Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ксилол из толуола и пропилена

    Бурное развитие органической технологии — производство пластических масс, химических волокон, синтетических каучуков, лаков, красителей, растворителей и т. п. — требует огромных количеств углеводородного сырья, которое получается в результате химической переработки различных топлив. До недавнего времени основным источником сырья для органического синтеза был уголь, из которого при коксовании получают бензол, толуол, ксилолы, фенол, нафталин, антрацен, водород, метай, этилен и другие продукты. В нефти, находящейся в недрах земли, всегда присутствуют растворенные газы, которые при добыче выделяются из нее. Эти так называемые попутные газы содержат метан, этан, пропан, бутан и другие углеводороды. На 1 т нефти в среднем приходится 30—50 м попутных газов, которые являются ценным сырьем для химической промыщленности. Источником углеводородного сырья служат также газы, получаемые при переработке нефти крекинге, пиролизе, риформинге. В этих газах содержатся предельные углеводороды метан, этан, пропан, бутаны и непредельные углеводороды этилен, пропилен и др. Наряду с газообразными углеводородами при переработке нефти могут быть получены ароматические углеводороды бензол, толуол, ксилолы и их смеси. [c.29]


    Пропилен Толуол о-Ксилол Хлористый метил Хлороформ Хлористый этил Хлористый винил о-Дихлорбензол Диметиловый эфир [c.67]

    Так, каталитическим крекингом получают дополнительные количества высокооктановых бензинов, посредством каталитического риформинга повышают октановое число бензинов и получают ароматические углеводороды (бензол, толуол, ксилолы и этилбензол). Гидроочистка позволяет производить реактивные и дизельные топлива с малым содержанием серы. Процесс пиролиза дает возможность получить из нефти важнейшее сырье для нефтехимии этилен, пропилен, бутилены и моноциклические ароматические углеводороды, а также сырье для производства высококачественных сажи и электродного кокса. [c.198]

    Высокооктановые компоненты авиационных топлив, вырабатываемые нефтяной промышленностью, включают в основном продукты алкилирования изобутана бутиленами и бензола пропиленом. Наряду с этим в качестве компонентов бензина, повышающих его октановое число, применяют смесь бензола, толуола и ксилола (пиробензол), изопентан, технический изооктан. [c.136]

    Химические процессы позволяют получать сырье для многих нефтехимических производств, в частности, непредельные углеводороды — этилен, пропилен, бутилены, бутадиен, ароматические углеводороды - бензол, толуол, этилбензол, ксилолы, изопропилбензол и др. На базе такого сырья осуществляется производство пластмасс, синтетических каучуков, синтетических волокон, моющих средств и других ценных продуктов. [c.618]

    Значение пластмасс и некоторых продуктов органического синтеза существенно возрастет в будущем, хотя основным источником сырья для их получения пока является нефть с очень высоким ИИР (13,1%). Положение может быть изменено к лучшему, если удастся сократить расходы нефтепродуктов для топливных целей. В настоящее время на нефтехимические синтезы расходуется 5—67о всей нефти, но к-2000 г. эта доля возрастет до 15%. Следует отметить, что разведанные запасы нефти сейчас оцениваются величиной 120 млрд. т. Но предполагается, что к 2000 г. эти запасы будут расширены до 270 млрд. т. В современном нефтехимическом синтезе в основном используются низшие ненасыщенные ациклические и ароматические углеводороды. Эти соединения получают пиролизом газообразных парафинов, легких нефтяных фракций, а в последнее время тяжелых фракций и даже самой нефти. Современные установки для пиролиза укрупнены настолько, что могут производить от 500 до 700 тыс. т в год ненасыщенных углеводородов. В результате переработки нефти получают много продуктов, среди которых важнейшими являются низшие олефины и диолефины (этилен, пропилен, бутадиен и изопрен), ароматические соединения (бензол, толуол, ксилол) и газовая смесь оксида углерода (П) с водородом. Эти вещества — исходное сырье для многих тысяч промежуточных и конечных продуктов, некоторые из них указаны на рисунке 8. Переработка алифатических, алициклических и ароматических углеводородов осуществляется с помощью таких процессов, как дегидрогенизация, окисление, хлорирование, сульфирование и т. д. [c.71]


    Состав продуктов реакции контролируется не только термодинамическим равновесием, но часто и кинетическими факторами. Алкилирование ароматических углеводородов — сложный процесс, состоящий из ряда взаимосвязанных между собой реакций, таких, как алкилирование, изомеризация, диспропорциони-рование, переалкилирование, полимеризация и т. д. Расчеты равновесия процесса с учетом побочных реакций являются сложной задачей, которая в определенной степени была решена рядом исследователей [9, 10]. Тем не менее термодинамические расчеты по упрощенной схеме процесса алкилирования, в которой, не учитывается ряд стадий и побочных реакций, целесообразно использовать для определения основных параметров процесса, необходимых для его оптимизации. Термодинамический расчет алкилирования бензола этиленом и пропиленом в газовой и жидкой фазах детально рассмотрен в работе [10] и при необходимости может быть использован читателями. Сведения для термодинамических расчетов алкилирования бензола, толуола, ксилолов и других алкилароматических углеводородов можно заимствовать из работы [11]. [c.15]

    Таким образом, в отличие от исходной образцы фторированной окиси алюминия — высокоактивные и стабильные катализаторы крекинга кумола и газойля, изомеризации ж-ксилола и алкилирования бензола и толуола пропиленом. Характер превращений совпадает с таковым для алюмосиликатных катализаторов, а величина удельной активности, как правило, выше. [c.218]

    Пропан. . , Бутан. . . . Пентан. . . Гексан. . . Октан. . . Этилен. . Пропилен Бутилен. . Бутадиен. . Бензол. . . Толуол. . . Ксилол. . Нафталин Циклопропан Циклогексан [c.119]

    На разных предприятиях применяются различные методы очистки сточных вод. На нефтехимических комбинатах (при производстве синтетического спирта, фенола, ацетона, синтетических жирных кислот, каучука и др.) основными местами образования загрязненных сточных вод являются цехи пиролиза углеводородов, гидратации этилена и ректификации спирта. Сточные воды цеха пиролиза углеводородов содержат этилен, пропилен, бутан, изобутан, бензол, толуол, ксилол, нафталин. В сточных водах цеха гидратации этилена и ректификации спирта присутствуют спирты, ацетальдегид, продукты полимеризации, смола. При применении биологических методов очистки содержание органических веществ (бензола, толуола, ксилола, нафталина и др.) в сточных водах значительно снижается. [c.16]

    Алкилирование пропиленом о-ксилола при невысоких температурах и малом времени контакта приводит к преимущественному (на 95—98%) образованию 1-изопроп1ил-3,4-диметилбензола, а алкилирование м-ксилола дает в основном 1-изопропил-2,5-ди-метилбензол [16]. Изомерный состав продуктов алкилирования в известной мере определяется и влиянием стерических препятствий, которые делают термодинамически менее выгодным образование орто-замещенных в случае заместителей с разветвленной структурой. Так, при алкилировании толуола пропиленом и эта- [c.24]

    Многие нефтепродукты являются ценным сырьем нефтехимического синтеза. Эта важная отрасль нефтехимической промышленности. На основе нефтепродуктов и природных газов производят следующие соединения аммиак, этилен, пропилен, бутадиен-1,3, дихлорэтан, винилхлорид, бензол, толуол, ксилолы, этилбензол, стирол, спирты и многие другие вещества. [c.356]

    Процессы ректификации с третьим компонентом применяются нри разделении, например, таких смесей углеводородов, как ароматические (бензол, толуол, ксилолы) и близкокипящие или образующие азеотропную смесь с ними насыщенные углеводороды, как пропан и пропилен, бутаны и бутилены и т. д. [c.205]

    Возникшая в последнее время потребность химической и нефтеперерабатывающей промышленности в практически чистых индивидуальных соединениях, получаемых из нефтяных фракций, например этилене, пропилене, пропане, изобутане, н-бутане, изопентане, н-пентане, смешанных гексанах, гептанах, бензоле, толуоле и ксилолах, стимулировала разработку специальных методов, позволяющих осуществлять разделение компонентов, обладающих приблизительно одинаковой летучестью. [c.102]

    В настоящее время основным процессом получения низших олефинов является пиролиз углеводородного сырья, главной целью которого является производство этилена. Одновременно при пиролизе получают другие олефины — пропилен, бутилены и бутадиен. В этом же процессе образуются жидкие продукты (смола пиролиза), которые содержат и другие ценные углеводороды, такие как изопрен, циклопентадиен, бензол, толуол, ксилолы, стирол и нафталин. [c.351]

    НЕФТЕХИМИЧЕСКИЙ СИНТЕЗ, проиэ-во крупнотоннажных орг. и неорг. продуктов на основе нефт. фракций, прир. газа и газов нефтепереработки. Важнейшие из продуктов Н. с.— этилен, аммиак, пропилен, бензол, дихлорэтан, этилбензол, толуол, стирол, бутилены, винилхлорид, окись этилена, бутадиен, ксилолы, этиленгликоль, изопропиловый и этиловый спирты. Осн. процессы, к-рые использ. в Н. с.,— пиролиз, дегидрирование (в т. ч. окислительное), галогенированне, окисление, гидратация, гидрирование, алкилирование, аммонолиз и др. [c.376]


    На российских заводах достаточное число установок пиролиза прямогонной бензиновой фракции, например в Кстово, Волгограде, основная цель которых-получение углеводородного газа с высоким содержанием непредельных углеводородов, и в первую очередь этилена. Установка пиролиза вырабатывает важнейшие продукты, являющиеся сырьем для нефтехимической промышленности. Это этилен чистотой 99,9%, пропилен чистотой 99,9%, бутан-бутадиеновая фракция, содержащая 30-40% (мае.) бутадиена, 25-30% (мае.) изобутилена и 15-30% (мае.) /г-бутилена и смола пиролиза, из которой получают ароматические углеводороды-бензол, толуол, ксилолы. На рис. 74 показана технологическая схема установки пиролиза. [c.233]

    При этом получают концентрат ароматических углеводородов, содержащий 0,7 мас.пентадиена.76,9 мае.бензола,18,6 мае.толуола, 2,0% мае.ксилолов, а также дополнительно ценные низшие олефиновые углеводороды (этилен,пропилен,бутадиен). Выделение из полученного концентрата ароматических углеводородов пентадиена ректификацией и дальнейшая доочистка глинами при известных технологических условиях позволяет получать бензол, соответствующий ГОСТу. [c.29]

    Промышленные ироцессы химической переработки нефтяного сырья позволяют получать дополнительное количество свотлых нефтепродуктов (коксование, каталитический крекинг, гидрокрекинг), значительно улучшать их качество (главным образом бензинов), используя как компоненты товарных топлив фракции каталитического риформинга, каталитического крекинга, изомеризации, алкилирования, а также исходные мономеры для нефтехимического синтеза ароматические и непредельные углеводороды (бензол, толуол, ксилолы, этилен, пропилен и др.). Эти процессы химической нереработки нефти и ее фракций делятся на термические и термокаталитические. По способу промышленного оформления их можно разделить на периодические, полинепрерывные и непрерывные. [c.78]

    Для разделения изомеров ксилола и этилтолуола была Применена комбинированная фаза, состоящая из бентона-245 и иолифенил-метилсилоксана [4]. Полное разделение продуктов алкилирования толуола пропиленом достигается на колонке с диалкилнафталином (рис. 2). Из неполярных фаз — диалкилнафталин, а из полярных фаз — полиэтиленгликоль с молекулярным весом 2000 оказались наиболее подходящими фазами для анализа всех исследуемых продуктов. [c.69]

    Многими исследователями показана возможность применения алюмосиликатных катализаторов для реакции алкилирования. Приводятся результаты алкилирования бензола и толуола пропиленом, бутиленом и амиленами. Можно осуществить алкилирование бензола этиленом в этил-бензол и реакцию превращения толуола в смесь бензола и ксилолов. Ма-медалиев [12] в своих работах доказал образование продуктов, кипящих в пределах кипения авиационных бензинов и обладающих высоким октановым числом, при алкилировании бензола пропиленом. [c.277]

    Значительное место отведено расчету равновесий реакций синтеза важнейших мономеров и полупродуктов, являюш,ихся исходным сырьем для производства различных высокомолекулярных продуктов и пластиков в их числе ацетилен, этилен, пропилен, дивинил, изопрен ароматические углеводороды — бензол, толуол, ксилолы и другие алкилбен-золы — стирол, винилнафталин альдегиды — кетоны, кислоты, спирты, некоторые азотсодержащие соединения и др. [c.5]

    Образующиеся технологические газы, выходящие из печи, охлаждаются с большой скоростью. Необходимость в скоростной закалке связана с тем, что при температурах значительно ниже реакционной (около 800 °С) олефиновые продукты парового крекинга менее стабильны, чем материнские насыщенные углеводороды (см. гл. 2). Для предотвращения дальнейшего пиролиза до углерода и смолистых веществ олефиновые продукты должны охлаждаться очень быстро. Однако даже при соблюдении этого условия во всех реакторах парового крекинга образуется пиролизное нефтяное топливо, количество которого возрастает с увеличением молярной массы сырья. Высококипящие нефтеобразные полупродукты сепарируются при фракцинации, а основной поток газов компримируется перед очисткой от примесей кислых газов и воды. Вслед за этим олефиновые продукты проходят стадии низкотемпературной фракционной разгонки сначала Сг извлекается из водорода и топливного технологического метана, затем Са — из Сз (в деэтанизаторе, устанавливаемом после отгонной колонки, где этилен сепарируется из донного этана), а Сз — из С4 (в депропанизаторе, стоящем после специальной колонки, где пропилен сепарируется из донного пропана) и, наконец, смесь непрореагировавших бутанов, бутадиенов и бутены — из дистиллята парового крекинга, состоящего из богатой смеси бензола, толуола и некоторых ксилолов (в дебутанизаторе). В эту слож- [c.257]

    Ароматические углеводороды легче алкилируются олефинами, чем изопарафины. Наиболее благоприятными термодинамическими условиями термической реакции между бензолом и этиленом являются атмосферное давление и температуры до 540° [566], в то время как для изопарафинов — около 300° С. Признаки термического алкилирования бензола с этаном, пропаном и бутанами, проходящего, вероятно, по механизму свободных радикалов, получены при 475—550° С иод давлением 323 — 337 кПсм , наряду с другими продуктами (бифенилом, флуоре-пом, антраценом, дифенилбензолом и т. п.) образуются толуол, этилбензол, Сз и С4-алкилбензолы и ксилолы [567]. Алкилирование бензола проходит полностью в присутствии кислотного катализатора. Кремний-алюминиевые комплексы применяются под давлением нри 240—260° С для алкилирования бензола с этиленом и при 190—240° С с пропиленом в результате реакций образуются этил-и изопронилбензолы [568]. С крепкими кислотами реакция проходит еще легче. Цимол получают алкилированием бензола с пропиленом над катализатором (фосфорная кислота на кизельгуре) [569, 570] или серной кислотой [571, 572]. Фтористоводородная кислота также является эффективным катализатором [573, 574] может применяться и алкан-серная кислота [575], хотя и с металлическим натрием [576] в качестве промотора. [c.133]

    Приведена предпроектная проработка завода по переработке угля. Головным процессом является H- oul гидрогенизат (средние фракции) экстрагируется, рафинат гидроочшцается, далее риформинг, экстракция ароматических соединений, пиролиз. Мощность завода 32 тыс. т угля в сутки или 8,4 млн. т/год (ОМУ). Продукция (в тыс. т/год) этилен — 508, пропилен — 127, бутадиен — 254, бутены — 51, бензол — 7, толуол — 8,8, ксилолы — 13,5, ароматические углеводороды (С,) — 70, нафталин — 227, фенолы — 74,5, сера — 160, аммиак — 91. Срок окупаемости [c.25]

    На примере переработки легкой канадской и тяжелых сернистых (1,2—2,6% 8) нефтей по этому комбинированному нефтехимическому процессу переработки нефти были получены следующие результаты, характеризующие матернальный баланс олефины 47,2—52,0%, ароматические углеводороды 9,8—10,9%, топочный газ 5,9—9,5%, дистиллят 9,0—10,4%, котельное топливо 4,7— 6,1%, кокс 9,0—12,5%. Выход ароматических углеводородов можно значительно увеличить, если ввести в комплекс технологических установок установку каталитического риформинга. Соотноше-нпе этилен/пропилен равно 1,9—2,0. Среди ароматических углеводородов Сб—Са на долю бензола приходится 44%. Производство бензола можно значительно увеличить за счет процесса деметилирования толуола и ксилолов. [c.252]

    При высоких температурах алмилирования в присутствии хлорида алюминия происходит миграция не только изопропильных групп, но и метильных групп имеют место также процессы диспро-порционирования. Так, лри алкилировании толуола при значительном времени контакта наряду с моно- и дивзопрапилтолуо-лами получаются изопропилбензол и изопропил-м-ксилолы. Если при 20—40 С алкилирование о-ксилола пропиленом дает преимущественно 1-изопропил-3,4-Диметилбензол, то при 80—100 °С получают омесь изомеров, в которой содержится до 40% 1-изопро-пил-3,5-диметилбензола. [c.25]

    Согласно этой схеме дивинил и пропилен дают толуол, а бутилен — соответственно ксилол, именно ортоизомер, сразу же изо-меризующийся в термодинамически наиболее устойчивый метаксилол. Образование ароматических углеводородов нри чисто термическом разложении не является ведущей реакцией, и практически одинаковое количество бензола можно получить из углеводородов, не содержащих кольца полиметиленового типа, например из метановых углеводородов, способных также образовать дивинил. Таким образом, полиметилены образуют сравнительно много ароматических углеводородов не потому, что в них содер- [c.88]

    В промышленной практике сравнительно редко встречаются бидарные смеси без примесей более легких или более тяжелых компонентов. Тем не менее, технологический расчет многих процессов и аппаратов может быть выполнен на основе представления разделяемой смеси в виде бинарной. В практике нефтегазопереработки и нефтехимии к таким процессам относятся разделение смеси легких непредельных углеводородов с соответствующими предельными углеводородами — этана с этиленом и пропана с пропиленом разделение смесей бутанов или пентанов получение ароматических углеводородов из смесей бензола и толуола, этил-бензола и ксилолов и т. д. Кроме того, на основе бинарных смесей ключевых компонентов рассчитывается также разделение многокомпонентных смесей (см. п. 5 данной главы). [c.30]

    Одним из наиболее активных катализаторов реакции алкилирования является молекулярное соединение НзР04-ВРз. Изучение его действия при алкилировании бензола пропиленом проведено Топчиевым и Паушкиным [Нефт. хоз., 1947, № 6, 54]. С выходом до 78 /о идет алкилирование бензола изопропиловым спиртом [Топчиев, Егорова, Васильева, ДАН, 67, 475 (1949)]. В присутствии того же катализатора бензол алкилируется ацетиленом в 1,1-дифенил-этаи, аналогично алкилируется толуол и ксилол [Вайсер, ДАН, 70, 621 (1950)]. [c.428]

    При жидкофазном (кат.-А1С1з) или парофазном (Н3РО4 на кизельгуре) алкилированни пропиленом образуется смесь углеводородов, содержащая в осн. изопропилбензол, а также этилбензол, пропилбензол, толуол, ксилолы и др. Условия проведения жидкофазного и парофазного процессов соотв т-ра 70-90 и 150-250 °С, давл 0,1-0,5 и 1,5-2,5 МПа, молярное соотношение бензол пропилен-2,5 1 и 4 1, объемная скорость подачи сырья до 1,5 и 0,5-2,0ч . В обоих случаях расход на 1т А. бензола 670-700 кг, пропилена 380- 390 кг, катализатора 6-20 кг. Принципиальная технол. схема получения А. осушка бензола и олефинов и их смешение алкилирование в реакторе отделение продуктов р-ции от катализатора в отстойнике водная или щелочная промывка углеводородной смеси с послед, ректификацией на А, бензол, не вступивший в р-цию, и олефиновую фракцию. [c.91]

    Этан, пропан, ацетон, хлористый этил, диэтиламин, тризтиламин, бензол, толуол, ксилол, этилбен-зол, хлорбензол, изопропилбензол, стирол, диизопропиловый эфир, доменный газ, бензин Б-100, нафталин, пиридин, хлористый винил, циклопентадиен Бутан, пентан, пропилен, нитро-циклогексан, метиловый спирт, этиловый спирт, бутиловый спирт (нормальный), бутилацетат, дивинил, диоксан, изопентан, нитри-лакриловая кислота, диметилди-хлорсилан, диэтилдихлорсилан, фурфурол, метилакрилат, метиламин, диметиламин, метилвинил-дихлорсилан,этилацетат Гексан, топливо Т-1, ацетальде-гид, этилцеллозольв, гептил , самин , этилмеркаптан, бутил-метакрилат, бензин А-66, бензин Б-70, триметиламин, гидрированный керосин с трибутилфос-фатом, тетрагидрофуран, бензин калоша , бензин А-72, бензин А-76  [c.425]

    За редким исключением, например цис-транс-изо-меризации или медленной миграции двойной связи в олефинах в результате термического, фото- или радиационного воздействия, большинство реакций изомеризации yi леводородов протекают лишь в присутствии катализаторов. ЬСаталитическую активность в отношении изомеризации могут проявлять соединения, большей половины элементов таблицы Менделеева. Хотя некоторые реакции изомеризации могут протекать в присутствии металлов и щелочей, в большинстве известных промышленно значимых процессов изомеризации углеводородов гфименяются катализаторы, обладающие явно выраженными кислотными свойствами. 1Сислотно-основной катализ реакций углеводородов отражает основные или кислотные свойства молекул этих углеводородов. Олефины и ароматические углеводороды являются слабыми основаниями, обладающими некоторым сродством к протону. В олефинах в ряду — этилен, пропилен, изобутилен — основность повышается с увеличением степени замещения образующихся ионов карбония. В ряду ароматических углеводородов — бензол, толуол, о-ксилол — растворимость в НС1 или НВг, а также их растворимость в смеси HF и ВРз, возрастает, что указывает на увеличение основности, возрастающей с увеличением степени замещения метильной группой. [c.893]

    Условия пиролиза температура, °С время контакта, с Выход основных продуктов, % водород метан этан этилен пропан пропилен бутилены дивинил фр. С5 - 200Х в том числе бензол толуол ксилолы фр. >200 С+кокс+потери [c.22]

    В промышленности нефтехимического синтеза используют в больших масштабах следующие наиболее важные углеводороды 1) предельные (метан, этан, пропан, бутан, пентан идр.) 2) непредельные (этилен, пропилен, бутилен, дивинил, ацеггилен и др.) 3) ароматические (бензол, толуол, ксилолы) 4) газовая смесь окиси углерода с водородом. [c.107]

    Если простая перегонка нефти дает не более 20% бензина, в случае применения каталитического крекинга его количе-во может достигать 80%. Первоначально процесс крекинга врабатывался и осуществлялся для получения ароматиче-их углеводородов бензола, толуола, ксилола, необходимых ля производства разнообразных химических продуктов. Одно 3 важнейших назначений крекинга помимо получения высо-ооктанового бензина — получение газообразного непредельного сырья (этилен, пропилен, бутилены) для химической пе- >еработки. Сырьем для крекинга теперь служат не только неф- жяные фракции, но и природные газы, так как в условиях крекинга может происходить не только разрыв связей С—С, но и образование новых. [c.163]

    Основой современного органического синтеза являют-я поэтому простейшие углеводороды, такие, как метан, тан, пропан, бутаны, пентаны, этилен, пропилен, бутиле-1Ы, бутадиен, изопрен, ацетилен, бензол, толуол, ксилолы, сумол, циклоалканы, нафталин, простейшие спирты, фено-1Ы, альдегиды, кетоны, карбоновые кислоты, амины — ме-анол, этанол, ацетальдегид, ацетон, фенол, крезолы, ук-усная кислота, анилин и др [c.749]


Смотреть страницы где упоминается термин Ксилол из толуола и пропилена: [c.821]    [c.191]    [c.191]    [c.192]    [c.56]    [c.2240]    [c.229]    [c.458]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.608 ]




ПОИСК







© 2025 chem21.info Реклама на сайте