Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Насыщенные пары, адсорбция

    Кинетические кривые в этом случае не выходят из начала координат. При давлениях не очень близких к упругости насыщенного пара адсорбция на внешней поверхности мономолеку-лярна и по величине может быть оценена величина внешней поверхности частиц. Баррер и Брук [29] нашли удовлетворительное согласие в величинах внешней поверхности мелкокристаллического морденита, найденных из измерений кинетики сорбции и по методу БЭТ. [c.101]


    В. А. Соколовым [5] был предложен метод полного анализа смеси инертных газов, основанный на разделении ее на несколько фракций таким образом, чтобы каждая фракция представляла собой один газ или бинарную смесь газов, количественное содержание компонентов которой могло бы быть определено на основании плотности, теплопроводности, упругости насыщенного пара, адсорбции на твердых поглотителях или других физических свойств бинарной газовой смеси. [c.274]

    Объем пор. Дпя определения общего объема пор, доступного для адсорбции, адсорбент приводится в равновесие с насыщенным паром или жидкостью в замкнутом сосуде, в котором жидкость находится в избытке. Кажущийся удельный объем адсорбента Уа представляет собой сумму истинного удельного объема и удельного порового объема Fp. [c.138]

    Для построения изотермы адсорбции, как уже отмечалось, проводят 5—6 замеров, охватив интервал относительных давлений от 0,05 до 0,35. А так как давление насыщенных паров спирта (Ре) при 20° С равно 95 мм рт. ст., то опыты проводят практически при абсолютных равновесных давлениях по манометру в пределах от 5 до 35 мм рт. ст. [c.78]

    Отличительной чертой адсорбции паров является переход к объемной конденсации при предельном давлении, равном давлению насыщенного пара жидкости р=р - При этих условиях величина адсорбции паров жидкостей, смачивающих твердое тело, становится бесконечной. Поэтому, если в области заполнения монослоя рост адсорбции замедлялся с повышением р, т. е. на изотерме имелся выпуклый участок (например, если в этой области изотерма адсорбции или ее часть, как на рис. XVI, 1, описывалась уравнением Лэнгмюра), то при дальнейшем повышении давления (при приближении р к р ) рост адсорбции с повышением давления дол- [c.449]

    Величину Дцз можно вычислить, зная (см. стр. 469) давление насыщенного пара адсорбата (в исходном состоянии—над чистой жидкостью 2) и давление пара р адсорбата, находящегося в равновесии с адсорбционным слоем при величине адсорбции Fg  [c.480]

    Для поверхностной сорбции (адсорбции) в порах переходного типа можно ограничиться выводами потенциальной теории, согласно которой адсорбированное вещество представляет конденсированную жидкую фазу, обладающую свойствами объемной жидкой фазы. Поверхность адсорбированной пленки соответствует одному значению адсорбционного потенциала Ч , численно равного работе адсорбционных сил по перемещению единицы количества вещества из газовой объемной фазы с давлением Р к поверхности адсорбированной пленки, давление над которой принимается равным давлению насыщенного пара Ру при температуре Т. Таким образом, действие сил поля с потенциалом эквивалентно дополнительному давлению, приложенному к адсорбированной пленке АР = Ру Т)—Р. [c.47]


    Адсорбция газа или пара при не очень низких т мпературах. Хорошо дегазированный образец подвергают контакту с газом при температуре, поддерживаемой на постоянном уровне. Вычерчивают кривую, называемую изотермой адсорбции (рис. 6), позволяющую определять адсорбированное количество газа в зависимости от давления, остающегося заметно ниже давления насыщенного пара, если используют конденсирующийся пар. По чертежу, позволяющему применить теоретические рассуждения, а также некоторые упрощающие гипотезы, можно рассчитать поверхность, доступную для адсорбции, и определить распределение объема микропор в зависимости от их размеров. Газы, естественно, должны иметь достаточно мелкие по размеру молекулы, чтобы они могли проникнуть в ультратонкие поры. Для данной цели используют углекислый газ при температуре около —80° С, неон и ксенон при температуре 0° С и метанол при температуре около 20° С. [c.26]

Рис. G. Изотермы адсорбции паров метанола по трем пробам витринита (Р — давление Р — давление насыщенных паров метанола прн данной температуре) Рис. G. <a href="/info/1103323">Изотермы адсорбции паров</a> метанола по трем пробам витринита (Р — давление Р — <a href="/info/6006">давление насыщенных паров</a> метанола прн данной температуре)
    При данных условиях интенсивность процесса адсорбции 1а-висит 01 молекулярной массы и давления насыщенного пара адсорбата. Чем больше молекулярная масса адсорбата, тем он, прн прочих равных условиях, лучше адсорбируется. Из газовой фазы лучше адсорбируются вещества с меньшим давлением насыщенного пара, т. е. легче конденсирующиеся. Из растворов лучше адсорбируются вещества с меньшей растворимостью в данном растворителе. Следует отметить, что адсорбция растворенных веществ примерно на порядок меньше адсорбции газов и паров. [c.106]

    Хотя величина с и названа константой, нет ни одной изотермы адсорбции паров, для которой величина с действительно постоянна во всем интервале давлений паров адсорбата от Р = О до Р = Pq, т. е. до насыщенного пара. Однако, для большинства изотерм адсорбции паров имеется участок, где с постоянно. Так, большая часть изотерм типа II подчиняется уравнению (VI. 17) при P/Pq = = 0,05—0,35, т. е. когда 0 изменяется приблизительно от 0,5 до 1,5 [37, 38]. Статистические и термодинамические выводы уравнения БЭТ показывают, что значение с зависит от изменения свободной энергии при переходе пара, находящегося в равновесии с жидкостью, на поверхность адсорбента величина с определяет вид изотермы адсорбции. Если с > 2, то получаются S-образные изотермы II типа если с 2, то — изотермы III типа [38, 44]. Параметр с в первом приближении определяется выражением [45] [c.294]

    Здесь а — равновесное количество адсорбированного вещества (равновесная величина адсорбции) при давлении Р, моль/кг 01, Я оа — предельные объемы адсорбционного пространства для первого и второго вида микропор, соответственно, м /кг м— мольный объем бензола (0,088 см /ммоль при 293 К) В , ба — структурные константы, характеризующие размеры микропор первого и второго вида, соответственно Т — температура опыта. К Рз — давление насыщенного пара Р — равновесное давление пара бензола. [c.391]

    Процессы внешнего массообмена газа с зернами (испарение материала последних или содержащейся в них влаги, адсорбция примесей из потока) должны быть подобны процессам межфазного теплообмена в том же кипящем слое. Поскольку диффузионный критерий Прандтля (критерий Шмидта S = v/D) для газов того же порядка, что и Рг, то зависимость диффузионного критерия Нуссельта (критерия Шервуда Sh = Pd/D) должен определяться аналогичной (П1.12) корреляцией. Малы будут и коэффициенты массообмена Р (м/с). Соотношение между массоемкостью газового потока (концентрацией насыщенного пара) и твердой фазой может быть еще значительно меньше, чем отношение их объемных теплоемкостей, и все описанные выше характерные особенности межфазного теплообмена справедливы и для процессов межфазного массообмена. [c.135]

    Далее рассчитывают относительное давление азота р/р (где рз — давление насыщенного пара азота). Строят изотерму адсорбции А — [c.51]

    Т — абсолютная температура пара Р и р — давление насыщенного пара и парциальное давление пара адсорбируемого вещества соответственно (при температуре Т адсорбции). [c.568]

    Если адсорбирующийся газ находится при температу )е ниже критической, то нередко наблюдают полимолекулярную адсорбцию, особенно при давлении газа вблизи давления насыщенных паров его конденсированной фазы. Полимолекулярную адсорбцию в простейшем случае можно описать следующей системой химических уравнений  [c.284]

    Адсорбция на пористых адсорбентах — процесс более сложный по сравнению с адсорбцией непористыми телами. В порах твердого тела возможна конденсация паров при давлениях меньших, чем давление насыщенного пара над плоской поверхностью р. . Этот процесс, получивший название капиллярной конденсации, объясняется известной зависимостью упругости насыщенного пара от кривизны поверхности жидкости (Кельвин)  [c.43]


    Адсорбция паров на пористых адсорбентах, удельная поверхность которых достигает сотен тысяч квадратных метров, имеет более сложный характер по сравнению с адсорбцией на непористых телах такой же химической природы. Как правило, она сопровождается капиллярной конденсацией — конденсацией пара в порах прн давлениях (р), меньших, чем давление насыщенного пара адсорбтива над плоской поверхностью (р . [c.32]

    Вид изотерм адсорбции и капиллярной конденсации зависит от формы пор. Так, в порах, имеющих конусообразную форму (рис. И.З, а), при малых значениях р на стенках поры образуется в результате адсорбции тонкий слой жидкости с шаровидным мениском, имеющим максимальную кривизну в узкой части поры. При давлении, соответствующем давлению насыщенного пара над мениском, начинается конденсация, в процессе которой жидкость продвигается в более широкую часть поры. Радиус кривизны мениска при этом возрастает и продолжение конденсации возможно лишь при увеличении давления. Обратный процесс—десорбция —выражается этой же кривой. [c.33]

    Адсорбция на пористых адсорбентах - процесс более сложный по сравнению с адсорбцией непористыми телами. В порах твердого тела возможна конденсация паров при давлениях меньших, чем давление насыщенного пара над плоской поверхностью. Этот процесс получил название капиллярной конденсации. [c.18]

    N — число теоретических тарелок Ыв — число молей жидкой фазы в 1 мл Р . Ро — упругость насыщенных паров компонента п — давление на входе колонки Ро — давление на выходе колонки Р — полярность жидкой фазы по Роршнейдеру Q — теплота адсорбции — газовая постоянная [c.5]

    Адсорбция паров отличается от адсорбции газов тем, что она характеризует переход к объемной конденсации лри предельном давлении, равном давлению насыщенного пара жидкости, т. е. [c.337]

    Согласно этой модели над поверхностью твердого тела существует такое потенциальное поле сил, что потенциал убывает с расстоянием от поверхности, но не так быстро, как предполагал Ир. Ленгмюр. Если над поверхностью находится газ, то его молекулы притягиваются к поверхности. Совокупное действие силового поля и теплового движения приводит к тому, что концентрация газа по мере приближения к поверхности возрастает. Если температура ниже критической температуры адсорбтива, то на каком-то расстоянии от поверхности давление газа станет равным давлению насыщенного пара и газ будет конденсироваться в жидкость. Этот процесс и называется адсорбцией. Таким образом, адсорбционные силы совершают обратимое изотермическое сжатие газа от давления р (вдали от поверхности, где адсорбционными силами можно пренебречь) до р, непосредственно над слоем сжиженного газа, т. е. адсорбционной пленки. Работа адсорбционных сил Ш, отнесенная к 1 моль адсорбата (адсорбционный потенциал е), очевидно, равна  [c.223]

    Теплоту адсорбции определяют по уравнению (XVII, 65), зная температурную зависимость равновесного давления р, так же как при определении теплоты испарения (конденсации) из температурной зависимости давления насыщенного пара (стр. 141 и 146). Для этого необходимо определить адсорбционные равновесня по крайней мере при двух температурах Т и Т") для одного и того же количества адсорбата Га  [c.484]

    Теория БЭТ несмотря на условность предпосылок позволила вывести уравнение изотермы адсорбции, имеющей S-образную форму. Вид этой изотермы характерен для полимолекулярной адсорбции. При значениях давления, далеких от давления насыщенного пара при данной температуре, и значении константы равновесия полимолекулярной адсорбции С>1 уравнение S-образной изотермы переходит в уравнение изотермы адсорбции Лангмюра. Таким образом, адсорбция в каждом слое подчиняется уравнению Лангмюра. Существует пять основных типов изотермы адсорбции (рис. 109). Изотермы типа I характерны для микропористых адсорбентов выпуклые участки на изотермах типов И и IV свидетельствуют о присутствии в адсорбенте наряду с макропорами и микропор. Менее крутой начальный подъем кривых адсорбции может быть связан с наличием моно- и полимолекулярной адсорбции для адсорбента переходнопористого типа. Начальные вогнутые участки изотерм типов И1 и V характерны для систем адсорбент — адсорбат, когда взаимодействие их молекул значительно меньше межмолекулярного взаимодействия молекул адсорбата, вызванного, например, появлением водородных связей. Теория БЭТ является наиболее полной тео(рией физической адсорбции. [c.257]

    В случае использования ТОЗМ, согласно уравнению адсорбции (П.1.13), определению численным способом подлежат три параметра а°, т, Е. Расчет дифференциальной мольной работы адсорбции А может быть легко проведен на основании уравнения (П. 1.15) с использованием значений давлений насыщенного пара ps и равновесного давления адсорбции р. При расчете на ЦВМ давления насыщенного пара при температурах до критического значения Ркр и условного давления насыщенного пара при температурах выше [c.225]

    В этих уравнениях а — в еличина адсорбции для равновесных относительных давлений р1Р вс и абсолютных температур Т, ммоль1г-, Рнас — давление насыщенного пара адсорбтнва р — парциальное давление адсорбтнва ркр — критическое давление адсорбтнва Ь — константа уравнения Ван-дер-Ваальса, смУммоль и W — предельные объемы адсорбционного пространства В и А — константы Ра — коэффициент аффинности характеристических кривых (может быть найден как отношение парахоров адсорбируемых веществ к парахору стандартного пара, для которого определяют константы Wo и В или и А) V — объем миллимоля жидкости в адсорбированном состоянии, с м ммоль. [c.721]

    Равновесное содержание воды в топливе, находящемся на воде, всегда выше, чем в топливе над насыщенным водным раствором соли, что связано с соответствующим уменьшением давления насыщенных паров над этой жидкой средой по сравнению сдавлением насыщенных водяных паров над чистой водой. При контактировании бензина с каменной солью возможна адсорбция растворенной воды на поверхности соли, обусловленная сольватацией ионов Ыа" и С1 и образованием водного раствора ЫаС1 в тонком пограничном слое. Эти теоретические соображения подтверждаются результатами [c.318]

    Таким образом, если поры адсорбента представляют собой тонкие капилляры, стенки которых покрыты пленкой адсорбированной жидкости, образующей вогнутый мениск, конденсация пара этой жидкости произойдет при маньшем давлении, чем давление насыщенных паров над плоской поверхностью при той же температуре. Конденсирующаяся жидкость может при этом заполнить капилляр. Данное явление, имеющее очень большое практическое значение и существенно изменяющее ход адсорбции, носит название капиллярной конденсации. [c.106]

    Далее приступают к определению удельной адсорбции. В сосуде 2 создают давление паров бензола р 0,01ра (где р,ч —упругость насыщенного пара) подключением его иа короткое время к сосуду /, содержащему насыщенные пары бензола. После установления адсорбционного равновесия с помощью катетометра определяют растяжение пружины и по известной константе пружины (см. с, 29) рассчитывают количество адсорбированного бензола и удельную адсорбцию. [c.49]

    Капиллярная конденсация обусловлена наличием у адсорбента мелких пор. Пары адсорбт1 ва конденсируются в таких порах при давлениях, меньших давления насыщенного пара над плоской поверхностью вследствие образования в капиллярах вогнутых менисков. Возникновение этих менисков следует представлять как результат слияния жидких слоев, образовавшихся на стенках капилляра вследствие адсорбции паров. Понятно, что возникновение вогнутых менисков возможно только в том случае, если образовавшаяся жидкость смачивает стенки капилл яра. [c.99]

    Г — коэффициент адсорбции на единицу объема адсорбента М — молекулярный вес п — число атомов углерода в молекуле N — число теоретических тарелок Ns — число молей жидкой фазы в 1 лл Pj, ро — упругость насыщенных паров компонента р — давление на входе колонки Ро — давление на выходе колонки Р — полярность жидкой фазы по Роршнейдеру П — производительность препаративной колонки q — количество компонента, введенное в колонку Q — теплота адсорбции R — газовая постоянная 1, Ri, Ra -- —электрические сопротивления [c.4]

    Методика определений. Микропоры — самые мелкие поры, их зазмер молекулярного порядка (эффективный радиус 0,1—0,3 л л /с). Ли практически принадлежит вся поверхность, на которой происходит адсорбция. Переходные поры — более крупная разновидность их размер не превышает десятичной доли сантиметра (эффективный раднус 0,7—1 ммк). При сорбции паров, например, метилового спирта, в области высоких относительных давлений вплоть до давления насыш,ения в этих порах-происходит Капиллярная конденсация — ожижение паров в результате пониженной упругости насыщенного пара над вогнутым мениском жидкости. Самые крупные поры, включая и непосредственно видимые при небольшом увеличении, — макропоры (элективный радиус 0,1—1 мк). [c.95]

    Получив у преподавателя образец адсорбента, определить для него равновесную статическую активность эксикаторным методом по насыщенным парам бензола. Отвесить три навески адсорбента пр 1 г на аналитических весах. Воспользовавшись данными работы 6 и уравнениями (IV. 10), (IV. 17), определить объем макропор. Чтобы найти объем микропор и переходных пор, надо провести опыт по адсорбции -бутилового или -пропилового спирта из водных растворов. Для этого приготовить водные растворы спирта следующих концентраций вммоль1л) 0,5 1,5 2 3. Построить калибровочный график зависимости показателя преломления от концентрации спирта. Взвесить на аналитических весах в 5 стеклянных ампулах с притертыми пробками по 1 г исследуемого адсорбента. Прилить 25 мл раствора различной концентрации. После 30-минутного перемешивания поместить 5 ампул с адсорбентом и раствором в термостат (25°С) на 6 ч. Одновременно внести в термостат еще 2 ампулы (контрольных) с параллельным н холостым опытом. Через 6 ч ампулы вынуть из термостата и содержимое их быстро отфильтровать через сухой беззольный фильтр. Определить показатели преломления равновесных растворов по калибровочному графику найти равновесные концентрации. [c.97]

    Таким образом, когда химический потенциал адсорбата при адсорбции изменяется, общее изменение свободной энергии Гельмгольца при адсорбции не определяется только изменением поверхностного натяжения, а превышает его на величину ГгАцг- Значение Др,2 можно получить, зная давление насыщенного пара адсорбата ps в исходном состоянии над чистой жидкостью и давлением пара адсорбата р, находящегося в равновесии с адсорбционным слоем при величине адсорбции Гг. Согласно (VI.57) имеем [c.351]

    Наряду с адсорбцией в пористых телах наблюдается явление капиллярной конденсации — конденсации пара адсорбата при давлениях, меньших давления насыщенного пара. При адсорбции стенки пор оказываются покрытыми тонкой пленкой адсорбированного вещества. Они хорошо смачиваются жидким сор-батом, и поэтому в порах легко образуется вогнутый мениск жидкости. Согласно уравнению Томсона (VII.5.3), давление пара, равновесное вогнутой поверхности, меньше упругости насыщенного пара. Поэтому конденсация пара в порах над вогнутым мениском начинается при давлениях, меньших давления насыщенного пара (р < р,), т. е. при относительном давлении, меньшем единицы (р1р < 1). Капиллярная конденсация, как и полислойная адсорбция, проявляется в том, что изотерма адсорбции в этих случаях принадлежит к одному из типов [c.226]


Смотреть страницы где упоминается термин Насыщенные пары, адсорбция: [c.207]    [c.68]    [c.72]    [c.367]    [c.225]    [c.142]    [c.118]    [c.34]    [c.36]    [c.202]    [c.265]   
Адсорбция газов и паров Том 1 (1948) -- [ c.3 , c.6 , c.651 , c.661 ]

Адсорбция газов и паров (1948) -- [ c.3 , c.6 , c.651 , c.661 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция до насыщения

Адсорбция насыщенных паров при комнатной температуре

Адсорбция паров

Смешанная адсорбция насыщенных паров

Углерода двуокись, давление насыщенных паров над твердой фазой десорбция из адсорбента изотермы адсорбции



© 2025 chem21.info Реклама на сайте