Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аденин физ. свойства

    Получить такие мутации, как замена ОС-пар на АТ-пары, можно простым химическим способом, а именно обработав нх азотистой кислотой (НМОг), которая осуществляет дезаминирование аминогрупп до гидроксильных групп. При этом цитозин превращается в урацил, который спаривается уже не с О, а с А. Таким образом, происходит по существу простое замещение или транзиция (разд. Г, 1). Под влиянием азотистой кислоты аденин превращается в гипоксантин, который (подобно гуанину) имеет тенденцию спариваться не с Т, а с С. (Гуанин также можно превратить в ксантин, однако такая замена не оказывает, по-видимому, существенного влияния на спаривание.) Многие другие химические модификации оснований также мутагенны. Так, например, к атому углерода в шестом положении в пиримидинах может присоединяться гидроксиламин, обладающий слабыми мутагенными свойствами. К наиболее сильным мутагенам относятся алкилирующие агенты. Эти соединения независимо от того, действуют ли они по или [c.289]


    Выяснение молекулярной структуры генетического материала -ДНК - без сомнения стало одним из самых замечательных научных достижений XX в. Уотсон и Крик описали свое открытие так Мы хотим предложить структуру соли дезоксирибонуклеиновой кислоты (ДНК). Эта структура обладает весьма необычными свойствами, представляющими большой биологический интерес... Она образована двумя спиральными цепочками, закрученными вокруг общей оси... Обе спирали правые, но... последовательности атомов в них взаимно противоположны... Весьма интересен способ, с помощью которого цепочки удерживаются вместе... Пуриновые и пиримидиновые основания образуют пары, при этом пуриновое основание одной цепи соединяется водородными связями с пиримидиновым основанием другой... Если одно из оснований пары - это аденин, то... вторым основанием должен [c.45]

    Хотя не существует аминокислот, производных анилина, в биологических системах можно найти примеры расположения экзо-циклических аминогрупп на гетероциклическом ароматическом кольце. Наиболее известны пурины (аденин и гуанин) и пиримидин (цитозин). Их свойства обсуждаются в гл. 3. [c.41]

    Все оксипиримидины обнаруживают способность к про-тотропной таутомерии, заключающейся в миграции протона между структурами гидроксидиазина и кетоформы (лактим-лактамная таутомерия), причём для барбитуровой кислоты рентгеноструктурный анализ показ и преобладание трикето-формы (см. выше на примере формулы веронала). Анатогич-ное свойство характерно и для аминопиримидинов. Возможность существования этих производных пиримидина в кето-формах особенно существенна для проявления биологической активности так называемых пиримидиновых оснований нуклеиновых кислот - тгшина, урацила и цитозина, так как только в кето-форме возможно образование сильных водородных связей между остатками оснований в цепях нуклеиновых кислот (ти-мин - аденин и цитозин - гуанин в ДНК, урацил - аденин и цитозин гуанин в РНК)  [c.32]

    Аденин вместе с ксантином, гипоксантином и гуанином образуется при гидролизе нуклеиновых кислот (см. стр. 626). Пуриновые основания этой группы в значительных количествах содержатся во многих растениях—чае, свекловице, хмеле и т. д., в большом количестве находятся в дрожжах, встречаются в тканях животных организмов, а также в моче и гуано. Значительные количества гуанина находятся в рыбьей чешуе и коже рыб, пресмыкающихся и амфибий, своеобразный металлический блеск чешуи которых вызывается этим веществом. Аденин—кристаллическое вещество темп, плавл. около 360 °С обладает довольно сильными основными свойствами. Гуанин нерастворим в воде, с кислотами образует соли, которые легко гидролизуются. [c.622]


    Пурин и его алкил- п арилзамещенные являются весьма устойчивыми твердыми кристаллическими веществами со сравнительно невысокими температурами плавления и растворимостью от умеренной до высокой. Природные пурины, содержащие амино-и (или) оксогруппы (аденин, гуанин и т. д.), представляют собой кристаллические вещества с высокой температурой плавления и относительно нерастворимы, что затруднило их физико-химические исследования. Гуанин образует такие красивые кристаллы, что его применяли в композициях искусственного жемчуга (см. выше). Физические свойства и спектральные данные для некоторых важных пуринов приведены в табл. 17.5.1. [c.592]

    Аденин и гуанин представляют собой кристаллические соединения при нагревании выше 300° они разлагаются без плавления точно так же, как и оксипурины. Они трудно растворимы в воде в едких щелочах, с которыми они образуют соли, они растворимы легко. Группа N11 обусловливает, кроме того, и слабоосновные свойства. [c.772]

    Чтобы полнее представить себе биохимическое значение фосфора, а вместе с тем принципиально полнее осознать характеристику этого элемента, мы ие должны ограничиваться той стороной его химизма, которая полезна для жизненных процессов. Достаточно вспомнить ядовитые свойства фосфина или страшные нервные яды, получаемые на основе эфиров фосфорной кислоты. В равной степени можно сопоставить аденин и его роль в составе АТФ со свойствами ядовитой синильной кислоты, полимером которой он является. [c.349]

    Длинная цепь ДНК — это нить, в которой чередуются радикал фосфорной кислоты и группа сахаров к каждой из последних примыкает белковая группа, обозначенная на рис. 32, а буквами С (цитозин), А (аденин), О (гуанин), Т (тимин). Ионы натрия (или же какие-либо другие), располагаясь вблизи фосфорнокислого остатка, не связаны с ним каким-то определенным образом. Существуют только четыре различных типа боковых цепей, и ДНК разных видов отличаются только их относительными свойствами. Возможная модель структуры ДНК (модель Уотсона и Кирка) [c.67]

    Каким же образом связана структура нуклеиновых кислот с их функциями в наследственности Нуклеиновые кислоты контролируют наследование свойств на молекулярном уровне. Двойная спираль ДНК является хранилищем наследственной информации организма. Информация записана в виде последовательности оснований в полинуклеотидной цепи это сообщение, написанное при помощи алфавита, состоящего из четырех букв — А, Г, Т и Ц (аденин, гуанин, тимин и цитозин). [c.1064]

    Нуклеиновая кислота из тимуса оказалась устойчивой к щелочному гидролизу и структура нуклеозидов, получающихся из нее, была проанализирована, поэтому на 20 лет позднее. В то время Левин [10] определил входящий в их состав сахар как 2-дезокси-Д-рибозу и в результате этого объяснил ее необычное свойство восстанавливать окраску реагента Шиффа. Тимусная нуклеиновая кислота также дает четыре гетероциклических основания аденин, гуанин, цитозин и вместо урацила — тимин (7). Эти две отличительные черты (различие в природе сахарного остатка и замена урацила тимином) определяют различие между ДНК, которая, как полагали в то время, аналогично тимусной нуклеиновой кислоте, присуща животным, и РНК, которая, как полагали, является характерным компонентом растительных тканей. [c.34]

    Аденин с Си " образует комплекс СиЬ с = 8,53. Как видно, введение ЫНг-группы в пиримидиновое ядро пурина увеличивает электронодонорные свойства атомов азота имидазольного ядра. [c.181]

    Рибонуклеиновые кислоты клетки, построенные из одинаковых структурных элементов (аденина, гуанина, цитозина, урацила, рибозы и фосфорной кислоты) отличаются по своим физико-химическим свойствам, химическому строению и биологической роли, которую они выполняют в клетке. В настоящее время различают информационную РНК (и-РНК, стр. 344), растворимую или транспортную РНК (т-РНК, стр. 346) и рибосомную РНК (р-РНК, стр. 346). [c.61]

    Генетический код, ДНК как носитель наследственности предопределяет и свойства белков, синтезируемых в клетке. Иначе говоря, в ДНК закодированы свойства белков каждого вида микроорганизмов, т, е, присущая им специфичность. Особенности белков, их индивидуальные свойства находятся в зависимости от последовательности расположения аминокислот, входящих в состав пептидной цепи, которая в свою очередь предопределяется конкретным участком ДНК, состоящим из нескольких пар азотистых оснований, точнее — из нескольких нуклеотидов. То число нуклеотидов, от которых зависит включение при биосинтезе белка одной аминокислоты, получило название кодона. Один кодон содержит, как правило, три азотистых основания. Отсюда термин триплетный кодон, или триплет. Аденин, тимин, гуанин и цитозин — это азотистые основания, компоненты ДНК, из которых и состоят кодоны. Например, аденин, тимин, тимин (АТТ) аденин, цитозин, цитозин (АЦЦ) или — гуанин, аденин, цитозин (ГАЦ) и т. п. Кодоны, состоящие из трех азотистых оснований, способны обусловить включение всех 20 аминокислот, входящих в состав белков, в синтезируемый полипептид. Последовательный порядок триплетов ГНК предопределяет последовательный порядок аминокислот поли-пептидной цепочки. Если один триплет (кодон) обусловливает включение одной аминокислоты, тогда код называют невырожденным. Если же включение одной аминокислоты детерминировано несколькими кодонами, код называется вырожденным. [c.103]


    Все перечисленные свойства s-PHK свидетельствуют о сравнительной устойчивости вторичной структуры, включающей два комплементарных тяжа, соединенных водородными связями между аденином и урацилом и между гуанином и цитозином. Спиральное строение молекулы подтверждается данными рентгеноструктурного анализа [71, 72]. [c.58]

    Так как многие биохимические реакции протекают через стадию образования комплексов с переносом заряда, то следует отметить, что пурины являются хорошими донорами электронов, особенно гуанин. Энергия его высшей заполненной молекулярной орбитали имеет довольно высокое значение. Пурины и пиримидины обладают слабыми основными свойствами, что проявляется в биохимических процессах. Наибольшая основность у атома N. гуанина, Ы, и у азота аминогруппы аденина. [c.614]

    Этен-номенклатурное название С2Н4 его тривиальное название-этилен.) Соединения с циклическим расположением атомов, имеющие делокализованные, бензолоподобные кратные связи, называют ароматическими. Дакрон, нафталин, ДДТ, аденин и рибофлавин (см. рис. 21-1 и 21-3) содержат ароматические группы. На примере аденина и рибофлавина видно также, что углерод способен образовывать двойные связи с азотом и что азот может принимать участие в образовании ароматических циклов с делокализованными кратными связями. Многие разделы органической химии связаны с особыми свойствами систем, включающих ароматические циклы. Ароматические молекулы и комплексные соединения переходных металлов являются двумя важнейшими классами соединений, в которых энергия, необходимая для возбуждения электрона, приходится на видимую часть спектра. Поэтому практически все красители представляют собой такие соединения и принимают участие в механизмах захвата и переноса энергии фотонов. [c.270]

    ПУРИНОВЫЕ ОСНОВАНИЯ - бесцветные кристаллические вещества с высокой температурой плавления, малорастворимы в воде. П. о.— органические природные соединения, производные пурина, входят в состав нуклеиновых кислот, нуклеотидов, нуклеозидов и некоторых коферментов. Свободные П. о. найдены во многих растениях, в печени, крови, молоке, камнях мочевого пузыря, в рыбьей чешуе и др. Наиболее распространены аденин, гуанин, гипоксаптин. Конечным продуктом пуринового обмена у большинства животных является мочевая кислота. Химические свойства П. о. определяются, главным образом, заместителями в пуриновом ядре. П. о. получают из нуклеиновых кислот, нуклеотидов, нуклеозидов, а также синтетически. [c.206]

    Важным направлением биоэлектрохимических исследований является изучение свойств мембран с встроенными ферментными системами. Так, предприняты попытки встраивания в бислойные фосфолипидные мембраны компонентов ферментных систем, присутствующих во внутренней мембране митохондрий (никотинамид — аденин — динуклеотида (ЫАОН), флавинмононуклеотида и коэнзима Р,), а также хлорофилла. На таких мембранах при наличии в водном растворе окис-лительно-восстановительных систем генерируется мембранный потенциал, вызванный протеканием окислительно-восстановительных реакций на границе мембрана — электролит. В определенных условиях мембраны оказываются проницаемыми для электронов или протонов. Эти опыты важны для понимания механизма превращения энергии и переноса электронов в живых организмах. [c.141]

    Чем выше расположен верхний заполненный уровень (чем меньше значение его энергии со знаком плюс), тем легче отщепляется электрон, тем резче выражены электронодонорные функции основания. Чем ниже лежит нижний свободный уровень, тем отчетливее выражены электроноакцепторные свойства. Аденин н цитозин являются хорошими акцепторами электронов, но проявляют и донорные свойства — у гуанина наменьшее значение энергии верхнего заполненного уровня. Благодаря различию в донорно-акцепторных свойствах пуриновые и пиримидиновые основания способны взаимодействовать, образуя комплексы с переходом заряда. [c.350]

    Чтобы получить представления о суммарной (интегральной) комплексо-обр ующей способности нуклеиновых кислот, рассмотрим координационные свойства входящих в их состав фрагментов. В качестве стандартного иона возьмем Си . Важнейшими основаниями в составе нуклеиновой кислоты являются урацил (2,4-диоксипиримидин), цитозин (или 2-окси-4-аминопиримидин), тимин (2,4-диокси-5-метилпиримидин) — все три — производные пиримидина, а также аденин (6-аминопурин) и гуанин (2-амино-6-оксипурин) — оба производные пурина  [c.180]

    В широкой бороздке ДНК атомы N7 аденина и гуанина занимают эквивалентные положения, и водородные связи с этими атомами позволяют отличить пуриновые основания от пиримидиновых. Другим важным свойством является то, что как доноры, так и акцепторы водородных связей (аминогруппы аденина и цитозина, атомы 04 тимина и 06 гуанина соответственно) попарно занимают весьма близкие, хотя и неидентичные положения. Поэтому при взаимодействии гипотетической пары до-норной и акцепторных групп белка с упомянутыми выше группами оснований выполняются соотношения А Ц и Т Г. Это вырождение можно снять, если образуется дополнительная водородная свяэь с Н7-атомом пурина. [c.290]

    Позднее Роблин и другие [381] действием азотистой кислоты на соответствующие 5,6-диаминопиримидины синтезировали соединения этого ряда, аналогичные по структуре пуриновым производным—гуанину, аденину, ксантину и гипоксантину указанные вещества обладают бактериостатическими свойствами in vitro. [c.248]

    Пурин — водорастворимое твердое вещество, т. пл. 216 °С, проявляет свойства слабого основания (рКл=2,3) и слабой кислоты (р/ка=8,%). Аденин также раствортм в воде и обладает более высокой температурой плавления (352 °С). Гуаиин нерастворим в воде и большинстве органических растворителей, его температура плавления выше 350 °С. Аденин — сильное основание (р/ка=4,25), способен образовывать соли с минеральными кислотами по атому N-1. Протонирование гуанииа (р/ка=3,0) проходит по атому N-7. Оба соединения способны образовывать кристаллические пикраты. [c.306]

    Исследование оптических свойств полинуклеотидов также дало ряд интересных результатов. Согласно работе Фреско и Доти [981, полирибоадениливая кислота образует двухтяжевую спиральную структуру. Однако при нейтральном pH эта структура неустойчива и возникает, как показывают экспериментальные данные по ДОВ и гипохромизму [90], другая упорядоченная структура. В работах [81, 88] из анализа оптических свойств делается вывод, что нейтральная поли-А стабилизируется взаимодействиями между аденинами и образует одноцепочечную структуру. Холкомб и Тиноко [81] на основании измерения вязкости поли-А рассчитали персистентную длину в спиральной области, которая оказалась равной около 10 оснований или —34 А (персистентная длина двухтяжевой ДНК на порядок больше 400—450 А).  [c.191]

    Наиболее важное свойство определенных коферментов заключается в их способности к обратимому восстановлению. Варбург установил, что при этом происходит восстановление никотинамидного кольца никотинамид-аденин-динуклеотида. Восстановление НАД и НАДФ приводит к заметным изменениям в спектре поглощения этих веществ (см. фиг. 50). Эти изменения впервые наблюдал Варбург. Аналогичные спектральные изменения происходят, когда НАД участвует в реакциях присоединения. Так, цианид реагирует с НАД, образуя соединение с максимумом спектра поглощения при 327 ммк, который можно сравнить с максимумом восстановленного НАД при 340 ммк. Диоксиацетон реагирует с НАД, образуя соединение с максимумом спектра поглощения при 340 ммк. Никотинамидное кольцо может существовать как резонансная система с положитель- [c.61]

    Очевидно, что бактериальная клетка должна как-то защищать свою ДНК от воздействия собственной рестрикционной эндонуклеазы. Такую защиту обеспечивает метилирование или глюкозилирование определенных оснований ДНК, обычно аденина или цитозина. Этот процесс известен под названием модификации. Из него извлекают пользу также и фаги, размножающиеся в клетках определенного штамма бактерий. На фаговую ДНК при ее синтезе в клетках данного типа накладывается тот же отпечаток , что и на ДНК самой клетки в присутствии модифицирующего фермента фаговая ДНК видоизменяется таким же образом, как и ДНК хозяина. Она так же метилируется и приобретает свойства, запщщающие ее от воздействия рестрикционных ферментов данного штамма бактерий. [c.468]

    При помощи фермента полинуклеотидфосфорилазы (см. стр. 252) можно получить биосинтетические полирибонуклеотиды с некоторыми довольно интересными свойствами. Если в качестве субстрата используют аденозиндифосфат (АДФ), то образующийся полимер представляет собой рибополинуклеотид, содержащий только одно основание — аденин. Обычно он обозначается как поли-А. Таким же образом из субстрата УДФ можно получить лоли-У, а из эквимо.т1ярной смеси АДФ и УДФ — продукт поли-АУ. [c.55]

    Превраш ение НАД+в восстановленную форму [иногда обозначаемую как НАД-Н(+Н+)] сопровождается заметным изменением спектральных характеристик кофермента. НАД имеет максимум поглош ения около 260 ммк, причем поглощение является более слабым, чем общее поглощение аденина и никотинамида. В результате восстановления поглощение при 260 жмк значительно уменьшается и появляется новый максимум при 340 жмк, характерный для дигидроникотинамида. Изменение спектральных свойств часто используется для определения пиридиннуклеотид-зависимых ферментов. В реакциях окисления — восстановления принимает участие никотинамид-ный фрагмент этих коферментов. При восстановлении могут затрагиваться положения 2, 4 или 6 пиридинового цикла с образованием соответствующих дигидропроизводных (IX, X и XI)  [c.229]


Смотреть страницы где упоминается термин Аденин физ. свойства: [c.110]    [c.734]    [c.393]    [c.45]    [c.244]    [c.232]    [c.184]    [c.112]    [c.149]    [c.393]    [c.629]    [c.213]    [c.125]    [c.376]   
Общая органическая химия Том 8 (1985) -- [ c.592 ]

общая органическая химия Том 8 (1985) -- [ c.590 , c.592 ]




ПОИСК





Смотрите так же термины и статьи:

Аденин



© 2025 chem21.info Реклама на сайте