществ количество вещества, необходимое для определения, крайне незначительно (миллиграммовые нли микрограммовые), поэтому можно работать в икро- н субмикромасштабе. Все изменения, происходящие с ве-(еством в процессе нагревания (отщепление воды от гидратов, юлиморфпые переходы, возгонка и разложение), можно отчетли- [c.113]

    Кроме интенсификации и повышения степени очистки проявление пластифицирующего эффекта благоприятно сказывалось на микрорельефе и коррозионной стойкости обработанной поверхности под пленкой защитного покрытия. Возможность внедрения инструмента, например проволочек щетки, в пластифицированный слой обеспечивала более регулярный микрорельеф, по сравнению с механической обработкой как это следует из профилограмм (рис. 118). Существенная разница наблюдалась и на снимках (рис. 119) субмикрорельефа поверхности, полученных методом реплик на электронном микроскопе ЭММА-2. Субмикрорельеф поверхности, обработанной щеткой без ХАС, имел следы пластического течения металла в виде бороздок в направлении движения проволочки. В пределах диаметра проволочки (0,4 мм) число бороздок было различным и зависело от степени износа режущей кромки. [c.257]

    После охлаждения образцы по грани 8 х 35 мм шлифовали, исследовали их структуру на металлографическом микроскопе МИМ-8М и по методу Глаголева определяли объемное содержание связующего сплава по длине образцов. Распределение меди и кобальта по длине образцов исследовали методом локального рентгеноспектрального анализа на установке Микроскан-5 . Облучение образцов проводили электронным зондом длиной 1000 и шириной 2 мкм. Это позволило замерять усредненную интенсивность рентгеновского излучения исследуемых элементов и избежать влияния структуры сплава (зернистости) на измерение интенсивностей. Пять участков измерения интенсивностей располагались на грани 8 X 35 жж по линии, перпендикулярной продольной оси грани, расстояние между этими линиями составляло 0,5 мм. В образцах, контактировавших с расплавом кобальта, количественное содержание связующего металла находили также путем сравнения отношений интенсивностей кобальта и вольфрама (/со// у) с отношением интенсивностей этих элементов в эталонах. Абсолютная ошибка определения содержания кобальта составляла 0,5 об. %. Разность результатов определения содержания связующего металла по методике Глаголева и путем измерения отношений интенсивностей не превышала 0,8 об.%. [c.95]

    Процесс репликации ДНК в фагах и в митохондриях мышиных клеток, был исследован методом электронной микроскопии с использованием в качестве маркеров денатурационных петель. Эти петли представляют собой небольшие участки ДНК, денатурирующиеся в процессе подготовки препаратов для электронно-микроскопических исследований. Возможно, что эти петли ДНК образуются в участках с низким содержанием G -nap или в участках, обладающих по каким-либо другим причинам пониженной стабильностью по сравнению с остальными участками ДНК Петли чем-то напоминают гетеродуплексьь (разд. Г, 8, в), однако возникают они по другой причине. В кольцевой, митохондриальной ДНК мыши можно видеть две такие петли, отстоящие-одна от другой приблизительно на 180° и отличающиеся друг от друга. Использование этих петель в качестве маркеров позволило проследить-направление репликации. В настоящее время этот метод широко используется. [c.274]

    Этим методом исследовали аморфно-кристаллическую макрорешетку вытянутых пленок и волокон. Основным преимуществом малоуглового электронного рассеяния по сравнению с аналогичным рентгеноструктурным методом является возможность комбинирования дифракционных исследований с изучением морфологии на одном и том же приборе— электронном микроскопе. [c.137]


Смотреть страницы где упоминается термин Микроскопы сравнения: [c.324]    [c.324]    [c.15]    [c.22]    [c.456]    [c.218]    [c.13]    [c.423]    [c.114]    [c.97]    [c.26]   
Смотреть главы в:

Оборудование химических лабораторий -> Микроскопы сравнения


Оборудование химических лабораторий (1978) -- [ c.312 ]




ПОИСК





Смотрите так же термины и статьи:

Микроскоп

Микроскопия



© 2025 chem21.info Реклама на сайте