Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сгорание, эффективность

    История развития жидкостных ракетных двигателей в значительной мере представляет историю поисков и испытаний веществ, пригодных для сжигания в двигателе и обеспечивающих его эффективную работу. Топлива для жидкостных ракетных двигателей должны обеспечивать легкий запуск, устойчивое сгорание, эффективное [c.117]

    Это соотношение показывает, что тяга не зависит от температуры горения Гк, а зависит в основном от площади критического и выходного сечений сопла и давления в камере сгорания. Эффективная скорость истечения эфф дается соотношением [c.17]


    Промоторы воспламенения предназначены для ул)гч-шения воспламеняемости дизельных топлив в камере сгорания. Эффективность промоторов воспламенения оценивают по приросту цетановых чисел (ЦЧ). Для высокооборотных дизельных двигателей (автомобилей, тракторов, тепловозов) требуется топливо с цетановым числом в пределах 45—50. Дизельное топливо, получаемое прямой перегонкой нефти, обычно имеет ЦЧ = 45. Однако имеются нефти, из которых не удается получать дизельное топливо с высоким цетановым числом (например, из молодых нафтено-ароматических нефтей). Низкие цетановые характеристики имеют также дизельные топлива вторичного происхождения термического и каталитического крекинга, коксования и др. [c.937]

    Для контроля приработки трущихся поверхностей поршневых машин, например, в двигателе внутреннего сгорания, эффективным является метод сличения спектров вибрации. Суть этого метода состоит в том, что регистрируют виброакустические характеристики в области контролируемых трущихся поверхностей, регистрируют временную реализацию вибрации, спектр амплитуд, распределение по частоте и разброс амплитуд, а в качестве параметров характеристик определяют сужение спектра, уменьшение амплитуды и момент стабилизации спектра и разброса. [c.603]

    Во всех типах двигателей химическая энергия, заключенная в топливе, превращается в механическую в процессе сгорания. Эффективность использования энергии топлива зависит от того, насколько полно протекает процесс сгорания и как используется выделившееся при этом тепло. Процессу сгорания в двигателе обязательно предшествует испарение топлива и образование смеси паров топлива с кислородом в определенном соотношении. При полном сгорании углеводородных топлив получаются главным образом диоксид углерода и вода. Пользуясь элементарными реакциями сгорания [c.36]

    Заключительная третья фаза Эщ процесса сгорания представляет собой догорание смеси в пристеночных слоях. Эта фаза заканчивается в ходе расширения продуктов сгорания. Эффективность рабочего процесса в цилиндре двигателя во многом зависит от своевременности тепловыделения. Для достижения максимальной мощности и экономичности двигателя точки начала и конца фазы 0ц должны быть расположены примерно симметрично относительно в.м.т. Положение всех зон сгорания относительно в. м. т. регулируют, изменяя установку момента зажигания смеси. Угол в градусах поворота коленчатого вала от момента проскакивания искры в свече до в. м. т. называют углом опережения зажигания. Оптимальный угол опережения зажигания зависит от свойств топлива, конструктивных особенностей двигателя и режима его работы. Так, в современных двигателях со степенью сжатия 8—9 на режиме максимальной мощности угол опережения зажигания составляет 12—15°, а продолжительность фазы 0ц 25—30°. [c.101]


    Определение теплонапряженности камеры сгорания. Эффективность использования объема камеры сгорания определяется величиной удельной и объемной теплонапряженности [5 9]. Удельная теплонапряженность определяется количеством тепла, выделяемого при сгорании горючего в 1 ч в миделевом сечении камеры  [c.126]

    На рис. 7.4—7.8 представлены экспериментальные данные концентраций основных токсичных компонентов в продуктах сгорания, эффективного КПД и коэффициента избытка воздуха газового двигателя с открытой камерой, а на рис. 7.9-7.13 - полученные данные для предкамерного варианта исполнения. [c.322]

    История развития жидкостных ракетных двигателей в значительной мере представляет историю поисков и испытаний веществ, пригодных для сжигания в двигателе и обеспечивающих его эффективную работу. Топлива для жидкостных ракетных двигателей должны обеспечивать легкий запуск, устойчивое сгорание, эффективное охлаждение камеры сгорания, бесперебойную работу топливной системы, безопасность обращения с ними при хранении и транспортировке. Эффективность топлива в отношении обеспечения наиболее экономичной работы двигателя обычно оценивается величиной эффективной скорости истечения продуктов сгорания. [c.124]

    При испытаниях топливоиспользующих установок определяют состав сухих продуктов сгорания. На основе этих данных и состава топлива подсчитывают объем сухих и влажных продуктов сгорания, используемый для определения тепла Продуктов сгорания, потерь тепла с уходящими газами и вследствие неполноты сгорания, эффективности использования топлива и других целей. Объем продуктов сгорания подсчитывают по содержанию углерода в продуктах сгорания и в сжигаемом топливе, причем следует иметь в виду, что при проведении большинства испытаний установок, работающих на твердом и жидком топливе, ограничиваются определением содержания в топливе золы и влаги, а содержание углерода в горк>чей массе топлива принимают по усредненным табулированным данным. [c.53]

    Выделение тепла при сгорании 1 моля углеводородов повышается с увеличением их молекулярной массы, для жидких углеводородов оно будет иметь приблизительно постоянное значение 44,4 кДж/г. Однако это не означает, что все углеводороды являются хорошим топливом для двигателя внутреннего сгорания. Эффективность, с которой тепло может быть преобразовано в механическую работу двигателя, определяется скоростью распространения пламени. Углеводороды с различной молекулярной структурой отличаются характером горения в двигателе. [c.205]

    Двухкомпонентные топлива состоят из двух раздельно подаваемых в камеру сгорания двигателя компонентов горючего и окислителя. Топлива этого класса наиболее широко используются, так как раздельное хранение горючего и окислителя в отдельных баках намного уменьшают опасность взрывов и облегчает условия эксплуатации, хранения и транспортировки топлива. Кроме того, применение двухкомпонентных топлив значительно расширяет возможности выбора веществ, пригодных для использования в качестве горючего и окислителя, что позволяет создать наиболее эффективные топливные смеси. [c.116]

    Спирты нашли применение в качестве горючего для жидкостных ракетных двигателей в сочетании с такими окислителями, как жидкий кислород и перекись водорода. Обладая значительно меньшей теплотворностью по сравнению с углеводородами, спирты намного уступают им по эффективности сгорания в жидкостных ракетных двигателях. [c.122]

    И. Какая масса карбоната кальция потребуется для удаления 50г, образующегося при сгорании нефти массой ] т с массовой долей в ней серы 1,7%. Предположим, что эффективность улавливания ЗОа составляет 22%. [c.38]

    Нагар, отлагаясь в двигателе, ухудшает эффективность сгорания топлива, а в случае затухания пламени при наличии нагара процесс [c.32]

    Бензиновые двигатели новых автомобилей питаются бензином реформинга. Такой бензин американского или европейского производства, обычно содержит около 15% окислителей, которые выделяют кислород и способствуют более полному сгоранию бензина. Однако кислород такого бензина также окисляет и масло. Поэтому новые масла должны иметь более эффективные противоокислительные и моющие присадки, способствующие уменьшению образования осадка, лака, смолистых отложений и шлама. [c.104]

    Негативное влияние химических токсических веществ на экологическую обстановку в регионах с развитой индустрией может быть ослаблено химическими методами эффективная очистка выбросов, разработка биологически разлагаемых ПАВ и химических продуктов, топлив для двигателей внутреннего сгорания с пониженным содержанием ароматических углеводородов и тетраэтилсвинца. [c.8]


    Высокая эффективность процесса сгорания, выражающаяся в максимальном к.п.д. двигателя, достигается при оптимальном сочетании его конструктивных параметров и физико-химических свойств горючего. [c.149]

    Эффективность рабочего процесса в цилиндре двигателя определяется общей полнотой сгорания и скоростью этого процесса. [c.149]

    В случае хорошо организованного рабочего процесса при работе двигателя на полной нагрузке в течение первой фазы 0i выделяется примерно 7з от общей теплоты сгорания топлива, вводимого в цилиндр за цикл коэффициент активного тепловыделения при этом составляет 0,3. К моменту окончания второй фазы 9ц указанный коэффициент достигает 0,7—0,8. Наблюдаемое постепенное замедление скорости тепловыделения в третьей фазе бщ связано с такими неблагоприятными факторами, как уменьшение концентрации кислорода, разбавление смеси топлива с воздухом продуктами сгорания, прогрессирующее увеличение объема камеры, снижение температуры и давления. Продолжительность фазы догорания 9ш может соответствовать 70— 80° ПКВ от в.м.т. При увеличении доли тепловыделения в фазе 0т сильно снижается эффективность использования выделяющейся теплоты, уменьшается топливная экономичность двигателя и повышается температура газов на выпуске. [c.158]

    Рабочий процесс в ГТД. Как и в поршневом двигателе, в ГТД для повышения эффективности рабочего процесса воздух или топливо-воздушную смесь до начала горения необходимо подвергать сжатию. Однако если в поршневом двигателе в силу периодичности рабочего процесса все циклы образования рабочего тела, в том числе и сжатие, протекают в цилиндре, то в ГТД это оказывается неприемлемым. Поэтому ГТД кроме газовой турбины имеет компрессор, который давление забираемого из атмосферы воздуха повышает в 5, 10, 20 и более раз, и камеру сгорания, где воздух, поступающий от компрессора, нагревается за счет сгорания топлива. [c.160]

    Эффективность применения металлоорганических антидетонаторов зависит не только от их состава (металл и органическая часть), но и от решения ряда проблем, связанных с образованием неорганических продуктов сгорания антидетонатора. При сгорании бензина с добавкой только алкилов свинца образуются отложения, состоящие главным образом. из оксидов свинца. [c.173]

    Необходимость поиска специальных добавок подобного назначения определяется прежде всего тем, что известные антифрикционные присадки не эффективны при высоких рабочих температурах, характерных, в частности, для двигателей внутреннего сгорания, а широко используемые в моторных маслах противоизносные присадки, например дитиофосфаты цинка, не проявляют антифрикционных свойств. [c.264]

    Эффективность сгорания всех предлагавшихся топлив приблизительно одинакова, если только повышение температуры при сгорании достаточно велико. Если температура повышается не очень существенно, то более эффективным оказывается использование более летучих топлив [374]. [c.447]

    При выборе основных параметров технологаческого режима работы регенератора надо иметь в виду, что температура процесса регенерации, количество воздуха, подаваемого на регенерацию катализатора, содержание кислорода в дымовых газах и остаточного кокса на регенерированном катализаторе — взаимозависимые параметры. С понижением температуры и содержания кислорода в продуктах сгорания уменьшается вероятность самопроизвольного сгорания СО в СО2, но при этом появляется опасность накопления остаточного кокса на катализаторе, тем самым снижается глубина выжига. При повышении температуры регенерации увеличиваются глубина выжига кокса и производительность регенератора по количеству сжигаемого кокса, но не исключается возможность массового догорания окиси углерода, что может резко поднять температуру в регенераторе. Вода или водяной пар, впрыскиваемые в верхнюю зону регенератора для снижения температуры процесса, могут вызвать значительную перегрузку циклонов, снизить эффективность их работы и пропускную способность регенератора. [c.34]

    Для повышения эффективности внешнего охлаждения (через стенку цилиндров) осуществлено высокотемпературное охлаждение цилиндров (ВТО). Такие системы охлаждения в свое время применяли в некоторых транспортных установках с поршневыми двигателями внутреннего сгорания. [c.225]

    Эффективным средством увеличения наддува, предотвращения детонационного сгорания газа и снижения интенсивности нагарообразования в ГМК является искусственное охлаждение наддувочного воздуха. Практически это может быть осуществлено впрыскиванием воды (конденсата) в различные элементы всасывающей системы моторных цилиндров ГМК. [c.229]

    При втором выключении подачи воды (точка б на кривой 7) на более короткий промежуток времени температура стенки повысилась до 150°С, а при включении подачи воды температура стенки снизилась до 23,5°С и в дальнейшем оставалась постоянной. Контрольная проверка подтвердила высокую эффективность охлаждения камеры сгорания двигателя и снижения нагарообразования при испарительном охлаждении впрыскиванием воды в поток воздуха. [c.277]

    Обращает на себя внимание высокая эффективность этилового спирта как средства, удаляющего нагар в камере сгорания. [c.282]

    В качестве горючего для ЖРД может быть использован жидкий аммиак. Очень выгодно применять жидкий аммиак в сочетании с жидким фтором. Такое топливо дает возможность получить высокую удельную тягу двигателя (340—350 кг-сек1кГ). Выигрыш в эффективности при использовании аммиака как горючего связан с лучшими термодинамическими свойствами продуктов сгорания топлива (малый молекулярный вес, значительное содержание Двухатом ного газа). [c.123]

    Нагреватель расплава представляет собой трубчатый котел, нагрев теплоносителя в котором осуществляется за счет тепла сгорания газообразного или жидкого топлива. Котел состоит из топки с соответствующей горелкой и из трубчатки, в которой продукты сгорания проходят либо по трубкам, а расплавы в межтрубном пространстве (котел с дымогарнымц трубками), либо наоборот водотрубный котел). Котел второго типа обеспечивает более соверщенную циркуляцию и, следовательно, является более эффективным вместе с тем котел первого типа более прост. [c.326]

    Детергенты (detergents) являются поверхностно-активными веществами, обладающими моющими свойствами, защищающими поверхность деталей от прилипания и скопления на них продуктов окисления. Анионными детергентами обычно бывают маслорастворимые алкилбензолсульфонаты, фосфонаты и другие аналогичные соединения. Некоторые сульфонаты имеют щелочные свойства и являются эффективными нейтрализаторами кислых продуктов окисления. По щелочности, которая характеризует эффективность присадок, сульфонаты делятся на нейтральные (10-30 мг КОН/г), щелочные (30- 100 мг КОН/г), и очень щелочные (100 - 300 мг КОН/г). В состав очень щелочных присадок могут входить диспергированные окиси, гидроокиси и карбонаты металлов. Щелочные присадки необходимы в маслах для дизелей, с целью нейтрализации серной кислоты, которая образуется при сгорании сернистого дизельного топлива. [c.32]

    Эффективность работы регенератора оценивается рядом показателей. К ним относятся степень снижения содержания кокса на катализаторе, удельный расход воздуха, абсолютное количество сжигаемого в единицу времени кокса, процентное содержание гаслорода в продуктах сгорания. Кроме того, нередко подсчитывают скорость выжига кокса — число килограммов сожженного кокса в час на один килограмм находящегося в регенераторе катализатора. Так, например, если количество сожженного кокса составляет 4000 кг/час и в регенераторе находится 40 т катализатора, то скорость выжига кокса равна 4000 40000 = = 0,10 кг чае Численные значения этого показателя весьма различны, что объясняется многообразием условий эксплуатации регенераторов и использованием катализаторов разной регенери-руемости и активности. При проектировании регенератора одной из крекинг-установок флюид (построена до 1945 г.) скорость выжига была принята равной 0,03 кг час кг. В результате обследования работы двух Других промышленных установок было найдено, что этот показатель изменялся для одного регенератора от 0,11 до 0,14, а для другого от 0,14 до 0,18 [186, 187]. Эти обследования были предприняты в связи с переводом крекинг-установок на работу с катализаторами, содержащими повышенное количество алюминия. [c.161]

    ДВС различаются также по применяемому топливу, способу смесеобразования, принципам регулирования, эффективности, составу отработавщих газов и другим параметрам. По-разному протекают в них и процессы сгорания топлив. Вместе с тем этим процессам присущи и общие закономерности. [c.147]

    На эффективность процесса сгорания существенно влияют состав смеси (коэффициент избытка воздуха а), нагрузка двигателя, степень сжатия, частота вращения коленчатого вала, а также форма камеры сгорания. Минимальные значения ф , 01, 02 и максимальные Рг достигаются при а= 0,85 0,9,. при котором наблюдаются наибольшие скорости распространения пламени и интенсивность тепловыделения, а следовательно, и наибольшая мощность, развиваемая двигателем. Такой состав смеси называется мощностным. При а> >,0,9 возрастает Ог, 02 изменяется незначительно, но максимальное давление Рг снижается в связи с меньшим энерговыделением при сгорании смеси. Соответственно уменьшается значение с1Р1с1(р. [c.150]

    В этом случае свечу устанавливают в небольшой форкамере, снабженной дополнительным клапаном, через который камеру продувают сильно обогащенной смесью состава Ог- В основную камеру подается обедненная смесь состава аь которая воспламеняется факелами пламенных газов, обогащенных активными продуктами неполного сгорания, выбрасываемыми из сопловых отверстий форкамеры. Это позволяет эффективно использовать на 1 астичных нагрузках рабочие смеси, обедненные до а>1,5, что приводит к резкому снижению содержания СО и углеводородов в отработавших газах. [c.155]

    При рассмотрении влияния турбулентности потока на скорость сгорания учитывают масштаб турбулентности I, коэффициент турбулентного обмена -е и пульсационную скорость V. Масштаб турбулентности или путь перемешивания отождествляется с объемом газа, в котором в данный отрезок времени все частицы обладают одинаковой скоростью движения. Величину I можно также интерпретировать как средний диаметр вихря. Коэффициент турбулентного обмена является своего рода эффективным коэффициентом диффузии. Отдельные объемы газа кроме средней скорости потока обладают неупорядоченными, быстро меняюшимися дополнитель-ными скоростями V (пуль- I сационными скоростями).  [c.165]

    Рассмотрим этот вопрос на конкретных примерах. При исследовании пусковых свойств масел для роторно-поршневых двигателей [6] установлено, что пусковые обороты двигателя изменяются обратно пропорционально вязкости масла в картере и не зависят от вязкости масла, поступающего в камеру сгорания в смеси с топливом. Поэтому желательно, чтобы масло, предназначенное для роторно-иоршневых двигателей, обладало сравнительно невысокой вязкостью, так как в этом случае пусковые обороты двигателя будут большими, а это облегчает запуск двигателя. В то же время масло, поступающее с топливом, по возможности должно быть более вязким, что обеспечивает лучшее уплотнение ротора в трохоиде, а это в свою очередь способствует повышению эффективности работы двигателя. [c.34]

    Для сукцинимидов и присадок на основе сополимерпых соединений характерна способность сохранять эффективность действия в присутствии воды это вызывает снижение образования низкотемпературных отложений в двигателях внутреннего сгорания. При введении беззолшых моющих присадок уменьшается опасность нагарообразования в камере сгорания бензиновых двигателей и связанного с этим преждевременного самовоспламенения рабочей смеси. [c.158]

    Эффективность работы регенератора обычно оценивается рядом показателей. К ним относятся глубина и интенсивность выжига кокса, удельный расход воздуха на регенерацию катализатора, соотношение концентраций оксидов углерода в продуктах сгорания. При проектировании регенератора необходимо предусмотреть элективную систему регулирования отвода теплоты, рыделяющейся в результате регенерации катализатора. [c.33]

    Эффективность охлаждения горючей смеси и продуктов сгорания впрыскиванием воды определяется полнотой ее испарения во всасывающей системе и полости цилиндра за счет теплосодержания горючей смеси и продуктов сгорания. Неиспарившаяся вода во всасывающей системе поступает в полость цилиндров двигателя, где за счет большого теплового напора испаряется, способствуя снижению температуры деталей образовавшийся водяной пар оказывает дополнительное антидетонаци-онное действие. [c.54]

    В настоящее время на компрессорных станциях (КС), снабженных порщневымн газоперекачивающими агрегатами (ПГПА), применяются системы водяного охлаждения, в которых в качестве теплорассеивающих устройств используют различные конструкции градирень или брызгательные бассейны. Это громоздкие дорогостоящие агрегаты, характеризуемые большими необратимыми потерями охлаждающей воды и не отличающиеся высокой эффективностью отвода тепла (через стенку цилиндра) от деталей газомотокомпрессоров (ГМК), подверженных воздействию продуктов сгорания высокой температуры. [c.225]

    Двухступенчатая циклонная печь, разработанная ВНИИПК-нефтехимом, отличается от обычных циклонных топок раздельным сжиганием в разных камерах подсвечивающего топлива и токсичных газов. Это позволяет полностью сжечь подсвечивающее топливо в оптимальных условиях, обеспечить наличие высокотемпературных центров воспламенения, создать оптимальные условия для эффективного тепло- и массообмена (рис. 89). В первой ступени печи циклонно-вихревым способом сжигается топливо. Через пережим 6 продукты сгорания (1700—1900 °С) поступают во вторую ступень, куда через тангенциальные сопла подаются газы окисления. Эти газы попадают в кольцевое пространство между раскаленной футеровкой и высокотемпературным потоком продуктов сгорания из первой ступени. Как отмечают разработчики, содержание остаточных органических веществ в отходящих из печи газах соответствует ПДК для территории нефтеперерабатывающих заводов, и эти газы меньше загрязняют атмосферу, чем дымовые газы ряда паровых котлов ТЭЦ (где допускается химический недожог топлива до 100 мг органических веществ на 1 м дымовых газов) [211]. [c.144]


Смотреть страницы где упоминается термин Сгорание, эффективность: [c.38]    [c.369]    [c.118]    [c.151]    [c.289]    [c.165]   
Химия технология и расчет процессов синтеза моторных топлив (1955) -- [ c.90 ]




ПОИСК







© 2025 chem21.info Реклама на сайте