Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность, напряжение раздела

    Снижение структурной прочности, а также увеличение выхода мелких классов при испытании коксобрикетов в барабане, полученных при конечных температурах нагрева свыше 973 К, в значительной степени связаны с наличием в них зерен антрацита. Вследствие различий в градиентах скорости усадки антрацита и кокса, образовавшегося из жирного угля и крекинг-остатка, на поверхности их раздела возникают внутренние напряжения, приводящие к выкрашиванию зерен антрацита с поверхности брикетов. Подобное явление наблюдалось также при интенсивном охлаждении горячих брикетов водой. [c.108]


    Дроблению капли предшествует значительная деформация поверхности капли. Эта деформация вызывается воздействием на поверхность напряжений со стороны внешнего и внутреннего течений, для чего нужны значительные градиенты скоростей и динамических напоров. В ламинарном потоке градиенты скорости возникают при течении возле стенок, поэтому основное дробление капель наблюдается в пристеночной области, где течение носит сдвиговый характер. В турбулентном потоке градиенты скорости возникают в окрестности капель при обтекании их мелкомасштабными пульсациями. Поэтому размер капель, которые могут дробиться в турбулентном потоке, меньше, чем в ламинарном потоке. В дальнейшем для простоты будем считать, что критический размер капель [см. формулу (14.14)] разделяет капли на дробящиеся iR > i ) и не дробящиеся iR[c.387]

    Существует также метод электролитического фторирования фтористоводородной кислотой функциональных соединений (кислот, спиртов, аминов) или высших (малолетучих) углеводородов реакция протекает на поверхности никелевого анода. Напряжение (5—6 a) меньше, чем требуется для образований фтора, поэтому нет необходимости разделять анодное и катодное пространства. Этим методом получают насыщенные фторпроизводные. [c.274]

    Действительно, все без исключения горные породы находятся в дисперсном состоянии, т. е. имеют большую удельную поверхность, образованную внутренними границами раздела между фазами одинакового или разного состава, и практически всегда подвержены совместному действию механических напряжений и жидких сред, обязательным компонентом которых является вода. При этом существенно, что ни высокая растворимость породообразующих минералов, ни значительные количества жидкой фазы не обязательны для проявления механических эффектов, обусловленных взаимодействиями воды с поверхностью пород. Это резко расширяет круг геологических ситуаций, в которых вода, в принципе, может выступать в качестве активного участника прежде всего к ним относятся [c.84]

    Для объяснения структурных особенностей тонких прослоек воды, ограниченных монослоями диполей, привлекается нелокальная электростатика (раздел 9). Этот подход учитывает не-локальность действия на среду электрического поля, а именно влияние на состояние диэлектрика напряженности электрического поля не только в данной точке, но и в ее окрестности. Этот эффект оказывается особенно значительным в случае воды в тонких прослойках, вызывая появление в них сил отталкивания гидрофильных поверхностей (структурные силы). Их действием удается количественно объяснить устойчивость тонких слоев воды между бислоями липидов, являющихся физической моделью биологических мембран. [c.117]


    По мере движения воздуха в порах обезвоживаемого осадка происходит изменение поверхности раздела между воздухом и жидкостью, что сопровождается возникновением напряжений в осадке с возможным образованием в нем треш,ин. При появлении трещин для воздуха открываются пути с пониженным гидравлическим сопротивлением, что в общем приводит к возрастанию объема продуваемого воздуха, увеличению продолжительности обезвоживания и повышению конечного содержания влаги в осадке. При продувке осадка воздухом затруднительно полностью исключить их образование и достоверно предсказать их появление, например на основе эмпирических зависимостей, ввиду сложности действующих при этом факторов. Далее кратко изложены результаты исследования роли внутренних напряжений в осадке на образование трещин [319]. [c.285]

    В качестве потоков принято /р = Т1 —поток вязких напряжений J = f 2)ir) — поток силы механического взаимодействия между фазами (вектор) (г) = .а—поток тепла от 1-й фазы к поверхности раздела фаз (/ = 1, г) /п= 1з( ) — поток тепла от несущей [c.62]

    Вопрос о влиянии скорости пара на теплообмен при конденсации на вертикальной охлаждаемой стенке впервые теоретически был исследован Нуссельтом. Задачу решали для случая ламинарного течения пленки конденсата в предположении постоянства скорости парового потока вдоль поверхности конденсации, что позволило пренебречь падением давления на поверхности и внутри слоя пленки, а также изменением касательного напряжения трения на границе раздела фаз в направлении парового потока. При выводе расчетных зависимостей Нуссельт исходил также из постоянства коэффициента трения между паром и пленкой конденсата (С/п = 0,00515) и не учитывал влияние поперечного потока массы-конденсирующегося пара на изменение касательного напряжения. В результате была получена следующая зависимость для отношения коэффициентов теплоотдачи при движущемся и неподвижном паре  [c.133]

    Выполненный Берманом [19] теоретический анализ показал, что для случая, когда падением давления и изменением касательного напряжения на границе раздела фаз вдоль поверхности конденсации нельзя пренебрегать, отношение осш/ан может быть определено как [c.134]

    Выражение (4.45) справедливо лишь для локальных значений аю и Кн и получено без учета зависимости касательного напряжения трения на поверхности раздела жидкой и паровой ф-аз от плотности поперечного потока массы конденсирующегося пара. [c.134]

    Рассмотрим составляющие правой части уравнений сохранения количества движения (1.22) и (1.23). Первые члены — внешние массовые силы единичного объема вторые — силы вязкого трения, действующие по поверхности раздела фаз и, согласно третьему закону Ньютона, имеющие- одинаковые абсолютные величины, но разные знаки третьи — описывают силовое воздействие градиента давления (принятое выражение — силы Архимеда) на сплошную и дисперсную фазы четвертые — характеризуют внутренние напряжения в сплошной и дисперсной фазах. [c.14]

    Вертикальная пластина. Для ламинарного потока и касательных напряжений на границе раздела, равных пулю (т/ =0), локальный коэффициент теплоотдачи а (г) на расстоянии г ло поверхности от начала пленочного кипения равен [c.400]

    Диаграмма напряжение деформация. Два важных типа кривых нагрузка — растяжение представлены на рис. 1 и 2. Такого рода кривые получаются при приложении плавно возрастающей растягивающей нагрузки к стандартному образцу (рис. 3). Для каждого данного значения нагрузки растяжение (удлинение) образца измеряется но положению контрольных меток, нанесенных на гладкую поверхность этого образца. Нагрузку можно пересчитать на напряжения, если разделить ее значение на площадь сечения, соответствующую данному значению нагрузки. Что касается удлинения, то его можно пересчитать в деформацию, которая характеризуется одной величиной только в том случае, если деформация однородна вдоль и поперек образца. [c.197]

    Другой подход к измерению поляризации — определение потенциалов при разных расстояниях от носика до В с последующей экстраполяцией до нулевого расстояния. Как показано в разделе 4.4, подобная поправка необходима только при. измерениях, требующих большой точности, а также при необычно высоких плотностях тока или при необычно низкой проводимости электролита, например в дистиллированной воде. Однако эта поправка не учитывает возможной ошибки из-за высокого сопротивления пленки продуктов реакции, которой может быть покрыта поверхность электрода. Предложен специальный электрический контур для электролитов с высоким сопротивлением. Он позволяет измерять потенциал с поправками на падение напряжения в электролите и в электродных поверхностях пленках. [c.50]


    Фреттинг-коррозия — еще одно следствие механических напряжений, которое может приводить к усталостному или коррозионно-усталостному разрушению металла. Это разрушение происходит на поверхности раздела двух контактирующих друг с другом тел, причем оба (или одно из них) металлические и слегка скользят друг относительно друга. Скольжение обычно имеет колебательный характер, например при вибрации. Продолжительное скольжение, когда один ролик вращается несколько быстрее контактирующего с ним, приводит к аналогичному разрушению. К тому же типу разрушения относятся коррозионный износ и окисление при трении. [c.164]

    Прибор, используемый в исследованиях, которые проводят с помощью первого метода, состоит из стеклянной и-образной трубки, в открытые концы которой помещены платиновые электроды. Трубку заполняют эмульсией М/В ниже края каждого электрода, а затем вводят достаточное количество дистиллированной воды с тем, чтобы покрыть их. К электродам подводят постоянный ток и измеряют скорость, с которой поверхность раздела вода — эмульсия движется в верхнюю часть одного из лимбов и-образной трубки. Поток можно направить в противоположную сторону и изучать скорость движения в другом лимбе. Измерения проводят при различных напряжениях, подтверждая, что скорость не зависит от подаваемого потенциала. [c.160]

    Во многих случаях требуется улучшить адгезию вяжущего к поверхности обрабатываемых им материалов и тем самым повысить качество и продлить срок службы дорожных конструкций. Для этой цели вводят в битум или наносят на поверхность обрабатываемых минералов различные ПАВ или ПАВ-содержащие продукты. Снижая напряжение на границе раздела битум - минерал, такие добавки способствуют лучшему обволакиванию зерен каменного материала вяжущим, облегчая приготовление горячих и холодных битумоминеральных смесей и повышая прочность, водоустойчивость и долговечность дорожных покрытий. Адгезионные присадки не только препятствуют смыванию битума с поверхности материала, но и придают вяжущему способность вытеснять с поверхности пленку воды, делая поверхность олеофильной. [c.48]

    Название данного раздела соответствует очень эффективной модели простой поверхности ослабления , предложенной Смитом [41]. Эта модель опирается на рассмотрение вязкоупругого поведения сплошных полимерных тел, т. е. на представление, которое должно сводиться согласно принципу температурно-временной суперпозиции внешних параметров нагружения-напряжения, скорости деформации и температуры к соответствующим молекулярным состояниям. Если критерий разрушения действительно имеет единые пределы молекулярной работоспособности, то построенные кривые приведенного напряжения Б зависимости от деформации при разрушении в различных экспериментальных условиях должны ложиться на одну обобщающую кривую (рис. 3.6). Эта концепция справедлива применительно к большому числу натуральных и синтетических каучуков и вулканизатов при однотипных механических йены- [c.73]

    В предыдущем разделе было показано, что увеличение коэффициента интенсивности напряжений или С путем вынужденного расширения трещин способствует их росту с докритической скоростью (рис. 9.6 и 9.7). Так как сопротивление материала распространению трещины / растет с увеличением а, то новое равновесие между О и / может быть получено вслед за любым изменением Съ Однако если непрерывно возрастает в зависимости от /Сь то достигается точка нестабильного роста трещины. Нестабильность может характеризоваться тем, что в этой точке сопротивление материала Я а), согласно уравнению (9.13), недостаточно чувствительно к скорости, чтобы компенсировать рост Сх. Следовательно, ускорение роста трещины происходит до такого значения ее скорости, при котором следует учитывать силы инерции и конечную скорость Ve распространения упругих волн [67, 181 —182]. До тех пор вкладом в Я кинетической энергии отступающих поверхностей разрушения пренебрегают. В точке начала нестабильного роста трещины в ПММА со скоростью - 0,1 м/с вклад кинетической энергии равен 6 Дж/м . При таких скоростях этот вклад представляет незначительную часть средней плотности энергии деформации, [c.359]

    До сих пор мы рассматривали процессы дробления капель, которые приводят к образованию мелкодисперсной составляющей водонефтяной эмульсии. Однако мелкие капли могут образовываться не только при дроблении капель, но и при их коалесценции. Было экспериментально установлено, что одиночная капля может коалесцировать на плоской поверхности межфазного раздела в несколько этапов, на каждом из которых образуется более мелкая (по сравнению с коалесцирую-щей) капелька-сателлит. В работе 196] наблюдалось до вo ь ш последовательных этапов коалесценции. В работе 197] авторы описывают экспериментальные наблюдения, доказывающие образование мелкодисперсных сателлитов при коалесценции отдельных капель дисперсной фазы. Если коалесценция идет в электрическом поле с напряженностью несколько десятков вольт на 1 см и более, мелкодисперсные сателлиты не образуются. Этот интересный факт подробно исследовался в работах [96—99]. [c.80]

    В качестве обобщающей характеристики удельной силы механического взаимодействи5 фаз будем рассматривать осредненные по поверхности их раздела напряжения /, представляющие собой сумму осредненных по поверхности касательных т- и нормальных O напряжений, т. е.  [c.17]

    При стекании пленки жидкости по внутренней поверхности вертикальной трубы, по которой противотоком к жидкости, т. е. снизу вверх, движется поток газа (пара), скорость пленки и ее толщина не зависят от скорости газа до тех пор, пока эта скорость достаточно мала. В данном случае касательное напряжение в пленке максимально у твердой стенки и уменьшается до нуля на свободной поверхности. Однако с возрастанием скорости газа сила его трения о поверхность жидкости увеличивается. Как в газе, так и в жидкости у поверхности их раздела возникают равные, но противоположные по направлению касательные напряжения. При этом движение жидкой пленки начинает тормозиться, причем ее толщина увеличивается, средняя скорость снижается, а гидравлическое сопротивление аппарата газовому потоку возрастает. При определенной скорости газа ( 5—10 м1сек) достигается равновесие между силой тяжести, под действием которой движется пленка, и силой трения у поверхности пленки, тормозящей ее движение. Это приводит к захлебыванию аппарата наступление захлебывания сопровождается накоплением жидкости в аппарате, началом ее выброса и резким возрастанием гидравлического сопротивления. Противоточное движение взаимодействующих фаз при скоростях выше точки захлебывания невозможно. Поэтому точка захлебывания соответствует верхнему пределу скорости для противо-точных процессов в аппаратах любых типов. [c.116]

    При стекании пленки жидкости по внутренней поверхности вертикальной трубы, по которой противотоком к жидкости, т. е. снизу вверх, движется поток газа (пара), скорость пленки и ее толщина не зависят от скорости газа до тех пор, пока эта скорость достаточно мала. В данном случае касательное напряжение в пленке максимально у твердой стенки и уменьшается до нуля на свободной поверхности. Однако с возрастанием скорости газа сила его трения о поверхность жидкости увеличивается. Как в газе, так и в жидкости у поверхности их раздела возникают касательные напряжения, равные по величине, но противоположные по знаку. При этом движение жидкой пленки начинает тормозиться, причем ее толщина увеличивается, средняя скорость снижается, а гидравлическое сопротивление аппарата газовому потоку возрастает. При определенной скорости газа ( 5— 0 м/сек) достигается равновесие между силой тяжести, под действием которой движется пленка, и силой трения у поверхности пленки, тормозящей ее движение. Это приводит к захлебыванию аппарата наступление захлебывания сопровождается накоплени- [c.119]

    Близ тонкого сплошного или пористого электрода электриче-кой системы рис. III. 5 происходит интенсивное поглощение лектромагнитной энергии поля определенной напряженности и астоты. Степень поглощения зависит от величины скачка по-енциалов, который обусловливает величину дополнительной по-1яризации частиц жидкого тела, зависящую также от строения юлекул и состава раствора. Эти частицы (молекулы) образуют истему мономолекулярных слоев, прочно связанных электриче-кими силами ближнего порядка. Такая молекулярная система )бладает гораздо большей инерционностью, чем отдельные мо-1екулы (ассоциации молекул), находящиеся вдали от поверхно- ти раздела, и, следовательно, имеет свою собственную частоту [c.63]

    Состояние вещества на границе раздела фаз. Все жидкости и твердые тела ограничены внешней поверхностью, на которой онн соприкасаются с фазами другого состаЕа и структуры, например, с паром, другой жидкостью или твердым телом. Свойства вещества в этой межфазной поверхности, толщиной в несколько поперечни.-ксв атомов или молекул, отличаются от свойств внутри объема фазы. Внутри объема чистого вещества в твердом, жидком илн газообразном состоянии любая молекула окружена себе подобными молекулами. В пограничном слое молекулы находятся во взаимодействии или с разным числом молекул (например, на границе жидкости или твердого тела с их паром) или с молекулами различной химической природы (иапример, на границе двух взаимно малорастворимых жидкостей). Чем больше различие в напряженности межмолекулярных сил, действующих в каждой из фйз, тем больше потенциальная энергия межфазовой поверхности, кратко называемая поверхностной энергией. [c.310]

    Поток импульса через границу раздела фаз (ПИ1 2) в каждой точке поверхности является векторной суммой двух соста-вляюш их потока импульса сил, нормальных к поверхности раздела (ПИ ), и потока импульса сил, касательных (тангенциальных) к поверхности (ПИ ), которые ответственны за генерацию (дуга 38) циркуляционных токов внутри включения (ЦТз). Циркуляционные токи интенсифицируют (дуга 39) процессы массо- и теплоотдачи в элементе дисперсной фазы. Нормальные и касательные напряжения на границе раздела фаз переориентируют включение в пространстве, изменяя (дуги 35, 36) траекторию его движения (ИТР2), а также деформируют (дуги 34, 37) поверхность раздела фаз (ДГРФ). [c.28]

    В. И. Касаточкина, который рассматривает графитацию как гомогенный процесс. Положения о фазовых состояниях гомогенной системы были развиты В. А. Каргиным и Г. Л. Слонимским [96] по отношению к полимерам. Под фазой они понимают гомогенную систему, находящуюся в термодинамическом равновесии. Гомогенная система, в которой нет поверхностей раздела между ее частями, может быть химически неоднородной. Понятие фаза не отождествляется с понятием агрегатное состояние . Так, твердые стеклообразные тела термодинамически являются жидкими фазами к твердым фазам относятся только кристаллические тела. Гомогенность понимается без учета неоднородностей, обусловленных молекулярным строением тела, и аморфный полимер считается гомогенным телом, а микрокристаллический полимер, в котором имеются неупорядоченные области, — гетерогенным. При этом авторы утверждают, что внутренние напряжения в полимере отражаются на форме кристаллов и ограничивают их рост. Пластинчатые и игольчатые формы вызывают меньше напряжений и потому быстрее растут. Развивающаяся кристаллизация приводит к минимуму внутренних напряжений и к наилучшим условиям для их релаксации, т. е. к уменьшению внутренней энергии. [c.203]

    Вдоль поверхности одинаковых главных напряжений fx = = onst и Ае = onst. Записывая уравнения (48) для двух произвольных точек на одной поверхности = onst и разделив одно уравнение на другое, получим [c.83]

    Поверхность жидкой пленки обычно сильно возмущена и покрыта сложной системой волн. Эти гзолны в сущности представляют шероховатости поверхности ио отношению к газовому ядру, содерл ащему капли жидкости, и являются причиной увеличения напряжения трения на поверхности раздела фаз. Механизмы, приводящие к росту этих напряжений, очень сложны (28) однако было показано, что эффективная шероховатость поверхности раздела приблизительно постоянна для данной толщины пленки независимо от скорости течения фаз, приводящих к этой толщине. Это геометрическое сходство очень полезно при получении соотношений для напряжений трения на границе раздела фаз. Для определения коэф(1)ициента треиия на границе раздела фаз / зо1. по-видимому, чаще используется зависимость Уоллиса [41] [c.197]

    Для вертикальной пластины анализ ламипарного течения пара в пленке в предположении, что касательные напряжения на границе раздела отсутствуют, приводит к локальному коэффициенту теплоотдачи <х г) на расстоянии 2 по поверхности от начала пленочного кипения [c.378]

    Вследствие того, что жидкость отделена от поверхности нагрева паровой пленкой и нсопределснностн, связанные с образованием пузырей, отсутствуют, пленочное кипение поддается аналитическому решению. Задачу можно рассмотреть по аналогии с пленочной коиденсациен, и имеются решения для горизонтальных и вертикальных пластин, труб при ламинарной и турбулентной паровой пленки с учетом касательных напряжений на границе раздела и без них. [c.400]

    Как указывалось выше, поливиниловый спирт является стабилизатором, который, распределяясь на поверхности раздела дисперсной фазы и дисперсионной среды, создает структурно-механический барьер, препятствующий сближению частиц. Данные физико-химического анализа смешанного стока после злектрообработки в течение 4 мин в однородном поле при напряженности 5 В/см в зависимости от концентрации ионов Са и сольвара в исходной дисперсии приведены ниже  [c.105]

    При обезвоживании растворов и грануляции в кипящем слое в безрецикловом процессе циркуляционные потоки твердой фазы то выносят гранулы на поверхность, то опускают вниз к газораспределительной решетке, где их разогревает входящий горячий газ. При этом для достаточно крупных гранул происходит периодическая смена охлаждения и нагрева только наружных слоев и возникают внутренние напряжения, приводящие к отколу кусков, становящихся центрами роста новых гранул [251 ]. Максимальный размер гранул, еще не подвергающихся такому температурному дроблению, и скорость возникновения новых центров грануляции (внутренний рецикл) определяются периодом циркуляции т, который, как было показано в разделе II.5, пропорционален корню квадратному из высоты слоя HJD < )  [c.218]

    Ри и Эйринг (1955) и Кис и др. (1960) рассмотрели неньютоновское течение с точки зрения теории абсолютных скоростей процессов (Глесстон и др., 1941). Для этого они предположили, что во время течения частица не может двигаться мимо своих соседей до тех пор, пока не преодолеет потенциальный энергетический барьер. Они полагали, как и Вильямсон (1929), Гудив (1938) и Джиллеспи (1960а, Ь), что существует два основных типа течения один — ньютоновский и другой — неньютоновский с различными характеристиками. Поверхность каждого элемента потока разделяется на локализованные площади Sj, 2,. . которым соответствует напряжение сдвига [c.241]

    Адсорбция происходит иа любой поверхности в результате проявления сил сцепления, которые по своей величине значительно меньше, чем силы химические. Всякая поверхность, т. е. граница раздела двух фаз, не насыщена. Взаимно скомпенсированы лишь поля молекул, находящихся внутри твердого веншства, молекулы же на поверхности затрачивают на сцепление не всю энергию, и часть ее, остается свободной. Величина последней пропорциональна величине поверхности. В случае жидкостей поверхность стремится сократиться до минимума, поэтому мениск представляет как бы упругую пленку, напряженность которой определяется коэффициентом поверхностного натяжения у. Величина свободной энергии W поверхности 5 составляет  [c.93]


Смотреть страницы где упоминается термин Поверхность, напряжение раздела: [c.175]    [c.225]    [c.232]    [c.21]    [c.28]    [c.345]    [c.9]    [c.14]    [c.179]    [c.197]    [c.328]    [c.165]    [c.146]    [c.400]   
Физика и химия твердого состояния органических соединений (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность раздела фаз

Поверхность разделяющая



© 2025 chem21.info Реклама на сайте