Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие методы термической характеристики

    Термический анализ представляет собой совокупность методов определения температур фазовых превращений и других термических характеристик индивидуальных соединений или систем взаи- [c.65]

    Знание физико-химических характеристик хлоридов (температуры плавления, температуры кипения, температуры возгонки, давления паров) позволяет выбрать оптимальные условия их конденсации. Однако одновременное образование в процессе хлорирования нескольких хлоридов ведет к значительному изменению летучести индивидуальных хлоридов. Поэтому физико-химическое изучение систем, образуемых хлоридами ниобия, тантала, циркония, гафния, титана, железа, алюминия и других металлов, методами термического, тензиметрического и химического анализов имеет весьма важное значение. [c.73]


    Среди физических методов исследования полимеров важное место принадлежит теплофизическим методам, позволяющим изучать особенности теплового движения в полимерах, термические характеристики переходов и релаксационных процессов, тепловые процессы, протекающие при приложении механических нагрузок к полимерам, и другие свойства и процессы. Калориметрические и дилатометрические методы, сравнительно давно применяемые для изучения полимеров, в последние годы особенно интенсивно развиваются и внедряются в исследовательскую практику. Особенно это относится к калориметрии. Были разработаны принципиально новые приборы для калориметрических измерений и значительно усовершенствованы уже применявшиеся методы и приборы. Основными достоинствами новых приборов является возможность с их помощью изучать на образцах малых размеров термодинамику и кинетику быстрых и медленных процессов, протекающих как в динамических, так и в статических условиях, получая при этом достаточно точные результаты. Современные теплофизические методы позволяют выполнять широкую программу исследований важнейших физических и химических процессов в полимерах. [c.5]

    Б. ДРУГИЕ МЕТОДЫ ТЕРМИЧЕСКОЙ ХАРАКТЕРИСТИКИ [c.64]

    Некоторые другие работы, использовавшие нестационарные методы измерения термических характеристик кипящего слоя, были рассмотрены в разделе П.5 при анализе перемешивания твердой фазы. Применимость полученного при этом оценочного соотношения [c.126]

    Химия изучает вещества и их превращения. Свойства веществ опреде.пя-ются атомным составом и строением молекул или кристаллов. Химические превращения сводятся к изменению атомного состава и строения молекул. Поэтому понимание химических процессов невозможно без знания основ теории строения молекул и химической связи. Число известных химических соединенш имеег порядок миллиона и непрерывно возрастает. Число же возможных реакций между известными веществами настолько велико, что вряд ли можно надеяться на описание их всех в обозримом будущем. Поэтому так важно знание общих закономерностей химических процессов. Термодинамика позволяет предсказать направление процессов, если известны термические характеристик, веществ — теплоты образования и теплоемкости. Для многих веществ этих данных нет, но они могут быть с высокой точностью оценены, если известно строение молекул или кристаллов, если известна связь между термодинамическими и структурными характеристиками веществ. С другой стороны, статистическая термодинамика позволяет рассчитывать химическое равновесие по молекулярным постоянным частотам колебаний, моментам инерции, энергиям диссоциации молекул и др. Все эти постоянные могут быть найдены спектральными и другими физически.ми методами или рассчитаны на основе теоретических представлений, но для этого надо знать основные законы, управляющие движением электронов в атомах и молекулах, и строение молекул. Это одна из важных причин, почему мы должны изучать строение молекул и кристаллов, теорию химической связи. [c.5]


    Для большинства промышленно производимых полимеров температура стеклования и степень кристалличности общеизвестны. Если же они неизвестны, их можно определить с помощью простых методов. Значения Тст определяют с помощью дифференциальной сканирующей калориметрии (ДСК) или дифференциального термического анализа (ДТА). Ряд других методов, в том числе хроматография и дилатометрия, могут также использоваться с этой целью. Для определения степени кристалличности можно применять широкий набор методов ДСК, ДТА, методы рентгеновской дифракции (или рассеяния), измерение плотности полимера, а также спектральные методы (ИК- и ЯМР-спектроскопия). Ниже эти методы описаны очень кратко. Далее в этой главе представлены другие методы, применяемые для характеристики композиционных мембран. [c.196]

    Определить наличие тех или иных фаз методом термического анализа удается даже в довольно сложных системах. Но, безусловно, для установления состава таких систем необходимо задать предположениями о наличии тех или других компонентов, а также необходимо знать характер термограмм отдельных возможных составляющих. Существуют атласы термограмм и таблицы характерных температур и тепловых эффектов многих органических и неорганических веществ. В этом случае, если характеристики интересующих веществ в них отсутствуют, прибегают к получению эталонных термограмм чистых веществ, предположительно входящих в состав пленки, и последующему сравнению эталонных термограмм и термограмм образцов пленки.  [c.217]

    Полиарилаты — очень интересный новый класс полимеров, обладающих ценным комплексом физико-механических свойств высокой теплостойкостью, значительной прочностью при повышенных температурах, высокими диэлектрическими показателями и т. д. В книге изложены вопросы, посвященные определению прочностных и релаксационных свойств этих полимеров. Описанные методы определения характеристик механических свойств полиарилатов могут быть применены для любых других классов твердых полимеров. Подробно рассмотрено влияние условий синтеза полиарилатов на формирование надмолекулярной структуры и комплекса механических свойств, описаны принципы физической модификации полиарилатов. Отдельные разделы книги посвящены растворам полиарилатов, термическим и диэлектрическим свойствам этих полимеров. [c.2]

    Другие методы измерения уровня, такие, как омические, термические, акустические, оптические и другие, имеют очень ограниченное применение. Сравнительные характеристики уровнемеров представлены в табл, 7.42. Типы уровнемеров, серийно выпускаемых в СССР, приведены в [19]. [c.387]

    Вторая, более важная, причина обусловлена многообразием отраслей экономики и науки, с которыми, вероятно, придется иметь дело исследователю, решающему промышленную проблему. Так, например, химик, занимающийся разработкой окислительного процесса, может обнаружить, что осуществляемые им исследования привели его в область неорганической химии металлов, поскольку металлы являются активными ингредиентами используемого им катализатора. Очень скоро ему также понадобится информация о физических характеристиках носителя катализатора, и он примется читать литературу о размерах пор, площади поверхности, изотермах адсорбции, дифференциальном термическом анализе, исследовании с помощью электронного микроскопа и о целом ряде других методов определения свойств поверхности. Причем все это он будет осмысливать не только как ученый, но и как производственник. Аспиранту, занимающемуся научными исследованиями в университете, вероятно, приходится переваривать гораздо меньший объем литературы [c.160]

    Для получения тех или иных конструкционных изделий из поликарбонатов методом литья под давлением используют продукты с молекулярным весом около 25 ООО, а процесс литья осуществляют на верхнем возможном температурном пределе (300°). Таким же или другими методами можно изготовлять пленки из расплава, но их механические характеристики будут существенно ниже тех, которые можно получить при использовании поликарбонатов с более высокими молекулярными весами и не подвергая полимер термической деструкции. [c.539]

    Весьма зыбкая граница разделяет два основных типа полимерных материалов с точки зрения их структуры и поведения при нагреве. Линейные и слаборазветвленные макромолекулы термопластов способны течь под давлением при переходе материала в область вязкого течения, когда температура материала превышает некий предел — температуру текучести. На этом основаны способы переработки термопластов в изделия (экструзия, литье под давлением и другие методы). Термопласты можно расплавлять и охлаждать многократно. Однако при высоких температурах, воздействии больших сдвиговых напряжений, термической и термоокислительной деструкции необратимо изменяются структурные характеристики полимеров. Происходит деструкция и сшивание молекулярных цепей, изменяются характеристики ММР и средней молекулярной массы. Поэтому повторная переработка термопластов приводит к ухудшению физико-механических свойств [15]. [c.30]


    Результаты исследований показали, что из древесного топлива, сжигаемого в топке-генераторе, можно извлечь лесохимические продукты в количествах, практически не уступающих выходу, получающемуся при других способах термической переработки топлива. Даже при форсированной работе топки, т. е. при относительно малом времени пребывания топлива в шахте, обеспечивалось достаточно полное разложение древесины. Состав выделяющихся лесохимикатов несколько отличался от состава продуктов, получающихся при других методах термической переработки древесины (см. гл. 3). Полученные характеристики еще раз подтвердили возможность организации на этом принципе промышленной установки для энергохимического использования древесины. [c.55]

    Теплота сгорания — это важнейшая термическая характеристика некоторых органических соединений (папример, бензойную кислоту используют для калибровки калориметров Берт-ло — Малера — Крекера). Другим методом, в котором проводят термические измерения, является термометрическое титрование, когда концентрацию вещества определяют по теплоте реакции. [c.138]

    Рентгеноструктурным и электронномикроскопическим методами был проведен сравнительный анализ асфальтенов различной природы, выделенных из остатков первичной и вторичной переработки нефти [270]. Было показано незначительное влияние мягкого термического воздействия на структуру нативных асфальтенов. Ранее это же было показано на примере других характеристик [242]. Эти данные говорят о том, что сольвентная деасфальтизация — наиболее удобный метод выделения асфальтенов без изменения их первоначальной природы. [c.282]

    Другие, конфигурации. В работе [73] рассматривалось течение около горизонтального цилиндра и вертикального осесимметричного тела произвольного профиля при четырех указанных выше комбинациях Зс и Рг. Использовался метод решения, предложенный ранее теми же авторами [72] для расчета течений в условиях естественной термической конвекции. Короче го оря, решения для функции тока, температуры и концентрации отыскиваются в виде быстро сходящихся рядов, универсальных относительно профиля тела в заданном классе конфигураций. Используя первые члены рядов, что дает достаточно точные результаты для горизонтального цилиндра и вертикального осесимметричного тела, удалось получить асимптотические соотношения для напряжения трения, чисел Нуссельта и Шервуда. При Рг = Зс, как и прежде, влияния разности температур и разности концентраций можно считать просто аддитивными. Следовательно, результаты расчета характеристик теплообмена для таких тел, полученные в гл. 5, применимы и для соответствующих задач совместной конвекции, [c.385]

    Особенно широкое распространение получил хлоридсеребряный электрод, который имеет наиболее воспроизводимые после водородного электрода значения потенциала. Поэтому он часто используется в качестве внутреннего вспомогательного электрода при изготовлении других электродов, например стеклянного. Его можно применять для измерений как в водных, так и в неводных растворах, в потоке жидкости, изготовить очень малых размеров. Недостатком электрода является зависимость термодинамических характеристик от физических свойств твердой фазы, таких как механическая деформация, кристаллическая структура, способ приготовления и др. До сих пор нет метода изготовления идеального хлоридсеребряного электрода. На практике применяют три основных метода электролитический, термический и термоэлектрический. [c.123]

    Термическая устойчивость цеолитов может быть установлена па основании данных термогравиметрического анализа. Термогравиметрический метод позволяет произвести оценку порога термической стабильности одновременно с определением влагоемкости образца и некоторых других характеристик. В частности, на венгерском приборе — дериватографе одновременно фиксируются четыре переменные, показывающие изменение во времени температуры образца (Г), разности температур образца и эталона (ДТА), массы (ТГ) и скорости ее изменения (ДТГ). [c.373]

    Наиболее ценная черта данного метода - большое число разнообразных параметров, которые могут быть использованы для отражения неоднородностей в объекте, невидимых для любого другого изображения. Применительно к эластомерным системам метод был использован для исследования процессов набухания, локальных и глобальных характеристик процесса термического старения, локализации негомогенных областей в протекторе шины, неравномерности [c.271]

    Одним из главных элементов этой схемы является расчет механических характеристик шин, который включает почти все виды математического аппарата системы линейных и нелинейных уравнений, векторный анализ, обыкновенные дифференциальные уравнения и уравнения с частными производными, краевые задачи, случайные процессы и математическая статистика, численные методы и т. п. Важным является то, что имея математическую модель можно проводить машинные эксперименты по оптимизации конструкции покрышки, по изучению влияния изменений исходных данных на характеристики шины и автомобиля. В результате расчетов можно получить следующие характеристики шины данной конструкции в зависимости от условий эксплуатации, механических и термических свойств конструкционных материалов прочность и долговечность, сопротивление качению, выходные характеристики, материалоемкость, шум и другие экологические характеристики, ремонтопригодность. [c.476]

    Для многих твердых пластических ыатерпалов термическая характеристика заключается в нахождении температуры, при которой имеет место определенпос изменение в структуре материала прн заданном давлении. Например, в методе Вика [4, 32, 47] игла (имеющая площадь острия I Ш1 ) при определенном давлении (обычно не превышающем I кг) вдавливается в поверхность стандартного образца (минимальная ширина 18 мм, толщина 3 мм), который нагревается с заданной скоростью (50° в час). Температура, при которой наблюдается погружение иглы на 1 нм, принимается за точку размягчения, или температуру пенстрации. Это испытание применено к полиэтилену, полистиролу и полиакрилатам с точностью до 2° Для мягких образцов поливинилхлорида, поливинилиденхлорида и некоторых других эластомеров область размягчения слишком велика, чтобы получить такую точность. [c.68]

    Одним из наиболее важных оксидных катализаторов, используемых в процессах переработки угля, является кобальтмо-либдат, нанесенный на оксид алюминия. Большинство исследований на этом катализаторе с помощью газовой адсорбции связано с химией и кинетикой взаимодействия [31—34], имеется несколько попыток измерить удельную поверхность [35—37]. В одной из этих работ термическую десорбцию водорода с алю-мокобальтмолибденовых катализаторов сопоставляют с его активностью в процессе гидрогенолиза тиофена. Наблюдались различные состояния водородных связей, но указанное положение характерно только для слабо связанного водорода. Поэтому маловероятно, что адсорбция водорода станет стандартным методом определения характеристик данного катализатора. Необходимо изучить возможность применения других газов, включая сероводород и оксид азота. [c.46]

    Разрущение кристаллической рещетки фиксируют не только рентгеноструктурным, но и другими методами среди них можно назвать изменение удельной поверхности, объема, электропроводности. С этой же целью используются ИК-спектроскопия и. термический анализ. Термическое разрушение кристалла цеолита обычно сопровождается выделением тепла. Тепловой эффект этой экзотермической реакции и температуру, при которой она происходит, часто удается определить с помощью дифференциального термического анализа. Положение соответствующего экзотермического пика можно использовать как характеристику термостабильности. На рис. 4-2 показана типичная кривая, полученная при дифференциальном термическом анализе. Эндотермический пик (а), наблюдаемый приблизительно при 200° С, связан с выделением воды и других летучих примесей, если они имеются. Первый экзотермический пик 6) соответствует разрушению кристаллического цеолита до аморфного состояния, а второй экзотермический пик в), часто наблюдаемый при более высокой температуре, говорит о перекристаллизации в новую фазу. Природа экзотермического пика (б) рассматривается при обсуждении процессов разрушения структуры. [c.350]

    Цроввдвнные исследования поверхностных состояний окисных пленок методом ТСТ, измерение электродного потенциала и коррозионных токов пар металл-покрытие в 3 растворе Уа-С1, позволяет сделать Н1Б0Д о том, что применяя соответствующие методы термической обработки пленок в контролируемых газовых средах, можно добиваться оптимальных коррозионшх характеристик полученных покрытий при их эксплуатации в условиях морской вода в парах с другими металлами и сплавами. [c.39]

    Исследованием было установлено, что при длительном хранении термическая стабильность реактивных топлив понижается без заметного изменения других физико-химических характеристик топлива. Объясняется это явление, очевидно, тем, что при длительном хранении протекают такие окислительные процессы, которые непо.иностью улавливаются существующими методами анализа, но приводят к значительному понижению термической стабильности топлив (табл. 32). [c.52]

    Весьма усиленно развиваются исследования по химическим превращениям (реакциям) перекисей, включая нх термическое разложение. Успехи по этому обширному разделу отражены в обзорной статье и примерно в 40 отдельных сообщениях. Важнейшими вопросами. этого цикла исследований являются природа перекисной связи, ее состояние в зависимости от обрамления различными заместителями и ее проявление в различных химических превращениях. Обстоятельные исследования по выяснению механизма распада перекисных соединений проведены группами горьковских химиков под руководством Г. А. Разуваева и В. А. Шушунова. Много работ посвящено реакциям перекисей с различными органическими веществами аминами, металлоорганическими соединениями, олефинами, галоидпроизводными, ангидридами кислот, альдегидами, кетонами и др. Интересны работы по термическому распаду полимерных перекисей и по характеристике инициирующих свойств перекисей в процессах радикальной полимеризации. В сборнике представлены также работы по изучению фи-зико-химических свойств перекисей с применением ИК- и УФ-спек-троскопии, полярографии и других методов. [c.8]

    При помощи МЭП нами был получен большой объем информации о структуре многокомпонентных гидрофобно-гидрофильных пористых тел, примерами которых являются гидрофобизированные электроды и катализаторы. Из семейства порограмм, измеренных с использованием измерительных жидкостей с различными величинами 0, можно получить функцию распределения пор по радиусам и по факторам гидрофобности р, где р есть доля гидрофобной поверхности поры. На рис. 3 изображена такая функция для платино-фторопластового электрода с концентрацией фторопласта 16 %. Как видно, здесь гидрофильные поры с платиновыми стенками имеют два максимума, а гидрофобные поры с фторопластовыми стенками — один максимум объем пор со смешанными стенками в этом электроде очень мал. Другими методами такая информация не получалась. Из порограмм, измеренных до и после удаления гидрофобизатора (фторопласта) путем его термического разложения, нами впервые была получена наиболее важная для макрокинетики реакций в гидрофобизирован-ных электродах и катализаторах характеристика — величина газожидкофазной поверхности раздела. [c.247]

    Приготовленные смеси затворяли дистиллированной водой до получения теста пластичной консистенции и заливали в формы 1X1X3 сл. Часть образцов в формах помещали в специально приспособленный для создания высоких давлений автоклав системы ГрозНИИ, где процесс твердения происходил при 200° С и 700 ати. Другую часть форм помещали в автоклав, где синтез происходил при 200° С и 16 ати. Время выдержки образцов при указанных параметрах определяли условиями опыта. По окончании опыта определяли прочность образцов. Фазовый состав устанавливали с помощью рентгеновского, термического и петрографического методов. Рентгенограммы снимались на дифрактометре УРС-50И, термограммы — на пирометре Курнакова. Рентгеновские и термические характеристики продуктов синтеза приняты по работам [1—4]. [c.421]

    Классификация методов термической сварки производится обычно по способу нагревания свариваемой лленки. В одном случае тепло к материалу подводится через слой пленки непосредственно от обогреваемых плит. В другом случае под воздействием токов высокой частоты тепло для сварки образуется внутри самого свариваемого материала. Наиболее важные характеристики, относящиеся к сварке первого типа, следующие продолжительность процесса, сжимающее усилие и температура плит. При высокочастотной сварке основными управляемыми параметрами процесса (в дополнении к продолжительности контакта и сжимающему усилию) являются применяемые напряжения и частота тока. [c.388]

    Третья группа — полупроводники сульфиды, селениды, теллу-риды, кремний, германий, теллур, селен. Пленки этой группы отличаются наиболее высокими значениями показателей преломления (2—5). Граница их прозрачности простирается далеко в область длинных волн. По коротковолновой границе пропускания эти пленки значительно отличаются друг от друга. Для некоторых представителей этой группы характерно заметное поглощение в видимой и близкой ИК областях спектра. Например, пленки из германия не прозрачны для излучения с длиной волн до 1,8 мкм, а пленки из антимонида индия —до , = 4,0 мкм. Пленки этой группы весьма различны по своим химическим и термическим характеристикам, большинство их имеют кристаллическую структуру, но могут быть и аморфными. Нанесение таких пленок осуществляется преимущественно термическим испарением. Получение пленок сульфидов, селенидов и теллуридов возможно также и химическими методами при осаждении из растворов соответствующих соединений. [c.15]

    В настоящее время имеются труды по отдельным группам минералов, В работе Е. Я. Роде [У-146, 149] подробно разработан термоанализ марганцевых руд, а также железных [У-147, 111-163, 164], свинцовых [111-165, 166] и других В. П. Ивановой собран достаточно полный материал по хлоритам [У-ЗО] Цветковым А. И. [111-216 218, У-199 201] составлены сводки термограмм по ряду различных минералов. Много работ посвящено термической характеристике силикатов и глин. Однако термоаналитические данные отдельных классов веществ являются только одной из возможных областей применения термографии и по существу представляют собою лишь качественный фазовый анализ различных смесей. Между тем, возможности применения термографии значительно шире. Этот объективный и чувствительный метод физико-химических исследований несомненно позволит глубоко проникнуть в сущность ряда явлений которые иными методами не могут быть изучены. [c.8]

    В свете изложенного сущность термографии заключается в изучении фазовых превращений, совершающихся в системах или индивидуальных веществах, по сопровождающим эти превращения тепловым эффектам. Исследуемый образец подвергается постепенному нагреванию или охлаждению с непрерывной регистрацией температуры. В случае возникновения в веществе того или иного превращения, сразу изменяется скорость его нагревания или охлаждения за счет поглощения или выделения тепла. Изменения скорости нагрева (охлаждения), регистрируемые тем или иным способом, позволяют а) определять в растворах или сплавах зависимость температур фазовых изменений от состава б) находить в механических смесях наличие тех или иных аеществ по характерным для них температурам диссоциации, либо разложения, либо другого рода фазовых превращений. В первом случае мы пользуемся классическим методом термического анализа, получившим основное применение в металловедении и при изучении соляных равновесий во втором — методом фазовой характеристики смесей (осадочные горные породы, руды, иловые отложения, соляные месторождения и т. п.). [c.12]

    Процесс расчета характеристик кожухотрубного теплообменника состоит из вычислений коэффициентов теплоотдачи а и перепадов давлений по обеим сторонам. В этой главе представлены только методы тенлогндравличе-ских расчетов со стороны кожуха. Методы расчетов потоков внутри труб приведены в других разделах. В некоторых случаях, например при использовании пара в качестве тенлоносителя в межтрубном пространстве, коэффициент теплоотдачи а со стороны кожуха обычно известен и теплогидравлический расчет сводится к вычислениям параметров потока г.нутри труб (кото]) ,1с в этнх случаях будут вносить наиб( лее существенпы "[ вклад в термическое сопротивление). Тем не менее метод и последовательность расчетов, приведенные в этой главе, применимы и в этих случаях. [c.22]

    Лаборатория,предназначенная для выполнения практикума, должна быть соответствующим образом оборудована. В ней необходимо организовать специализированные участки вакуумный участок с газовой горелкой для стеклодувных и кварцедувных работ участок травления с местной вытяжной вентиляцией термический участок, в котором сосредоточены печи для одно- и двухтемпературного синтеза, диффузии и других работ, требующих применения высоких температур участок механической шлифовки и полировки образцов участок физико-химических методов анализа, где расположены пирометрические установки, аппаратура для изучения давления диссоциации и т. п., а также участок физико-химических исследований и электрофизических измерений, где проводится изучение микроструктуры, измерение микротвердости, определение удельного сопротивления, термо-э.д.с., изучение вольт-амперных, вольт-емкостных характеристик и т. п. [c.4]

    Создатели -термогравиметрии назвали ее методом, освобож-даюп им исследователя от проблем тепло- и массопереноса [85]. Суть этих проблем в термическом анализе заключается в следу-ющ ем возможно ли однозначное отнесение экспериментальных зависимостей к характеристикам превращеш я, или, другими словами, возможно ли корректное разделение экспериментального проявления химического превращения от сопровождаюпщх его процессов тепло- и массопереноса. Обычно такие проблемы решаются с различным успехом специальной калибровкой и (или) математическим моделированием. [c.77]

    Стойкость полимера к термической деструкции определяется его термостойкостью, т.е. способностью сохранять химическое строение и основные свойства при высоких температурах переработки и эксплуатации полимеров. Наиболее высокой термостойкостью обладают трехмерные сетчатые и лестничные полимеры, содержащие большое число ароматических звеньев в своей структуре. Достаточно устойчивы к термической деструкции и некоторые гетероцепные полимеры, такие как полиимиды, полибензоксазолы, полиоксифенилен и др. Термическая деструкция, особенно при эксплуатации материалов на основе полимеров, сопровождается окислением, т.е. происходит совместное действие тепла и кислорода -термоокислительная деструкция. Устойчивость материалов к термоокислительной, да и к другим видам, деструкции характеризуется потерей массы их при нагревании. Для характеристики полимеров по этому показателю применяется термофавиметрический метод анализа (ТГА). На рис. 4.4 приведены термогравиметрические кривые ргаложения политетрафторэтилена в атмосфере азота и ки Jюpoдa воздуха. [c.111]

    Увеличивается также газопроницаемость угольной пластической массы, определяемая по величине сопротивления прохождению инертного газа (гелия) через слой угля, нагреваемого в кварцевой трубке диаметром 8 мм (рис. 85). Увеличение газопроницаемости пластической массы приводит к снижению степени вспучиваемости углей. Об этом свидетельствует величина индекса вспучивания, определяемого по методу ИГИ-ДМетИ, который уменьшается пропорционально увеличению содержания в углях отощающих компонентов (рис. 86). Другой показатель динамики вспучивания / является характеристикой термической устойчивости макромолекул веществ угпей. Увеличение содержания инертинита в угле повышает его термическую устойчивость (см. рис. 86). Период вспучивания равной степени зрелости резко уменьшается с увеличением содержания в них отощающих компонен- [c.160]

    Применение в аточно-абсорбционной спектроскопии беспламенных атомизаторов, как графитовая печь, графитовая па-лочда и других, позволяет получить более высокую чувствительность и точность анализа. Этот способ атомизации проб в графитовой кювете предложен давно /9/ и обладает рядом принципиальных преимуществ перед пламенем по некоторын аналитическим характеристикам. При анализе нефтепродуктов с использованием беспламенного метода точность определения ванадия не зависит от типа металлорганическоГ о соединения, употребляемого в качестве эталона, и от характера пробы. Благодаря проведению анализа в инертной среде, отделению стадии атомизации от стадий сушки и термического разложения устраняется влияние вязкости и других физико-химических свойств на результаты анализа. [c.68]

    Данной схемой можно пользоваться для одновременного классифицирования реакций и методов оперирования и, кроме того, отдельно тех и других. По предлагаемому способу класс определяется последовательной записью (через тире) всех порядковых номеров по приведенному перечню основных признаков. Полная характеристика каждой реакции или метода управления процессом может быть дана шестью классификационными нумерами. Для примера рассмотрим двухпечный крекинг системы Нефтепроекта (фиг. 2) и, кроме этого, обычную схему жидкофазной гидрогенизации угольной пасты (фиг. 3). Как известно, термический крекинг представляет собой сложную параллельно-последовательную, одностороннюю, эндотермическую, двухфазную, некаталитическую реакцию 1-го порядка. Соответственно разделу А классификационного перечня это может быть записано так Ка —1—4—7—8—11 —14. Метод оперирования по схеме Нефтепроекта принят политропический, непрерывно действующий, прямоточный, без внутренней циркуляции, с непрерывным теплообменом, с дымовыми газами. Согласно признакам раздела Б он может быть выражен так Кб—19—24—25—31—32—34 . Объединенная характеристика процесса дается соединением признаков А и Б и показывается так К—1—4—7 —8—11 —14—19—24—25—31—32—34. [c.21]

    О свойствах химического соединения можно судить по его цвету термической устойчивости, растворимости в различных жидкостях электрическим или магнитным характеристикам, способности взаимо действовать с другими веществами и т. д. Методы, приведенные в таб лнцах к этой главе, основаны на измерении разницы в таких свойствах [c.18]

    Общий вывод, что для транс-амидов характерно образование линейных полимеров, а для г ис-амидов — циклических димеров, был поставлен под сомнение работой Дейвиса и Томаса [502]. Они нашли, что циклические димеры имеются как в трихлорацетамиде, так и в его N-метилпроизводном. Дейвис отмечает, что тип ассоциации определяется относительной величиной свободной энергии, которая может изменяться в зависимости от других структурных факторов, нежели цис-транс-томеряя. Бейкер и Егер [118] опубликовали интересное обсуждение диэлектрических свойств некоторых твердых полиамидов. Они установили соответствие между изменениями диэлектрической постоянной и диэлектрических потерь, с одной стороны, и протяженностью и упорядоченностью сети Н-связей — с другой. Диэлектрическая постоянная и потери велики в соединениях, для которых можно допустить, что сеть плохо сформирована либо из-за неблагоприятных расстояний между амидными группами, либо из-за нарушений порядка вследствие замыкания Н-связей кроме того, величина указанных диэлектрических характеристик быстро растет с увеличением температуры. Последнее Бейкер и Егер приписывают осцилляции водородных атомов между двумя положениями равновесия на линии Н-связи. Другие механизмы диэлектрических потерь также становятся существенными при более высоких температурах, при которых Н-связи рвутся и теряется их ориентирующее действие. Бейкер и Егер показали, что соединения, образующие сильную Н-связь (НгО), разрушают сетку Н-связей и вызывают изменения диэлектрических свойств, подобные тем, которые наблюдаются при повышении температуры. Такая эквивалентность разрыва Н-связей с помощью химических и термических воздействий является типичной и была обнаружена многими экспериментальными методами. [c.27]

    В последние годы снова появились работы канадских, английских и французских исследователей [19], в которых на основании широкого применения методов газовой хроматографии, масс-спектрометрического анализа и других совершенных методов ис следований изучался состав продуктов и кинетика первичного крекинга при низких давлениях (10—150 мм рт. ст.) в интервале 400—600° С. Эти работы снова подтверждают радикально-ценной механизм первичного термического крекинга кроме того, в них рассчитываются скорости некоторых элементарных реакций, протекающих с участием радикалов и, в частности, подчеркивается важная роль этильных радикалов при определении кинетических характеристик крекинга алканов, на что указывалось еще в работах Фроста в 40-е годы [20]. Французские исследователи дискутируют с Воеводским по поводу выдвинутой им концепции гетерогенного зарождения, возрая ая против заметного влияния стенок на зарождение цепей в термическом крекинге. Ниже мы обсудим результаты проведенных нами исследований, показавших, что рост гетерогенного фактора (б /у) увеличивает обрыв цепей, но мало влияет па их зарождение. [c.344]

    Радикалы, образованные механохимическим путем, как и радикалы, полученные классическими методами инициирования (термическим, фотолитическим, химическим), характеризуются энергией образования неспаренного электрона. Однако имеются и некоторые характеристики, присущие только методу их активации. Действительно, в то время как радикалы, полученные классическими методами, имеют небольшие размеры, некоторые порядка атомов, механохимические радикалы не могут быть меньше определенных фрагментов деструкции минимального молекулрного веса. Последний в каждом конкретном случае 5- определяется энергетическим отношением межмолекулярных и химических связей, оставаясь по величине в пределах, харак-терных для макромолекул. Поэтому эти радикалы малонодвиж-ны в реакционной среде, что и обусловливает их дальнейшие превращения. Другой их важной особенностью является то, что в зависимости от структуры перерабатываемых полимеров можно предвидеть место механохимического разрыва и тип образуемых макрорадикалов. Так, если механическому воздействию подвергаются разветвленные полимеры, то самая большая вероятность расщепления будет между главной цепью и ответвлениями или по поперечным связям в случае деструкции трехмерных полимеров и т. д. [c.17]

    Влияние остаточных напряжений, а также. механического и термического способов их снятия исследовалось на сферических сосудах диаметром 1500 мм и толщиной стенки 25,4 мм [47]. В сферическую модель вваривались испытуемые диски диаметром около 900 мм со сварным соединением предварительно надрезанных по кромке половин (по типу образцов, используемых в испытаниях по методу Уэллса). Было установлено, что хрупкому разрушению при низком напряженном состоянии металла способствовали пониженная ударная вязкость металла в надрезе, низкая температура, большая острота надреза и высокие остаточные растягивающие напряжения, в то время как снятие остаточных напряжений повышало уровень разрушающих напряжений. Результаты испытаний сосудов давления до разрушения использовались также для качественной оценки характеристик вязкости новых сталей. Например., результаты испытаний сосудов, изготовленных из стйли с 9% N1 под давлением при температурах до —196° С, показали ее высокую сопротивляемость хрупкому разрушению [ 0, 51 ]. Другие данные по хрупкому разрушению были получены пр и испытаниях на малоцикловую усталость сосудов диаметром 90/0 мм со штуцерами [52]. [c.161]


Смотреть страницы где упоминается термин Другие методы термической характеристики: [c.116]    [c.181]    [c.121]   
Смотреть главы в:

Препаративные методы химии полимеров -> Другие методы термической характеристики




ПОИСК





Смотрите так же термины и статьи:

Другие методы

Метод характеристик



© 2025 chem21.info Реклама на сайте