Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиимид прочность

    В [8-48] порошковые полиимид I и полиимид И при 300-380 С наполняли нестабильными солями формиатами меди, никеля, цинка и железа. Вследствие разложения формиатов при этих температурах в полиимидах, которые в основном еще сохраняют свою термостойкость, образуется равномерно распределенный в объеме порошок соответствующего металла и оксидов железа. Термические превращения полиимидов, наполненных металлами, за исключением никеля, начинаются при более низких температурах. Наиболее заметно действие меди и оксвда цинка, которые снижают скорость потери массы при 500-680 С в 2-2,5 раза. Замедление деструкции при введении указанных добавок объясняется образованием новых соединений, в цепь которых входят атомы металлов, по-видимому, хелатного строения. В результате подавляются радикальные процессы деструкции. Часть полимера, химически связанная с частичками металлов, сохраняется без изменений до 600 С. При содержании меди и никеля до 5-20% (масс.) повышается предел прочности при изгибе СУ (100-120 МПа без добавок и 160-180 МПа с добавками). [c.505]


    Связующими в термореактивных О. служат эпоксидные, полиэфирные и фенольные смолы, полиимиды степень наполнения 40-70%. Наиб, высокими мех. св-вами обладают О. на основе арамидных волокон (табл. 1). По уд. прочности при растяжении эти О. превосходят стеклопластики в 1,5-1,8 раза, а по уд. модулю упругости-более чем в 2 раза. При растяжении О. на основе непрерывных ориентированных арамидных волокон в интервале от —250 до 200 °С наблюдается линейная зависимость деформации от нагрузки, а также рост модуля упругости с понижением т-ры. При сжатии у арамидных О., а также при растяжении и сжатии у О., армированных большинством др. волокон, проявляются пластич. св-ва. [c.405]

    В частности, в результате модификации эпоксидных олигомеров кардовыми полиимидами образуются сшитые полимерные системы, превосходящие по теплостойкости, прочности и другим свойствам материалы, получаемые с применением обычных отвердителей эпоксидных олигомеров. Например, успешным оказалось использование полиимид-эпоксидных композиций в качестве связующего для армированных углепластиков, прочность на сжатие которых составляет 2900-4200 кгс/см при 2 °С и сохраняется практически неизменной до 250 °С [264]. [c.137]

    Все эти полиимиды хорошо растворимы не только в (-крезоле, но и в хлороформе, метиленхлориде, ДМФА, ДМАА, N-МП. Их температуры размягчения составляют 200-220 °С, а температуры 5%-го уменьшения их массы на воздухе при скорости подъема температуры 5 град/мин составляют 495-505 °С. Температура самовоспламенения полимера из л<-фенилендиамина 750 °С, время самовоспламенения 89 с. Большие различия в величинах температур размягчения и начала термодеструкции создают предпосылку для успешной переработки полимеров методом литьевого прессования и экструзии, а хорошая растворимость делает возможной изготовление из них прозрачных, бесцветных, прочных пленок (например, прочность на разрыв пленки полимера I составляет 6230 кгс/см , а удлинение при разрыве - 52%). [c.225]

    В этом отношении особый интерес представляют лестничные полимеры (и блок-лестничные, у которых макромолекула состоит из чередующихся линейных и лестничных блоков), совмещающих достоинства линейных (способность формоваться и растворяться ) и трехмерных полимеров (теплостойкость, прочность). В качестве примера можно привести полиимиды, которые относятся к полигетероариленам [89, 90], ароматические полимеры, содержащие гетероциклы в основных цепях. Их получают реакцией полн-циклоконденсации [c.325]

    Больщинство кристаллических ориентированных полиимидов имеет разрывную деформацию ер=1-нЗ%, т. е. разрушение происходит в упругой области деформаций (хрупкое разрушение). Аморфные ориентированные полиимиды имеют Ер на порядок больше (40—50%), т. е. разрушаются нехрупко. Практически идеально хрупкое разрушение наблюдается у бездефектных стеклянных волокон [1.3] с прочностью 3,0—3,5 ГПа и у химически травленных массивных силикатных стекол с прочностью 2—3 ГПа. Эти результаты получены при испытаниях в атмосферных условиях, когда происходит снижение прочности из-за наличия влаги (прочность листового стекла в вакууме выше, чем в атмосфере). Для полимеров обычно атмосферная влага слабо влияет на прочность, поэтому для сравнения прочности обоих материалов данные для неорганических стекол и волокон следует брать при испытании в вакууме. Бездефектные (не имеющие микротрещин) стеклянные волокна разрушаются взрывоподобно, образуя мелкие осколки (стеклянную пыль). Их прочность характеризуется предельно малым коэффициентом разброса данных для серии образцов (1—2%) и практической независимостью от масштабного фактора (длины и диаметра). В вакууме прочность бездефектных стеклянных волокон превышает 4,0 ГПа, а прочность травленого листового стекла после удаления поверхностных микротрещин равна 4,85 ГПа (при 293 К). Можно считать, что наиболее вероятное значение прочности структуры стекла близко к 5 ГПа (в вакууме при 293 К). [c.45]


    Новая экспериментальная высокотемпературная Н -пленка фирмы Дюпон [192] является интересным и, по-видимому, очень перспективным достижением в области производства полимеров из полиметилбензолов. Согласно патентной заявке, полиимид получают из диангидрида четырехосновной карбоновой кислоты (А) и диамина (Б). Пленка обладает интересным сочетанием необычных тепловых, электрических, физических и химических свойств. В частности, она стойка к любым растворителям, имеет весьма высокие диэлектрическую прочность и стабильность размеров стойкость к нагреву в воздухе до 275° С превышает 1 год. [c.381]

    Практическое применение получили две группы полиимидов содержащие гетероатом (—0—) в диамине и полиимиды, в которых ароматические радикалы R и R ) связаны через кислород, содержащийся и в диамине, и в диангидриде, Первые обладают эластичностью, сохраняющейся при низких (—200°С) температурах. Прочность при растяжении полиимидов этой группы составляет 1200—1600 кгс/см плотность — 1,41 г/см . Они используются в виде покрытий, пленок и волокон. Полиимиды второй группы имеют меньшую плотность (1,37 г/см ), высокую прочность (1200—1400 кгс/см при растяжении), но при 270°С они размягчаются, что позволяет получать на их основе прессовочные и литьевые материалы, а также связующие и клеи [68, с. 124 и сл.]. [c.196]

    Полиимидный реактопласт — прессовочный материал ПМ-67 отличается высокой стойкостью к истиранию, механической прочностью, низким коэффициентом трения и несколько меньшей термостойкостью, чем пленка ПМ этот материал можно эксплуатировать при 250—275 °С в течение длительного времени (характеристику свойств полиимидов см. в табл. 3.9). [c.198]

Рис. Vn.l3. Зависимость предела прочности при статическом изгибе стеклопластиков на основе полиамидоимида 1 полиимидов от продолжительности выдержки при 315 °С . Испытания проводились при температуре выдержки Рис. Vn.l3. <a href="/info/641917">Зависимость предела</a> прочности при <a href="/info/649876">статическом изгибе</a> стеклопластиков на <a href="/info/1729330">основе полиамидоимида</a> 1 полиимидов от <a href="/info/916315">продолжительности выдержки</a> при 315 °С . <a href="/info/937152">Испытания проводились</a> при температуре выдержки
Рис. VII.21. Влияние температуры и влажности на электрическую прочность пленок из полиимида, полиамидоимида и полиэфира . Рис. VII.21. <a href="/info/15368">Влияние температуры</a> и влажности на <a href="/info/57027">электрическую прочность</a> пленок из полиимида, полиамидоимида и полиэфира .
    По свойствам при комнатной температуре стеклопластики на основе полиимидов несколько уступают стеклопластикам на основе эпоксидных фенольных смол или ненасыщенных сложных полиэфиров. Предел прочности при статическом изгибе составляет примерно 4200 кгс/см" , а относительное удлинение при разрыве — 2%. [c.175]

    Исключительной стойкостью к действию высоких температур характеризуются полиимиды прочность клеевых соединений остается удовлетворительной после старения при 370 °С в течение 60 ч. Клеевые соединения на основе эпоксидных олигомеров, совмещенных с новолачными, и циклоалифатических эпоксидных олигомеров могут работать в интервале температур 230—260 °С и кратковременно до 315 °С (все сказанное относится к клеевым соединениям закрытого типа, работающим в отсутствие непосредственного воздействия кислорода воздуха, который резко ухудшает клеящие свойства полимеров). Наибольшей термостабильностью характеризуются клеящие системы на основе модифицированных фенолоальдегидных олигомеров и прежде всего карборансодержащие композиции. Карбамидные клеи в соединениях древесины характеризуются относительно невысокой термостабильностью, по-видимому, в связи с большой жесткостью отвержденного продукта и значительными остаточными напряжениями в клеевом соединении. Значительно более термостабильны меламиновые и карбамидомеламиновые клеи. Ненасыщенные полиэфиры обладают сравнительно низкой стойкостью к тепловому старению. Устойчивы к тепловому старению элементоорганические и неорганические полимеры, содержащие бор и фосфор. Клеи на основе фосфатных связующих выдерживают нагревание при 1000 °С, однако вследствие высокой хрупкости и разности термических коэффициентов линейного расширения склеиваемых материалов и клея прочность клеевых соединений при этом может существенно снижаться. [c.248]

    В качестве матрицы может использоваться пиролитический углерод, а также каменноугольный пек и коксующиеся полимеры, которые в процессе термЪдеструкции дают более 50 мас.% кокса. Чаще всего применяют феноль-ньfe смолы (выход кокса 54 - 60 мас.%). Известно применение полиимидов (63 - 74 мас.%)), кремнийорганических смол (84 - 87 мас.%), продуктов конденсации фенола и нафтенов с формальдегидом (70 мас.%)), олигобензимвда-золов (74 мас.%), фурфуриловых смол и других полимеров. Чем больше выходи прочность кокса, а также прочность его сцепления с наполнителем, тем выше качество УУКМ, [c.86]


    Поэтому, не будучи по строгому определению жесткоцет1Ными, волокнообразующие полиимиды имеют ту же прочность на растяжение и тот же модуль упругости, что и жесткоцепные полиамиды , но превосходят их по тепло- и термостойкости. В то же время их эластические свойства, и в первую очередь способность к проявлению вынужденной эластичности, сохраняются неизменными в чрезвычайно широком диапазоне температур (примерно от —200 до +300 °С), поскольку при очень медленных воздействиях (а стрелка действия при вынужденной эластичности всегда смещена в сторону больших т) проявляется уже независимость сегментальных движений, и полимер в целом перестает вести себя как псевдолестничный. [c.228]

    Применяя высокое давление (500—2000 ата), прессованием при 370—390° С получают изделия различных форм. Изделия сохраняют высокую прочность и жесткость в широком температурном диапазоне. Более стоек к длительному воздействию высоких температур полиимид на основе диангидрида дифенилоксид-тетракарбоновой кислоты. Пленки из этого полиимида от теплового воздействия при 250° С в течение 500 ч на воздухе теряют удлинение и прочность при растяжении только на 10% от исход- ной величины. По диэлектрическим свойствам этот полиимид близок к пиромеллитимиду. [c.247]

    В 60-70-е гг созданы В х из полимеров со специфич св-вами, напр термостойкие волокна (из ароматич полиамидов, полиимидов и др), выдерживающие длит эксплуатацию при 200-300 °С, углеродные волокна, получаемые карбонизацией В х и обладающие высокой жаростойкостью (в бескислородных условиях до 2000 °С, в кислородсодержащих средах до 350-400 °С), фторволокна (из фторсодержащих карбоцепных полимеров), устойчивые в агрессивных средах, физиологически безвредные, обладающие хорошими антифрикц и электроизоляц св-вами Нек-рые из этих волокон характеризуются также более высокими, чем обычные В х, прочностью, модулем, большей растяжимостью и др (табл 4) [c.413]

    В ряде работ рассмотрен пиролиз кардового полиимида анилинфлуорена и диангидрида 3,3, 4,4 -бензофенонтетракарбоновой кислоты до 3000 °С [249, 253, 266]. Отмечается, что при температуре выше 450 °С в полимере начинаются термохимические превращения. В аргоне наиболее интенсивно деструктивные процессы происходят при 550-650 °С (с уменьшением массы 20-22%). При 700-750 °С в основном завершается формирование коксового остатка полиимида, который на 92,5% состоит из углерода. Интересно отметить, что в отличие от ряда обычных полипиромеллитимидов у кардового полиимида при прогреве до 3000 °С остается -0,75% азота, входящего в состав конденсированных шестичленных циклов. В результате пиролиза электрическое сопротивление системы уменьшается на 12-13 порядков и полученные углеродные материалы характеризуются высокой механической прочностью, низким коэффициентом трения и (в отличие от графита) очень низ- [c.136]

    Анализ свойств кардовых полиимидов показьшает, что они являются высоко тепло-, термо-, радиационно- и хемостойкими полимерами. Это, наряду с возможностью переработки многих из них в "циклизованной" форме, делает их перспективными для практического использования в различных изделиях, предназначенных для продолжительной эксплуатации при температурах выше 200 °С. Из кардовых полиимидов поливом из растворов получаются часто практически неокрашенные прочные пленки (прочность на разрыв 1000-1100 кгс/см , удлинение при разрыве 40-70%), не уступающие по электрическим свойствам в интервале 20-300 °С известной пленке "кантон Н" [211]. Изучение оптических свойств пленок полиимида анилинфлуорена и 3,3, 4,4 -тетракарбоксидифенилоксида показало, что они обладают высоким оптическим пропусканием при 500 нм (81-87%) и являются термо- и фоторадиационно-стойкими. После термообработки до 300 °С или после УФ-облучения дозой, эквивалентной 300 солнечным часам, оптическое пропускание пленок уменьшается всего лишь на 1-3% [158]. [c.137]

    Кардовый полиимид анилинфлуорена и 3,3, 4,4 -тетракарбоксидифенилоксида (марка ПИР-2) успешно используется при изготовлении и приклеивании при комнатной температуре тензорезисторов для измерения статических деформаций, работоспособных в широком диапазоне температур (-190 -a- 300 °С). Ряд кардовых полиимидов можно перерабатывать из расплава в прочные пластики различного назначения. Например, прочность при сжатии пластиков из ПИР-2 составляет 1800 кгс/см , а модуль упругости - 2,2- Ю кгс/см [211]. Прочности и модули упругости при сжатии пластиков ряда кардовых сополиимидов достигают 1400-2100 и 1,7-2,210 кгс/см соответственно, причем прочностные характеристики практически не ухудшаются после предварительного прогрева их до 200-240 °С [223]. Из кардовых сополинафтоиленимидов методом горячего прессования были сформованы монолитные пластики с ударной вязкостью 15 кгс см/см и прочностью на изгиб 700-1000 кгс/см [225]. [c.137]

    Полиимиды с дифенил-о- и -ж-карборановыми фрагментами в цепи, имея в целом характерные для ароматических полиимидов свойства (теплостойкость, механические и электрические свойства пленок), благодаря специфическому влиянию карборановых групп хорошо растворимы в широком круге растворителей. Наилучшей растворимостью из полученных полимеров обладали полиимиды 4,4 -диаминодифенилоксида и анилинфлуорена, которые растворимы даже в диоксане и ТГФ. Поливом из растворов рассматриваемых карборансодержащих полиимидов получены прочные пленки. Например, прочность пленки на разрыв из полиимида на основе 1,7-бис(3,4-дикарбоксифенил)карборана и 4,4 -диаминодифенилоксида, полученного двухстадийным методом с химической циклизацией полиамидокислоты, составляет 980 кгс/см , а удлинение при разрыве - 88%. [c.272]

    Большое внимание уделяется получению композиций с теплостойкими полимерами (полиимиды, полифенилеисульфиды, поли-арилсульфиды). Композиция ПТФЭ со смолой эконол (США) имеет прочность при изгибе до 3,85 МПа и модуль упругости при изгибе 7-10 МПа, коэффициент трения 0,12 [41]. [c.219]

    Так как полиамидокислоты растворимы и плавки, из них можно формовать изделия, которые затем подвергаются имидизации. Полученные таким образом Н-пленки ( H-film ), будучи неплавкими и стойкими к радиации вследствие наличия ароматических циклов в макромолекуле, сохраняют гибкость и прочность при температурах от —200 до +400°С благодаря присутствию шарнирных связей С—О—С (некоторые полиимиды сохраняют гибкость вплоть до температуры жидкого гелия). На основе полиа-мидокислот производят высокотемпературные лаки для изоляции электропроводов, а также волокно, которое можно длительное время эксплуатировать при 250°С. [c.325]

    Несколько подробнее изучено влияние агрессивных сред на прочность стеклонаполненных ненапряженных и напряженных (25% исходной прочности) термостойких полимеров полиимидов (табл. 1П.45) и полифени-леноксида, полифениленсульфида, полисульфона и по-лиэфирсульфона (табл. 1П.46). [c.138]

    В последнее время получили распространение высокотеплостойкие клеи на основе полимеров, содержащих пяти- и шестичленные циклы в основной цепи — нолибензоксазолов, полибензимидазолов, ароматических полиимидов и т. п. По литературным данным, полибензимидазольные клеи имеют термостойкость около 500 °С, хотя интенсивность снижения прочности при температуре выше 300°С довольно высока. Еще более термостойки полиимидные клеи [2, 9] (см. табл. П. 4). Соединения стали на таких клеях менее термостабильны, чем соединения титана и бериллия [12]. [c.38]

    Особо высокая прочность достигнута для волокон из гетероциклических полимеров с сильным межмолекулярным взаимодействием, например полиимидов [3.16—3.21]. Такие волокна с прочностью (при 293 К) 2 ГПа и выше называют суперволокнами [1.5]. Микрофибриллы суперволокон также состоят из чередующихся кристаллических и аморфных областей, но полимерные цепи в кристаллитах в отличие от случая обычных гибко- [c.44]

    Как показал Шишкин с сотр. [3.27], высокоориентированные волокна из полиимидов (й(=12 мкм, Стр = 3,5 ГПа) при разгрузке концов волокна после разрыва обнаруживают пластические сдвиги частей волокна по плоскостям наибольших касательных напряжений (угол 45°). Это подтверждает идею а Второ в о роли сил межмолекулярного взаимодействия в разрушении полимеров. Вероятно, исследуемые волокна находились в области квазихрупкого разрыва, в которой возможны микропластические деформации. Бездефектные стеклянные волокна (ар = 3,0 -нЗ,5 ГПа), находясь при 293 К в хрупком состоянии, дробятся при разрыве на малые осколки. Таким образом, при одинаковой прочности полиимидные и стеклянные волокна ведут себя по-разному. По-видимому, основная причина этого лежит в структурных различиях. Стеклянные (силикатные) волокна имеют густую сетку кремнекислородных связей, а ионные взаимодействия между —81—О—81— цепочками сетки характеризуются энергней того же порядка, что и ионно-ковалентные 81—0-свя-зи. Поэтому во всех состояниях (хрупком, квазихрупком и пластическом) деформационные и прочностные свойства определяются разрывом химических связей. Для линейных полимеров дело обстоит иначе, так как силы межмолекулярного взаимодействия на один —два порядка слабее химических связей в полимерных цепях. Поэтому в полимерах при определенных условиях механизм разрушения связан в основном с преодолением межмолекулярных сил, а не с разрывом химических связей. [c.49]

    Полиимиды являются весьма теплостойкими полимерами и могут применяться в интервале температур 149—371° С. Так, через 1000 час. при 299° С у них сохраняется 90% разрывной прочности короткое время они выдерживают нагревание до 500° С. Модуль эластичности при 371° С сравним с модулем найлона прп комнатной температуре [323]. Они имеют хорошие диэлектрические свойства и низкий коэффициент трения [319], характеризуются высокой радиационной устойчивостью и стойкостью к солнечному свету и дейетвию растворителей. Срок службы пленки (Н-РПт) па воздухе при 249° С — 10 лет при 274° С — 1 год при 299° С — 1 месяц при 399° С — одни сутки [319—322, 324, 325]. Хладотекучесть у полиими-дов меньше, чем у всех других полимеров [324, 325]. [c.261]

    Производство П. п.— обычно двухстадийный процесс. На первой стадии получают пленку поливом р-ра полиамидокислоты (промежуточный продукт при синтезе полиимидов) в N,N -димeтилaцeтaмидe, N,N -диметилформамиде или др. амидах на бесконечную ленту или полированный металлич. барабан поливочной машины. Наиболее широко используют полиамидо-кислоту на основе ииромеллитового диапгидрида и 4,4 -диаминодифенилоксида. Образовавшуюся иленку высушивают с принудительной циркуляцией сухого азота нри 100 °С (не снимая с подложки). Пленка из полиамидокислоты слабо окрашена в желтый цвет, обладает высокой прочностью при растяжении [120 Мн/м" (1200 кгс/сж )] и относительным удлинением при разрыве ок. 80%. Однако эти свойства пе стабильны во времени, т. к. полиамидокислота гидролизуется влагой воздуха. [c.413]

    Перспективны перфторалкилентриазиновые каучуки Они начинают разлагаться выше 400"С, их мехапич. свойства при 315°С не изменяются в течение 1000 ч. Введение в боковые цепи группы — N, применение специальных наполнителей и вулканизующих агентов позволило получить материалы, имеющие прочность при растяжении 14 Мн м ( 140 кгс см ) и относительное удлинение 600%. Прочные пленки образуют фторсодержащие полибензоксазолы и полиимиды. [c.404]

    В настоящее время большие успехи достигнуты в области синтеза полиимидов, которые выпускаются в промышленном масштабе. Исходными продуктами для получения полиимидов служат диангидриды ароматических тетракарбоновых кислот и ароматические диамины. Широкое распространение получили полиимиды на основе бензофенонтетра- карбоновой кислоты. Они обладают высокой прочностью, термостойкостью и эластичностью, хорошими диэлектрическими свойствами. Ди-антидрид бензофеноитетракарбоновой кислоты применяется также для получения полиимидных формующихся - композиций, обладающих высокой термостойкостью и стойкостью к окислению. [c.104]

    Диапазон рабочих темп-р наиболее распространенных полимерных материалов на основе карбоцепных полимеров обычно не превышает 100—150 °С. При более высоких темп-рах происходит резкое изменение М. с. (уменьшение жесткости, прочности, твердости), связанное с приближением к темп-ре текучести аморфных или темп-ре плавления кристаллич. полимеров (см. Теплостойкость). Вплоть до темп-р 300—400 С способны сохранять прочность и жесткость нек-рые гетероцепные полимеры, напр, кремнийорганические, тсо-лифениленоксиды, полиимиды, полибензимидазолы. Изменение М. с. перечисленных полимеров обычно бывает связано не с изменением агрегатного состояния, а с термической деструкцией (см. Термостойкость). [c.118]

    Стеклопластики па основе термореактивного полиимид-ного связующего (на основе 3,3, 4,4 -бензофенонтетра-карбоновой к-ты и л-фенилендиамина) после 100 ч нагревания при 315 С обладают в 2 раза большей прочностью при растяжении, чем стеклопластик па основе линейного П. Деструкция ароматич. П. при 500— [c.417]

    Достижение высоких прочностей и высоких модулей упругости связано с получением кристаллов с вытянутыми цепями (КВЦ). Такие С. образуются щ)и кристаллизации жесткоцепных полимеров, чем и объясняются, напр., высокие прочностные характеристики полиимидов. Поскольку жесткоцепные полимеры при нек-рой концентрации образуют жидкокристаллич. фазу, для слияния нематич. доменов и образования нематич. ма-нокристалла достаточно действия небольшого механического поля (в технологических процессах производства химических волокон — это небольшая фильерная вытяжка). Если звенья макромолекул способны кристаллизоваться, то последующее удаление растворителя приводит к превращению нематич. С. в КВЦ со 100% проходных цепей. Дефекты С. здесь — не аморфные области, а стыки между отдельными цепями. Поскольку они распределены по всему объему более или менее равномерно, то прочность при растяжении и модуль упругости таких С. достигают очень высоких значений — соответственно до 5 Гн/м (500 кгс1мм ) и 200 Гн/м (20 ООО кгс/мм ). [c.277]

    Полиимиды. Полиимиды в промышленном масштабе в США выпускает с 1964 г. фирма Union arbide orp. 210]. Эти материалы обладают высокой прочностью, химической стойкостью, высокой теплостойкостью (до 500 С), хорошей погодостойкостью, отличными диэлектрическими свойствами, сохраняющимися даже при высоки.х температурах (до 340°С), и стойкостью к ползучести. При выдержке при 300°С в течение 1000 ч образец полимера сохраняет 90% первоначальной прочности на разрыв. Полиимиды не плавятся, так как при нагревании выше 400 С происходит сшивка полимерных молекул,, а температура их размягчения достигает 700°С. Они растворяются в диметилсульфоксиде и диметилформамиде. [c.255]

    Полиимиды являются весьма теплостойкими полимерами и могут применяться в интервале температур 149—371°С. Так, через 1000 час. при 299°С они сохраняют 90% разрывной прочности короткое время они выдерживают вагревание до 500° С. [c.122]

    Особенно широкое применение полиамидоимиды, как и полиимиды, находят в электротехнической промышленности . Это обусловлено тем, что они имеют очень высокую электрическую прочность гладкую скользящую поверхность с высокой абразивной устойчивостью высощ ю электрическую прочность при повы- [c.149]

    Клеи на основе термопластичных теплостойких полиимидов (Р1-110) и термореактивных полии мидов (Р1-1101) выпускаются фирмой Дюпон в виде 18%-ных растворов полиамидокислот. Пленки на их оонове имеют лредел прочности при растяжении 770—910 кгс/сМ и относительное удлинение при разрыве 8—11%. Сопротивление сдвигу стандартных клеев из полии.мидов при ко.м-цатной температуре достигает 140—175 кгс/см , что значительно ниже величин, получаемых при использовании ряда других клеев. Сопротивление отслаиванию составляет 1,4—2,1 кгс1см при 23 °С. тогда как для высокотеплостойких клеев фенольно-эноиоидного типа эта величина почти в два раза выще. Преимущества полиимидов и в этом случае проявляются только при повыщенных температурах. [c.176]

    Полиимиды неоколыко менее стойки к воде, чем большинство других линейных гетероцепных полимеров. Так, водопоглощение пленки капто Н при 50%-ной относительной влажности происходит в шесть раз быстрее, чем полиэтилеитерефталатной пленки. Вместе с тем эта пленка сохраняет 75% начального удлинения и 90% исходной ударной прочности после кипячения в воде в течение 15 суток. Полимер 5Р после (кипячения в воде содержит 3% воды и теряет 50% прочно сти. [c.190]


Смотреть страницы где упоминается термин Полиимид прочность: [c.33]    [c.138]    [c.140]    [c.21]    [c.569]    [c.120]    [c.412]    [c.190]   
Энциклопедия полимеров Том 3 (1977) -- [ c.3 , c.237 ]




ПОИСК





Смотрите так же термины и статьи:

Полиимиды

Полиимиды полиимиды



© 2024 chem21.info Реклама на сайте