Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород молекулы размер

    Катионы связаны с молекулами воды донорно-акцепторной связью донором являются атомы кислорода, имеющие две свободные электронные пары, акцептором — катионы, имеющие свободные электронные ячейки. Чем больше заряд иона и чем меньше его размер,тем значительнее будет катионная доля поляризующего действия К на Н2О. Анионы связаны с молекулами воды водородной связью. Сильное влияние может привести к полному отрыву протона — водородная связь становится ковалентной. Донорная активность А" будет тем значительнее, чем больше я и меньше га . В зависимости от силы поляризующего влияния К"" и А" на молекулы Н2О будут получаться различные результаты. Так, катионы элементов побочных подгрупп и непосредственно следующих за ними элементов подвергаются более интенсивному гидролизу, чем другие ионы одинаковых с ними заряда и радиуса, так как ядра первых менее эффективно экранируются -электро-нами. [c.202]


    Из сравнения структур карбоксилатов висмута (пивалата, формиата и ацетата), проведенных Писаревским и Мартыненко [204], следует, что во всех исследованных структурах атом висмута окружен девятью атомами кислорода. Увеличение размеров лигандов приводит к уменьшению количества атомов О, образующих мостиковые связи, но при этом увеличивается длина этих связей. Последнее приводит к тому, что молекулы пивалата висмута объединены в изолированные фуппировки, а не в бесконечные образования, как это имеет место в случае формиата и ацетата висмута. [c.193]

    Из-за весьма малого размера протона и очень большого электрического поля вокруг него между протоном и неподеленной парой электронов кислорода молекулы воды возникает ковалентная связь  [c.87]

    При распаде молекулы 12,8% кислорода расходуется на окисление собственного 1,6% водорода, а остаток кислорода в размере 76,2—12,8=63,4%, выделяясь в свободном виде, идет на окисление топлива. [c.206]

    Молекулы, размер которых не превышает диаметра отверстия, входят свободно в каверны кристалла и при низких температурах. Поглощение же молекул более крупных размеров при низких температурах обнаруживает ряд особенностей. Так, например, адсорбция аргона увеличивается до температуры —150°, а при дальнейшем охлаждении рост сорбции приостанавливается. Азот показывает аналогичное же явление при —120°. В то же время кислород поглощается хорошо даже при температуре —200°. По-видимому, эффективный диаметр отверстий зависит также от температуры. Молекула [c.169]

    Линейная скорость воздуха определяет величину константы скорости переноса кислорода и размер поверхности раздела фаз и поэтому является решающим фактором для создания оптимальных условий подвода кислорода к окисляемым молекулам парафина [42]. [c.44]

    С органическими соединениями, молекулы которых отличались внушительными размерами, дело обстояло сложнее. Используя методы начала XIX в., было очень тяжело, вероятно и невозможно, установить точную эмпирическую формулу даже такого довольно простого по сравнению, например, с белками органического соединения, как морфин. В настоящее время известно, что в молекуле морфина содержатся 17 атомов углерода, 19 атомов водорода, 3 атома кислорода и 1 атом азота ( ijHisNOa). Эмпирическая формула уксусной кислоты (С2Н4О2) намного проще, чем формула морфина, но и относительно этой формулы в первой половине XIX в. не было единога мнения. Однако, поскольку химики собирались изучать строение молекул органических веществ, начинать им необходимо было с установления эмпирических формул. [c.74]


    Катионы К" связываются в растворе с гидратирующими их молекулами воды донорно-акцепторной связью донором являются атомы кислорода молекулы воды, имеющие две неподеленные электронные пары, акцептором - катионы, имеющие свободные атомные орбитали. Чем больше заряд катиона и чем меньше его размер, тем значительнее поляризующее действие К на Н2О. [c.283]

    Связь между атомами разных элементов всегда более или менее полярна, что обусловлено различием размеров и электроотрица-т(льностей атомов. Например, в молекуле хлорида водорода НС1 стязующее электронное облако смещено в сторону более электро-огрицательного атома хлора. Вследствие этого заряд ядра водорода уже не компенсируется, а на атоме хлора электронная плотность становится избыточной по сравнению с зарядом ядра. Иными словами, атом водорода в НС1 поляризован положительно, а атом хлора отрицательно на атоме водорода возникает положительный заряд, на атоме хлора — отрицательный. Этот заряд б, называемый эффективным, можно установить экспериментально. Согласно имеющимся данным эффективный заряд на атоме водорода молекулы H I составляет бн = +0,18, а на атоме хлора 6 i = —0>18 абсолютного за-р 1да электрона. Можно сказать, что связь в молекуле НС1 имеет на 18% ионный характер, т. е. полярна. Ниже приведены значения эффективных зарядов на атомах кислорода в оксидах элементов 3-го периода  [c.80]

    Она значительно отличается от других полифосфорных кислот по строению молекулы, которая состоит из двух концевых тетраэдров РО4, соединенных общим атомом кислорода. Молекулы других полифосфорных кислот содержат срединные тетраэдры. Угол POP в зависимости от размеров катиона металла меняется от 123 до 180°. Соли этой кислоты — пирофосфаты (дифосфаты). Их получают термической дегидратацией гидроортофосфатов  [c.438]

    В организмах животных в виде жиров сохраняется запас энергии. Молекула жира может дать вдвое больше энергии, чем молекула крахмала такого же размера. Объясняется это тем, что в молекуле жира все атомы водорода присоединены к атомам углерода. Процесс выработки энергии в организме состоит в том, что связи между водородом и углеродом разрываются, и атомы водорода соединяются с кислородом. В молекуле же крахмала почти половина атомов водорода уже соединена с атомами кислорода, и из этой связи никакой энергии извлечь нельзя. (Правда, крахмал перерабатывается организмом легче, чем жиры, так что и у него есть свои преимущества.) [c.198]

    V 1. Уменьшение размера частиц катализатора. При одной и гой же пористости с уменьшением диаметра шарика облегчается проникновение внутрь его молекул кислорода, что ускоряет процесс выгорания остаточного глубинного кокса. [c.44]

    Понятие о канале применимо к колшлексам тиомочевины, как и комплексам мочевины. Однако вследствие большего размера атома серы в тио-мочевине сравнительно с размерами кислорода в мочевине канал имеет большее поперечное сечение. Постоянные ячеек комплексов тиомочевины, бо-видимому, меняются в зависимости от природы комплексообразующей молекулы, в результате чего будут изменяться и размеры канала. Опубликованные данные рентгеноструктурных анализов комплексов тиомочевины недостаточны для надежного вычисления размеров капала. Метод, использованный Шисслером [15] для измерения молекулярных размеров моделей углеводородов, способных и не способных к комплексообразованию, по-видимому, наиболее пригоден для измерения поперечных размеров каналов комплексов тиомочевины, которые, вероятно, должны быть порядка 5,8 [c.215]

    Повышенное или пониженное значение плотности прочно связанной воды по сравнению с обычной жидкой водой будет зависеть от того, какой из двух факторов — усиление энергии связи или разупорядочивающее влияние подложки — окажется преобладающим. Для слоистых силикатов (см. табл. 2.2),кремнезема [87], цеолита NaX [88] плотность адсорбированной воды выше единицы. Это обусловлено высокой энергией связи при относительно небольшом разупорядочивающем влиянии подложки. Последнее объясняется хорошим структурным соответствием между узором поверхностных атомов кислорода (и гидроксильных групп в случае кремнезема) слоистых силикатов и кремнеземов, с одной стороны, и элементами структуры воды — с другой. Недаром получившая широкое распространение первая модель структуры адсорбированной слоистыми силикатами воды представляла собой плоский вариант структуры льда [89]. Н. В. Белов подметил идентичность формы и размеров полостей цеолита X и крупных додекаэдрических молекул воды Н20 20а<7 и на основе этого предположил, что [c.35]

    По мере перехода к молекулам, центральный атом в которых имеет все большие размеры, электроны на валентных орбиталях в среднем располагаются все дальше друг от друга. Поэтому межэлектронные отталкивания оказывают все меньшее влияние на форму молекул. Например, атом серы имеет больший эффективный размер, чем атом кислорода, а атомные спектры свидетельствуют о том, что межэлектронное отталкивание для валентных орбиталей серы значительно меньше, чем для валентных орбиталей кислорода. По-видимому, по этой причине валентный угол Н—S—Н в молекуле сероводорода H S равен 92°, что намного ближе к значению 90% предсказываемому в рамках модели связывания, основанной на перекрывании (Зр + lsl-орбиталей (рис. 13-17). Очевидно, отталкивание двух связывающих электронных пар в H2S значительно меньше отталкивания двух связывающих электронных пар в HjO. [c.564]


    Вероятно, гликолиз представляет собой живое ископаемое -реликтовый биохимический процесс, сохранившийся с тех времен, когда в земной атмосфере не было кислорода и одноклеточные организмы существовали за счет расщепления органических молекул, встречающихся в естественных условиях. Когда живые организмы приобрели большие размеры, стали сложнее и увеличили свои энергетические потребности, а в земной атмосфере появился кислород, произошло развитие более сложного биохимического процесса, требующего намного большего количества энергии и известного под названием цикла лимонной кислоты . Но прежде чем мы рассмотрим этот процесс, следует познакомиться с универсальным способом запасания химической энергии в любых живых организмах. [c.327]

    У неблагородных металлов, где вслед за адсорбцией происходит также и разрыв молекулы кислорода, механизм образования окисной пленки сложнее, однако и здесь вследствие достаточно больших размеров атомного кислородного иона правильная ориентировка кислородных слоев с плотнейшей упаковкой параллельно поверхности металла должна сохраняться. [c.44]

    Опытами было также установлено, что температура самовоспламенения топлива зависит не только от химической природы и размеров молекул, но и от давления воздуха, в который впрыснуто это топливо. На фиг. 14 показано влияние давления на температуру самовоспламенения топлив. Более тесный контакт капель топлива с молекулами кислорода воздуха, обусловленный повышенным давлением, ускоряет процесс окисления, вызывая самовоспламенение топлива при относительно более низких температурах. Повышение концентрации кислорода в смеси ускоряет предпламенное окисление топлива, так как скорость реакции по закону действующих масс пропорциональна концентрациям реагирующих веществ. [c.39]

    При взаимодействии с катионами молекулы воды ориентируются к ним своими атомами кислорода. Взаимодействие усиливается благодаря поляризующему действию катиона на молекулы воды. Этому благоприятствует малый размер катиона и более высокий заряд его (Mg , Al " ). [c.141]

    Размеры входных окон цеолитов зависят от расположения в них кислородных колец и от числа атомов кислорода в кольце. Строение кислородных колец основных типов природных и синтетических цеолитов показано в работе[7, с. ПЗЗ. На размер окна оказывает такхе влияние размер и расположение катиона, входящего в состав цеолита. Если катион расположен около окна, то он блокирует вход молекулы. [c.173]

    Большую часть нефтяных смол составляют химически нейтральные вещества. В смолах сконцентрирована основная масса сернистых, кислородных и чаще всего азотистых соединений нефти. Этим объясняется довольно высокая полярность и поверхностная активность нефтяных смол [168]. Содержание кислорода и серы, а также суммарное содержание всех гетероатомов возрастает с увеличением полярности фракций смол, полученных при хроматографическом разделении. В этой же последовательности увеличиваются кислотность, поверхностная активность, диэлектрическая проницаемость и размеры молекул [168]. [c.8]

    Кислород является ключевым атомом в молекуле. Удаление его, в особенности если он занимает положение мостика, размыкает молекулу и в такой степени уменьшает ее размер, что продукт становится плавким — жидким. Однако и после разрыва по кислородному мостику в молекуле остается еще много уязвимых позиций, что делает понятной сравнительную легкость дальнейшего перехода угля в масла средних интервалов кипения. [c.175]

    Энергия молекулы воды около катиона минимальная, еслд атом кислорода, представляющий отрицательный полюс, повернут к иону, а две О—Н-связи ориентированы наружу. Тип связи, обусловленной таким взаимодействием с катионом, существенно отличается от водородной связи. Катион, атом кислорода и два атома водорода располагаются в одной плоскости, вследствие чего свободное вращение. молекулы в общем невозможно ( неротационная связь ), за исключением, вероятно, вращения вокруг осей диполя. Однако это не влияет на ориентационную поляризацию. По мнению Ной са [37], катион независимо от своего размера образует при гидратации конфигурацию, которая позволяет ему довольно легко внедряться в структуру окружающей воды. Катионы взаимодействуют с двумя парами электронов Ь-оболочки атома кислорода молекулы воды, поэтому в непосредственной близости с катионом молекула воды может быть связана лишь с двумя другими молекулами воды. [c.86]

    Осборн и Портер измеряли константы скорости тушения триплетов нафталина а-иоднафталином в различных растворителях. В пропандиоле-1,2, глицерине и смеси жидкого парафина с н-гексаном (50 20) измеренные значения оказались близки к рассчитанным по уравнению J84), однако в жидком парафине— в четыре раза выше рассчитанных. Объяснили они это тем, что жидкий парафин состоит из длинных цепных молекул, которые оказывают большое сопротивление движению стальных шариков, используемых при измерениях вязкости, и гораздо меньшее сопротивление движению молекул, размеры которых малы по сравнению с размерами цепей. По этой же причине получаются высокие скорости тушения кислородом в пропандиоле-1,2. Интересно, что при больших концентрациях кислорода (соответствующих атмосферному давлению воздуха) отношение измеренной константы скорости к рассчитанной росло с увеличением вязкости и в очень вязких растворах достигло 130. Осборн и Портер приписали это тушению на расстояниях, превышающих 5A. Они предположили, что для каждого расстояния между триплетом и тушителем имеется некоторая вероятность тушения. Она быстро падает при увеличении расстояния, так что при низких вязкостях тушение на расстояниях более 5А не вносит ощутимого вклада в скорость тушения. При высоких вязкостях время диффузии молекул друг к другу велико, и, если даже вероятность тушения за единицу времени мала, оно может внести заметный вклад в суммарную скорость, т. е, эффективное расстояние <Зав в уравнении (81) возрастает. Аналогичное объяснение использовали при обсуждении триплет-триплегного взаимодействия в твердых растворах фенантрена [84] и уменьшения относительной интенсивности замедленной ф.гтуоресценции возбужденных димеров в вязких растворах прн низкой температуре [85, 86] (см, раздел IV, Д, 3). [c.78]

    Миоглобин состоит из одной полипептидной цепи (153 остатка аминокислот) с молекулярной массой 17 ООО Да. Согласно рентгеноструктурному анализу молекула миоглобина является компактной сферической молекулой размером 4,5x3,5x2,5 нм. Примерно 75% остатков аминокислот образуют 8 правых а-спиралей, содержащих от 7 до 20 остатков. Начиная с Л -конца спирали обозначают номером и буквой спирали. Плоскость гема своей неполярной частью (метиль-ные, винильные группы) погружена в гидрофобный карман молекулы миоглобина. Среди гидрофобных аминокислотных остатков по обе стороны плоскости гема находится по одной молекуле гистидина проксимальный гис и дистальный гис Е1 (за счет сближения спиралей Р и Еъ пространстве). Пятая координационная связь железа (Ре ) занята азотом проксимального гис Р%. Шестая координационная связь (координационное положение) остается свободной и экранируется дистальным гис 7. В неоксигенированном миоглобине атом железа на 0,03 нм выступает из плоскости кольца в направлении гис 8. При связывании молекулы О2 с шестой координационной связью железа (оксигенированный миоглобин) атом железа втягивается в плоскость гема и выступает из нее только на 0,01 нм. Таким образом связывание О2 с молекулой миоглобина ведет, во-первых, к перемещению атома железа и, во-вторых, перемещающийся атом железа будет изменять положение проксимального гис /"8, а следовательно, и конформацию а-спирали Ри всей глобулы миоглобина. Для миоглобина (белок в третичной структуре) кривая связывания кислорода имеет форму гиперболы. Парциальное давление кислорода р02 [c.38]

    Кислотность катализатора определяют по количеству адсорбированного им аммиака из потока гелия при 200—260 °С. Выбор аммиака в качестве адсорбата обусловлен небольшим размером его молекулы, устойчивостью при высоких температурах, простотой его дозировки в поток газа-носителя, подходящей константной диссоциации (р/( = 4,75), позволяющей определять не только сильные кислотные, но и слабые центры. При анализе используют высокотемпературный хроматограф марки Вилли-Гиде с детектором по теплопроводности и температурой термостатирования 260 С. Хроматограф снабжен системой блокировки для отключения его в случае неконтролируемого повышения температуры выше установленной. Схема установки показана на рис. 44. Гелий из баллона проходит систему очистки, состоящую из кварцевой колонки с окисью меди 5 для очистки от водорода и углеводородов при 600—700°С, колонки с никельхромовым катализатором 7 для очистки от кислорода, колонки с аскаритом 9 для поглощения двуокиси углерода и осушительных колонок с окисью [c.133]

    Причиной молекулярной ассоциации в водных растворах и многих жидкостях часто является возникновение водородной связи между соприкасающимися полярными частями молекул, содержащих, например, гидроксильные группы (см. стр. 164). Такая ассоциация проявляется также и при адсорбции на адсорбентах, содержащих на поверхности гидроксильные группы, например при адсорбции воды, спиртов, аммиака, аминов и т. п. на поверхностях гидроокисей, т. е. на гидроксплированных поверхностях силикагелей, алюмогелен, алюмосил икатных катализаторов и т. п. адсорбентов. Поверхность силикагеля покрыта гидроксильными группами, связанными с атомами кремния кремнекислородного остова. Вследствие того что электронная -оболочка атома кремния не заполнена, распределение электронной плотности в гидроксильных группах поверхности кремнезема таково, что отрицательный заряд сильно смеш.ен к атому кислорода, так что образуется диполь с центром положительного заряда у атома водорода, размеры которого невелики. Часто молекулы адсорбата, обладающие резко смеш,енной к периферии электронной плотностью или неподеленными электронными парами (например, атомы кислорода в молекулах воды, спиртов или эфиров), образуют дополнительно к рассмотренным выше взаимодействиям водородные [c.496]

    Такое химическое модифицирование поверхности твердого тела путем прнзиакн больших инертных групп резко снижает энергию адсорбции не только молекул, способных специфически взаимодействовать с гидроксильными группам (например, азота, этилена, бензола, эфира, спиртов и т. п.), но и всех молекул вообще. Это происходит в результате того, что при образовании подобных модифицирующих слоев молекулы адсорбата, во-первых, не могут прянти в соприкосновение непосредственно с основным скелетом твердого тела и, во-вторых, они приходят в соприкосновение с гораздо меньшим числом атомоз, поскольку расстояния между смежными группами СН.ч в модифицирующем слое соответствуют их ван-дер-ваальсовым размерам, а расстояния между атомами кислорода и кремния в основном скелете кремнезема соответствуют гораздо более коротким расстояниям химических связей. [c.503]

    Водородная связь. Еще в XIX веке было замечено, что соединения, в которых атом водорода непосредственно связан с атомами фтора, кислорода и азота, обладают рядом аномальных свойств. Это проявляется, например, в значениях температур плавления и кипения подобных соединений. Обычно в ряду однотипных соединений элементов данной подгруппы температуры плавления и кипения с увеличением атомной массы элемента возрастают, Это объясняется усилением взанмиога притяжения молекул, чтб связано с увеличением размеров атомов и с ростом дисперсионного взаимодействия между ними (см. 48). Так, в ряду H I—НВг—HI температуры плавления равны, соответственно, [c.154]

    В комплексах молекулы мочевины располагаются в виде спирали за счет водородных связей между кислородом и аминогруппами соседних молекул. В результате этого образуется канал, в котором гасполагается молекула вещества, образующего комплекс. Комплексы образуют только те молекулы, поперечные размеры которых меньше поперечных размеров канала. Кристаллы чистой мочевины — тетрагональные призмы. Комплексы мочевины с нормальными парафинами кристаллизуются в виде гексагональных призм. Подсчитано, что поперечный размер образующегося капала paвei 4,9 Л, а поперечные размеры цепи нормального парафина равны 3,8 на 4Л. [c.181]

    Рентгенографические исследования комплексов тиокарбамида с соединениями, различающимися длиной цепи, показали, что молекулы тиокарбамида расположены в комплексе ромбоэдрически [10, 24, 43], образуя псевдогексагональные ячейки. Больший размер атома серы в молекуле тиокарбамида по сравнению с атомом кислорода в молекуле карбамида способствует образованию канала большего диаметра. [c.205]

    Водородная связь проявляется тем сильнее, чем больше элект-роотрицательнвсть атома-партнера и чем меньше его размеры. Она характерна прежде всего для соединений фтора, а также кислорода, в меньшей степени азота, в еще меньшей степени для хлора и сс1)ы. Соответственно меняемся и эиергия водородной связи. Так, энергия водородной связи Н---Р (эту связь принято обозначать точками) составляет 40, связи Н---0 20, Н---Ы ж 8 кДж. Соседство электроотрицательных атомов может активировать образование водородной связи у атомов СН-групп (хотя электроотри-цательностн углерода и водорода почти одинаковы). Этим объясняется возникновение водородных связей Между молекулами в жидких ИСЫ, СРзН и т. д. [c.132]

    Угли с выходом летучих веществ более 35% и с содержанием кислорода более 6% дают, таким образом, полностью изотропные коксы. С увеличением степени метаморфизма и в начале появления разусреднения на уровне 35% летучих веществ они имеют вид гранул. При выходе летучих веществ 25% эти участки достигают размеров 5—10 мкм и придают коксу вид зернистого гранита. При расширении участков при выходе летучих веществ в угле 20—22% кокс принимает вид волокнистого , а при выходе летучих 18—20% или тогда, когда речь идет о коксе из высокотемпературного пека, в наличии имеются широкие извилистые полосы . Эти волокна и эти полосы воспроизводят ориентацию плоских ароматических молекул в жидком кристалле в момент затвердевания. [c.114]

    Условием для возникновения водородной связи является большая величина электроотрицагельности у атома, непосредственно связаного в молекуле с атомом водорода. Положительно поляризованный атом во.дорода, по существу почти лишенный электронного облака, способен, благодаря своему малому размеру, проникать в электронную оболочку отрицательно поляризованного атома (фтора, кислорода, азота). В результате этого атом водорода одной молекулы связывается неподеленной электронной парой ат(1ма электроотрицательного элемента другой молекулы. Эта связь атома водорода, входящего в одну молекулу, с атомом электроотрицательного элемента, входящего в другую молекулу, и является водородной связью. Ниже схематически показана ас-соцмация двух молекул воды посредством водородной связи  [c.64]


Смотреть страницы где упоминается термин Кислород молекулы размер: [c.214]    [c.231]    [c.257]    [c.294]    [c.210]    [c.434]    [c.47]    [c.245]    [c.258]    [c.203]    [c.515]    [c.26]    [c.279]    [c.374]   
Основы общей химии Том 2 (1967) -- [ c.102 ]




ПОИСК





Смотрите так же термины и статьи:

Молекула размеры

молекулами кислорода



© 2025 chem21.info Реклама на сайте