Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизация к местам роста

    Изменения пористой структуры и поверхности обусловливаются двумя процессами кристаллизацией и спеканием. При кристаллизации катализаторов имеет место рост кристаллов и упорядочение всей структуры с устранением дефектов и других искажений в решетке кристаллов. В результате исчезают наиболее мелкие частицы, увеличивается размер пор, сокращается удельная поверхность. Однако общий объем пор при этом изменяется незначительно. В процессе кристаллизации формируется относительно стабильная и более однородная структура. [c.53]


    Совсем по-иному влияют на процесс кристаллизации растворимые примеси. Дело в том, что зародыш кристалла при своем образовании стремится оттеснить инородные примесные молекулы, что ведет к обогащению этими молекулами слоя расплава, окружающего границы зародыша. По этой причине участие молекул основного вещества в росте зародыша становится затруднительным и для достижения зародышем критического размера уже требуется большее переохлаждение. В присутствии примеси может изменяться (как правило, уменьшается) и скорость роста кристалла. Это, по-видимому, обусловлено адсорбцией примесных молекул на поверхности кристалла. Если адсорбция происходит на активных местах роста, то такое локальное отравление поверхности кристалла тормозит образование кристаллического слоя и рост кристалла замедляется по сравнению с его ростом из чистого расплава. Но, с другой стороны, адсорбция примесных молекул может приводить к уменьшению поверхностной энергии кристалла. Это, в свою очередь, связано с повышением шероховатости поверхности, [c.109]

    Кристаллизация из раствора, как и кристаллизация из расплава,— сложный процесс, представляющий собой совокупность нескольких последовательно и параллельно протекающих стадий. Основными из них также являются стадии зарождения кристаллов и их роста. Но движущей силой процесса при этом будет пересыщение раствора, под которым понимается избыточная концентрация содержащегося в растворе вещества сверх его растворимости при заданной температуре в рассматриваемом растворителе. Причем оказывается, что образование центров кристаллизации и рост кристаллов в растворе имеет место лишь при определенном его пересыщении, т. е. используя для характеристики пересыщенных растворов понятие степень пересыщения Чп = уп/уи, где уп и Ун — концентрации растворенного вещества в пересыщенном и насыщенном растворах, можно утверждать, что образование центров кристаллизации не будет происходить не только при но и в некотором интервале [c.150]

    ЭЛЕКТРОКРИСТАЛЛИЗАЦИЯ, образование и рост кристаллов в объеме р-ра (расплава) или на пов-сти электрода в результате протекания электрохим. р-ции. Является фазовым переходом I рода. Имеет много общего с кристаллизацией из пара и р-ра, но в отличие от этого процесса в условиях Э. происходит акт переноса заряда, к-рый предшествует встраиванию атомов в места роста кристаллов или протекает одновременно с ним. [c.430]

    Процесс формирования каждого кристалла разделяется на две последовательные стадии образование (возникновение) зародыша твердой фазы и его рост. Эта последовательность справедлива лишь применительно к каждому индивидуальному кристаллу, но не к процессу массовой кристаллизации, так как в различных местах кристаллизующегося раствора одновременно происходит зарождение центров кристаллизации и рост уже существующих кристаллов. [c.135]


    Влияние ориентации на прочность проявляется не только в жесткоцепных полимерах, но также и в эластомерах [13 290, с. 202 490—494]. Было показано, что прочность закристаллизованного при растяжении на 60% натурального каучука, измеренная при 193 К, в 6 раз больше, чем прочность аморфного неориентированного полимера. Однако наблюдаемое упрочнение лишь в небольшой степени может быть отнесено за счет кристаллизации. Недеформированный каучук, закристаллизованный путем охлаждения, оказался лишь в 2 раза прочнее неориентированного аморфного. В. Е. Гуль [494, с. 241] показал, что для эластомеров характерно наличие дополнительной ориентации в месте роста надрыва. При температурах ниже температуры хрупкости дополнительная ориентация не обнаруживается. [c.179]

    Согласно рис. 2, концентрация растворимого магния в образовавшейся суспензии основного карбоната магнпя остается практически постоянной в течение 12 минут, прошедших после окончания приливания осадителя, В это время в насыщенном растворе карбоната магния происходит образование центров кристаллизации и рост кристаллов за счет растворения бесформенных частиц. Как указывалось выше, по истечении 13—15 минут смесь бесформенных частиц и образовавшихся крупных кристаллов исчезает, уступая место образованию идентичных по форме, но более мелких по размеру кристаллов. Этот момент, как показано на рис. 2, соответствует началу резкого уменьшения концентрации магния в растворе. Содержание магния в растворе снижается при этом с 2.6 до 0.5 г/л, оставаясь при дальнейшем перемешивании пульпы без изменения. [c.61]

    Всякий процесс кристаллизации можно рассматривать как состоящий из трех основных стадий 1) достижения переохлаждения или пересыщения, 2) образования центров кристаллизации, 3) роста кристаллов. Все три стадии можно наблюдать одновременно в различных местах кристаллизующегося объема. Идеальная кристаллизация, конечно, протекает четко по этапам, однако нельзя гарантировать полного прекращения образования центров кристаллизации в кристаллизующейся массе, в которой находятся во взвешенном состоянии и циркулируют ранее образовавшиеся кристаллы. [c.140]

    На местах роста кристаллизация протекает так, что в ближайшем соседстве с атомом, уже принадлежащем решетке, ад-атомы постоянно, один за другим, занимают свое место (рис. 8). [c.29]

    Управление кристаллизацией, необходимое для осаждения блестящих металлопокрытий, достигается путем добавления блескообразующих присадок. Способ воздействия этих присадок основан на том, что продукты их восстановления и распада адсорбируются катодной поверхностью. Адсорбция должна происходить преимущественно на остриях шероховатостей, а также н на местах роста. На таких местах рост кристаллов в смысле повторяющейся подачи (см. стр. 28) затормаживается и ионы металла вынуждены разряжаться преимущественно в углублениях и на неактивных местах. Присадки действуют как ингибиторы , тормозящие кристаллизацию. Многие блескообразующие [c.59]

    Возможен процесс кристаллизации и без образования кристаллических зародышей. Он происходит при низкой поляризации на участках поверхности электрода, имеющих винтовые дислокации, которые и служат местом роста кристалла. [c.151]

    Структура пленки и ее толщина зависят от соотношения скоростей образования центров кристаллизации и роста отдельных кристаллов если скорость образования центров кристаллизации значительно превышает скорость их роста (что имеет место при повышенной концентрации окислителей в растворе), то на поверхности быстро образуется тонкий плотный слой окисла и взаимодействие металла со щелочью прекращается. При обратном соотношении скоростей (что имеет место при повышенной концентрации щелочи в растворе) образуются более толстые, но рыхлые пленки. При этом возможно появление красно-бурого налета гидрата окиси железа, снижающего качество покрытия. [c.394]

    Таким образом, магнитная окись железа кристаллизуется на поверхности железа из раствора. Формирование оксидной пленки начинается с появления на металле кристаллических зародышей магнитной окиси железа, которые, разрастаясь, образуют сплошную пленку. Структура пленки и ее толщина зависят от. соотношения скоростей образования центров кристаллизации и роста отдельных кристаллов если скорость образования центров кристаллизации значительно превышает скорость их роста (что имеет место при повышенной концентрации окислителей в растворе), то на поверхности быстро образуется тонкий плотный слой окисла и взаимодействие металла со щелочью прекращается. При обратном соотношении скоростей (что имеет место при повышенной концентрации щелочи в растворе) образуются более толстые, но рыхлые пленки. При этом возможно появление красно-бурого налета гидрата окиси железа, снижающего качество покрытия. [c.350]

    Выращивание крупных кристаллов проводят в приборе с кристаллизатором 5, находящимся в термостатируемой ванне 7 (рис. 217, в). Кристалли тор готовят из стеклянной или кварцевой трубки диаметром 50 - 60 мм и длиной 200 - 300 мм. Коническое дно кристаллизатора затрудняет рост попавших туда кристаллов-паразитов . Камеру 2 делают из органического стекла или прозрачного полипропилена с диаметром на 5 - 6 мм меньшим диаметра кристаллизатора. Ее вставляют с небольшим усилием во фторопластовую крышку кристаллизатора до упора в резиновое фиксирующее кольцо 3, надетое на камеру 2. В стенке камеры высверливают отверстия диаметром 1 - 2 мм с наклоном внутрь камеры, чтобы предотвратить вымывание из вещества мельчайших частичек, создающих новые центры кристаллизации. В камеру 2 помещают крупные кристаллы вещества, из которого выращивают монокристаллы б. По мере их роста вещество в камере 2 постепенно растворяется и тем самым создается более или менее постоянная степень пересыщения раствора. Раствор в верхней части камеры 2 имеет более высокую температуру, чем раствор в месте роста монокристаллов. Термостатируемую жидкость в сосуд подают через трубку 1. [c.402]


    Учитывая, что кристаллизация способствует проявлению ориентации в месте роста области разрыва, наблюдаемые отклонения от общих закономерностей вполне естественны. До последнего времени исследования свойств полимерных материалов редко проводились при больших скоростях деформации. Однако во многих случаях эксплуатация изделий из полимерных материалов происходит именно при больших скоростях деформации в широком диапазоне температур. При таких условиях деформации можно ожидать изменений свойств материалов, приводящих к аномальным закономерностям, аналогичным тем, которые наблюдаются при низких температурах. [c.258]

    Учитывая, что кристаллизация способствует проявлению ориентации в месте роста области разрыва, наблюдаемые отклонения от общих закономерностей вполне естественны. [c.252]

    Существенно также и то, что кристаллизация может приводить к дополнительной ориентации и упрочнению в месте роста надрыва . [c.124]

    На рис. 2 приведены кривые напряжение — деформация (о —X) для трех сажевых смесей, полученных на основе различных каучуков. Как видно из рисунка, при растяжении смеси на основе бутадиен-нитрильного каучука наблюдается постепенный рост напряжений и некоторый спад перед разрывом смеси такой вид кривой о — X является типичным для некристаллизующихся каучуков. Сравнительно высокий уровень напряжений объясняется полярностью полимерных цепей бутадиен-нитрильного каучука и, соответственно, повышенным взаимодействием сажа — каучук. Для смеси на основе НК при 200—300% растяжения наблюдается вторая, более крутая ветвь увеличения напряжения, связанная с развитием процесса кристаллизации каучука поэтому разрыв наступает при высоком напряжении. В то же время для синтетического ис-полиизопрена, по содержанию цис-1,4-звеньев близкого к НК, имеет место течение смеси п разрыв происходит при низких напряжениях. [c.74]

    Поскольку рост кристаллов твердых углеводородов происходит постадийно, этот оптимум должен иметь место на каждой стадии охлаждения, что обеспечивает образование крупных кристаллов и, как следствие, увеличение скорости фильтрования и выхода депарафинированного масла при одновременном снижении содержания масла в твердой фазе. Это достигается порционной подачей растворителя в процессе охлаждения сырья. При порционной подаче растворителя в процессе депарафинизации создаются условия для разделения кристаллизацией высоко- и низкоплавких углеводородов [27 32, с. 121 53—58]. При первом разбавлении сырья расход растворителя должен быть таким, чтобы из раствора выделились только наиболее высокоплавкие углеводороды, образующие кристаллы наибольших размеров при прочих равных условиях. Тогда при дальнейшем охлаждении суспензии происходит самостоятельная кристаллизация низкоплавких твердых уг- [c.150]

    Из-за неровностей и трещин, имеющихся на гранях, ребрах и углах кристаллов, их поверхностная свободная энергия распределяется неравномерно. Присоединение молекул из раствора при росте кристаллов происходит прежде всего по углам и ребрам, на которых поверхностная энергия максимальна. При росте граней кристаллов исчезают те из них, которые имеют большую скорость роста, т. е. обладают повышенной энергией. В случае регенерации деформированных кристаллов по той же причине, прежде всего рост начинается с острых вершин и ребер поврежденных мест. При быстрой кристаллизации из растворов часто образуются иглы или дендриты, что объясняется быстрым ростом мест с наибольшей энергией. [c.107]

    При электролитическом осаждении металлов скорость реакции определяется вероятностью возникновения центров кристаллизации, которая тем больше, чем больше величина перенапряжения. Прямолинейный характер зависимости 1п I от 1/г] доказывает, что затруднения всего процесса обусловлены замедленностью стадии образования трехмерных зародышей. Такая зависимость была получена при выделении некоторых металлов на монокристаллах. После возникновения трехмерных зародышей рост металлической фазы происходит в условиях повторяющегося шага прикреплением новых структурных элементов в местах, энергетически наиболее выгодных, а скорость роста определяется энергией, необходимой для образования двумерного зародыша. Для этого случая характерна прямолинейность зависимости 1п I от 1/т]. [c.137]

    Роль пассивных наполнителей иная они препятствуют росту трещин [33, с. 111]. Оба типа наполнителей, кроме того, могут существенно затруднять кристаллизацию (если без них она была возможна) в случае каучуков, по понятным причинам, это выгодно. Но наполнители еще одним существенным способом влияют на НМО, как бы разделяя ее на три основных уровня структурной организации полимерную матрицу (которая может обладать своей внутренней НМО, хотя и измененной наполнителем), фазу наполнителя (способного, как мы видели, к образованию коллоидных суперструктур) и граничные слои, обладающие измененной структурой и, соответственно, измененными кинетическими свойствами [34, гл. 7]. Есть определенная аналогия между этими граничными слоями и аморфными участками в кристалло-аморфных полимерах, поскольку свойства этих аморфных участков совсем н е такие, как в объеме аморфного полимера. Роль граничных слоев Б полной мере еще не выяснена, но в случае пассивных наполнителей они при неблагоприятных условиях могут (при том, что сам наполнитель препятствует росту трещин) оказаться слабыми местами, где под нагрузкой происходит нарушение сплошности, т. е. элементарный акт разрушения. [c.46]

    Кристалл зарождается в какой-то физической точке расплава или раствора и затем от этой точки начинается его рост. Вопрос о начальной стадии образования кристаллических зародышей давно привлек внимание ученых. Однако он считается нерешенным и в настоящее время. Большой интерес в учении о кристаллах представляют исследования Г. Таммана, основные выводы из которых обычно излагаются в курсах физической химии, металловедения, металлографии и физики. Г. Тамман исследовал переохлажденные стеклообразные расплавы, главным образом органических веществ, и выдвинул идею о самопроизвольном (спонтанном) зарождении центров кристаллизации в переохлажденных жидкостях. Он полагал, что в некоторых местах переохлажденной жидкости молекулы сами по себе располагаются в кристаллическом порядке и образуют зародыш. [c.229]

    TOB. До температуры 1473 К процесс агломерации протекает по схеме твердофазного спекания и путем агрегирования частиц в локальных объемах за счет поверхностного натяжения жидкости. Поскольку неравновесные точечные расплавы, растворяя компоненты, быстро кристаллизуются, их роль в процессе агломерации, по-видимому, непостоянна и случайна. Формирование крупных гранул клинкера начинается с появления в системе равновесного расплава — около 20—30%. Наиболее интенсивно растут гранулы в местах повышенного содержания расплава. Механизм роста гранул с участием расплава подчиняется общим закономерностям жидкофазного спекания. Процесс образования зерен клинкера в присутствии равновесного расплава условно можно разделить на три стадии стадию соединения и перегруппировки частиц, стадию уплотнения гранул за счет реакций растворения — кристаллизации и стадию охлаждения с кристаллизацией и застыванием расплава. Деление процесса жидкофазного спекания на стадии условно, поскольку в реальных условиях процессы соединения и перегруппировки и растворения — кристаллизации протекают параллельно и накладываются друг на друга. [c.230]

    Внешняя форма законченного кристалла зависит от условий его зарождение и роста. Если эти условия отступают от наиболее благоприятных, то в результате образуются кристаллические тела, по своей внешности в большей или меньшей степени отличающиеся от монокристаллов, типичных для данного вещества. Это, в частности, имеет место, если кристаллизация протекает очень быстро или же идет в высоковязкой среде, а также если растущий кристалл сталкивается с соседними, тоже растущими кристаллами. Это, например, происходит при застывании металлического слитка (возникающие во множестве центры кристаллизации дают начало кристаллам, сталкивающимся друг с другом при их росте и препятствующим правильному оформлению каждого нз них). [c.115]

    Другой крайний режим роста частиц — кинетический — характерен при кристаллизации. Дело в том, что при присоединении атомов (молекул, ионов — в зависимости от типа решетки растущего кристаллика) к идеально плоской поверхности кристаллика возникают до- / полнительные затруднения, сходные с / Г. -К теми, которые имеют место при образовании самих зародышей новой фазы когда подошедшие молекулы на поверхности кристаллика группируются в виде новой кристаллической пло-- [c.133]

    Процесс электрокристаллизации отличается от обычной кристаллизации в растворах тем, что пересыщение, необходимое для возникновения зародыша, здесь создается нарушением равновесия, вызванным прохождением электрического тока (т.е. перенапряжением). В процессе электролиза каждый ион должен быть доставлен к поверхности электрода, адсорбироваться на этой поверхности, вступить в реакцию взаимодействия с электронами и в конце концов занять соответствующее место в кристаллической решетке. Из всех возможных стадий только процесс адсорбции протекает быстро, тогда как транспорт ионов и собственно электродный акт тормозятся и нуждаются в дополнительной энергии активации для преодоления затруднений. С ростом плотности тока все большее количество зарядов не успевает пересечь межфазную границу металл — полярная жидкость, вследствие чего потенциал электрода смещается от его равновесного значения. Фазовый переход является, следовательно, вынужденным, навязанным извне, поэтому элементарный акт разряда металлических ионов и дальнейшее образование и разрастание зародышей кристаллов требуют дополнительной энергии, [c.394]

    Концентрация у ребер кристаллов восстанавливается быстрее, чем на середине грани. Поэтому новый слой должен возникать, как правило, у исходного края грани, что и наблюдается на опыте. Учет концентрационных изменений у поверхности катода приводит к выводу, что сопровождающая процесс кристаллизации поляризация состоит из диффузионных ограничений и перенапряжения. Доля этих слагаемых по различным участкам электрода неодинакова. У места, где только что возник зародыш, концентрационная поляризация минимальна, а перенапряжение максимально. У фронта роста соотношения об-ратны. [c.396]

    В действительности перекристаллизация протекает гораздо сложнее, так как ей может сопутствовать ряд процессов, значительно снижающих эффективность очистки при кристаллизации. Так, ионы или молекулы примесей могут быть механически захвачены образующимися кристаллами основного вещества (окклюзия, инклюзия). Неизбежна также большая или меньшая адсорбция иоиов примесей аа поверхности кристаллов, хотя при образовании крупных кристаллов, имеющих набольшую удельную поверхность, роль адсорбции невелика. Образование твердых растворов (изоморфизм) может иметь место в том случае, когда ионы основной соли и ионы примеси отличаются по размерам не более чем на 10—15% и оба вещества кристаллизуются в одинаковой системе. Тогда часть иоиов основной соли в процессе, роста кристаллов может быть замещена ионами примеси. Может происходить также захват посторонних ионов любого размера, связанный с нарастанием кристалла вокруг адсорбированных ионов. Такие ионы, поскольку они не входят в твердый раствор, представляют собой дефекты кристаллической решетки. [c.11]

    Сходные методы используют и при получении других стекловидных материалов. Так, например, изготовление коллоидно-окрашенных стекол основано на контролируемом образовании центров кристаллизации и росте частиц золота или других нуклеаторов в массе стекла. Процесс производства таких стекол состоит в плавлении шихты с образованием прозрачного стекла с небольшим содержанием соединений серебра или золота. Поскольку в шихте обязательно присутствуют компоненты, являющиеся восстановителями, в процессе варки имеет место выделение тонкодиспергирован-ных продуктов восстановления, которые при быстром охлаждении становятся центрами зародышеобразования. При повторном нагревании в определенном температурном интервале присутствующие в нем центры кристаллизации вырастают до коллоидных размеров. Хорошо окрашенные стекла могут быть получены, если в стекле образуется большое число центров кристаллизации и создаются условия, исключающие чрезмерный рост частиц. [c.358]

    В качестве примера рассмотрим процесс кристаллизации в многоступенчатом реакторе смешения, в котором раствор поступает на первую ступень и в каждой ступени которого степень перемешивания достаточна для поддержания кристаллов в суспензированном состоянии. В алпаратах реактора могут иметь место два различных процесса возникновение зародышей и рост зародышей, приводящий к образованию кристаллов значительных размеров. Отсюда следует, что суспензированное в жидкости кристаллическое вещество на выходе из -й ступени кристаллизатора состоит из кристаллов, образо1вавшихся в данной ступени, и кристаллов, которые образовались в предыдущих ступенях, а в -й ступени лишь росли. Учитывая эти факторы и используя соответствующие выражения для скорости зарождения и роста кристаллов, можно теоретически айти распределе- [c.117]

    Установлено, что структурные единицы легче всего встраиваются в места выхода на поверхность дислокаций. Если это винтовые дислокации, то встраивание идет непрерывно до завершения кристаллизации, причем образуются спиральные ступени роста, часто прямоугольные и очень сложные благодаря наложению друг на друга различных дислокаций. Если кристаллизация происходит на поверхности постороннего кристалла, то энергия взаимодействия структурных единиц с подложкой зависит от структуры и состава последней. При определенных условиях наблюдается эпитаксия. Этот процесс происходит, при некотором подобии кристаллических решеток, путем ориентации плотнеупакованных слоев кристаллизующего вещества и подложки. Имеет также значение соот- [c.152]

    Повышение температуры приводит к некоторому увеличению количества ионов, ибо в обычных условиях ионогенные молекулы в полимерах диссои ч рованы не полностью. В хорошо очищенных полимерах основным источником ионов являются процессы диссоциации с образованием положительно заряженных ионов. Для ряда полимеров, имеющих водородные связи, ионная проводимость может реализоваться и в результате самоионизации молекул. Процессы ориентации и кристаллизации таких полимеров приводят к тому, что водородные связи образуют длинные цепочки, через которые реализуется подвижность положительно заряженных ионов. Для кристаллических полимеров, содержащих малопроницаемые области молекулярной упорядоченности, движение ионов и диффузия примесей происходят по удлиненным путям в местах наибольшей дефектности структуры. В связи с этим увеличение числа дефектов в кристаллических полимерах приводит к росту g и коэффициента диффузии D. Для полимеров, имеющих надмолекулярные структуры, движение ионов в основном происходит через поверхности раздела внутри сферолитов и поверхностные слои на границах сферолитов. [c.201]

    Рассмотрим процесс кристаллизации расплава индивидуального вещества, пренебрегая содержащимися в нем примесями. При охлаждении расплава до температуры плавления соответствующего ему твердого вещества в нем возникают флуктуации плотности, которые представляют собой относительно большие скопления частиц (молекул, атомои или ионов) вещества с ориентированным расположением, приближенно подобно тому, как это имеет место в кристаллической решетке. Такие скопления можно рассматривать как некие комплексы, агрегаты или ассоциаты их иногда называют дозародышевыми образованиями. Но они еще не являются стабильными образованиями число частиц в них вследствие теплового движения в расплаве различно и не постоянно. Сталкиваясь друг с другом, такие конфигурации групп частиц могут укрупняться или распадаться в зависимости от соотношения действующих в них межмолекуляр-ных сил и воздействия на эти частицы молекул расплава. При дальнейшем понижении температуры расплава, т. е. при его переохлаждении, преобладающее влияние будет проявлять первый из указанных эффектов. Размеры образований при этом в целом будут увеличиваться до некоторой критической величины. В результате в расплаве начинается образование зародышей кристаллов ( критических кластеров ), которые и становятся центрами кристаллизации. Скорость их образования определяется заданным переохлаждением расплава. По достижении определенного переохлаждения расплава после образования в нем зародышей кристаллов на последних начинается выделение твердой фазы, характеризующееся той или иной скоростью роста образующихся кристаллов. Одновременно может [c.106]


Смотреть страницы где упоминается термин Кристаллизация к местам роста: [c.151]    [c.340]    [c.297]    [c.371]    [c.485]    [c.355]    [c.208]    [c.24]    [c.29]    [c.22]    [c.223]    [c.214]    [c.214]    [c.341]    [c.116]    [c.107]    [c.366]   
Электрохимическая кинетика (1967) -- [ c.315 , c.327 , c.328 , c.329 ]




ПОИСК







© 2025 chem21.info Реклама на сайте