Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вещество атомное строение

    ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ (ИКС)—раздел спектроскопии, изучающий поглощения в длинноволновой части спектра (от 750 им до 0,1 мм). Ири помощи И. с. можно установить наличие различных атомных группировок в молекулах веществ, химическое строение молекул, характер их движения, взаимодействие между ними. И. с. используют в качественном (изучение количества и положений пиков в спектре) и количественном анализах (установление интенсивности пиков). Приборы для И. с.— инфракрасные спектрофотометры. [c.109]


    Не ВО всех случаях частицы, образующие вещество, представляют собой молекулы. Многие вещества в твердом и жидком состоянии, например большинство солей, имеют не молекулярную, 0 ионную структуру. Некоторые вещества имеют атомное строение. Строение твердых тел и жидкостей более подробно будет рассмотрено в главе V, а здесь лишь укажем на то, что в веществах, имеющих ионное или атомное строение, носителем химических свойств являются не молекулы, а те комбинации ионов или атомов, которые образуют данное вещество. [c.20]

    Масс-спектрометр позволяет проводить исследования атомного строения веществ с большой точностью, и с его помощью были установлены важные результаты. Прежде всего, использование масс-спектрометра позволило наглядно продемонстрировать идею Дальтона о том, что атомы различных элементов имеют различные массы. В самом деле, пучки положительно заряженных частиц, образующихся от каждого элемента, имеют характерную для него массу. Далее, средние значения масс элементов, установленные с помощью масс-спектрометра, находятся в точном соответствии с атомными массами, которые были установлены с большими затратами усилий на основании самого тщательного анализа химических реакций с применением аналитических весов. Наконец, поскольку масс-спектрометр позволяет измерять массы индивидуальных атомов (точнее, массы их положительно заряженных ионов) и разделять атомы с неодинаковыми массами, его применение привело к открытию изотопов (атомов одного элемента с различными массами). При этом оказалось, что представление Дальтона о полной идентичности всех атомов одного элемента неверно. С химической точки зрения атомы одного элемента совершенно идентичны, но они могут обладать несколько отличающимися массами. [c.60]

    Однако не всякое вещество состоит из молекул. Известно много веществ немолекулярного строения. Это благородные газы, а также вещества, образующие ионные или атомные кристаллы. [c.9]

    В непосредственной взаимосвязи с локальной симметрией находится трансляционная симметрия, которая указывает на пространственную природу симметрии структурного образования. Аналогично перемещению составляющих молекулы на микроуровне можно представить операции симметрии, связанные с перемещением элементов структуры структурного образования. Важнейшими из указанных операций симметрии являются простая трансляция, винтовая ось, плоскость скольжения. Еще раз отметим необходимость четкого представления особенностей симметрии кристаллов чистых веществ, заключающейся в закономерностях атомного строения, внешней формы и физических свойств кристаллов. Симметрия свойств кристалла обусловлена симметрией его строения. Кристалл может быть совмещен с самим собой путем поворотов, отражений, трансляций — параллельных переносов и других преобразований симметрии, а также комбинаций этих преобразований. [c.184]


    Однако не всякое вещество состоит из молекул. Известно много веществ немолекулярного строения, к ним относятся ионные или атомные кристаллы. [c.10]

    Таким образом, зная структуру адсорбента (ГТС) и структуру адсорбирующейся молекулы, можно вычислить молекулярно-ста-тистическим путем константы Генри, уточнить параметры атом-атомных потенциалов и проанализировать влияние сделанных при определении этих потенциалов приближений и допущений. Используя этот метод, можно произвести идентификацию на хроматограмме веществ известного строения. На приведенной ниже схеме решению прямой задачи молекулярно-статистической теории адсорбции и удерживания соответствует движение слева направо  [c.184]

    Во-первых, химики уже в самом начале XIX в. пришли к выводу о недостаточности только понятия о составе, чтобы объяснить происхождение свойств химических соединении и, в частности, явлений изомерии и полимерии, которые обусловливают богатейшее качественное разнообразие веществ. Поэтому уже Дальтон, Берцелиус, Дюма и другие химики ввели представления об атомном строении частиц химических соединений, или о конституции тел. Совершенно неважно, какими терминами они при этом пользовались. Важно, что они ввели новый фактор и, следовательно, новое понятие помимо фактора состава, в объяснение генезиса свойств. [c.74]

    СТРОЕНИЕ И СОСТАВ ВЕЩЕСТВА (АТОМНО-МОЛЕКУЛЯРНАЯ ТЕОРИЯ) [c.9]

    Нейтроны рассеиваются ядрами атомов. При этом упругое рассеяние медленных нейтронов используется для изучения атомного строения вещества, а неупругое — для изучения динамики атомов и молекул. [c.26]

    Стремясь согласовать растворы с атомистической теорией, синтезировать представления Бертолле ч Пруста, Д. И. Менделеев не раз отмечал, что великое учение Дальтона об атомном строении вещества еще не прилагалось к объяснению явлений растворения между тем, по его мнению, очень важно выявить соотношения между обычными случаями соединения и явлениями растворения . Он считал, что можно согласовать растворы с атомистической теорией, если ввести понятия ассоциации и диссоциации, которые, по его мнению, определяют природу растворов. В моем уме,—писал Д. И. Менделеев,—растворы не выделяются в область, чуждую атомистических представлений, они входят вместе с обычными определенными соединениями в круг тех понятий, которые господствуют ныне в учении о влиянии масс, о диссоциации и о газах, и в то же время растворы представляют для меня самый общий случай химического воздействия, определяемого сравнительно слабыми сродствами, а потому представляют плодовитейшее поле для дальнейшего успеха химических учений .  [c.304]

    Решение. Молярная масса вещества, имеющего атомное строение, численно равна его относительной атомной массе, поэтому M(Fe) = 56 г/моль. [c.13]

    Вещество состоит из отдельных мельчайших частиц — молекул, атомов и ионов. Эти частицы обладают определенным внутренним строением. Молекулы сложных веществ состоят из разных атомов, вступивших между собой в химическое взаимодействие. Сложных веществ, состав которых может быть упрощен в результате химических операций, в мире очень много только органических соединений известно более двух миллионов. Молекулы простых веществ состоят из одинаковых атомов, также взаимодействующих между собой. Многие простые вещества имеют, однако, атомное строение (инертные газы, металлы), т. е. состоят не из молекул, а из атомов. [c.9]

    Атомно-молекулярная теория определила не только круг основных понятий, но и ряд важных законов. Правда, необходимо отметить, что все представления этой теории были сформулированы по отношению к веществам, имеющим молекулярное строение. В настоящее время известно громадное число веществ немолекулярного строения. Это, как правило, твердые тугоплавкие неорганические вещества, к которым законы стехиометрии либо вообще неприменимы, либо применимы только как существенно приближенные. Но все-таки подавляющее большинство известных человечеству веществ состоит из молекул, и поэтому законы стехиометрии до сих пор сохраняют свое значение. [c.17]

    Соединениями постоянного состава являются вещества молекулярного строения, поскольку состав молекул однозначно определяется строением их образующих атомов. Если же кристаллическое вещество имеет атомное или ионное строение, то оно характеризуется более или менее переменным составом. Причиной этого являются точечные дефекты в кристалле. В реальном кристалле возможны дефекты двух типов. Рассмотрим кристалл двухэлементного соединения АВ. В идеальном случае в кристалле заняты все узлы кристаллической решетки атомами (ионами) А и В (рис. 137, а). В реальном же кристалле могут быть не заняты узлы кристаллической решетки, отвечающие атому (иону) А или атому (иону) В (рис. 137, в) или того или другого. Кроме того, в междоузлиях решетки могут располагаться избыточные атомы (ионы) А и (или) В (рис. 137, б). [c.284]

    Свойства любого вещества легче всего изучить и полностью понять в том случае, если их соотнести с его строением, т. е. с молекулами, атомами и еще более мелкими частицами, образующими это вещество. Вопросу об атомном строении вещества и посвящена данная глава. [c.27]


    Во второй половине XIX в. химики начали устанавливать связь между свойствами веществ и предполагаемым строением их молекул, т. е. вполне определенным взаимным расположением атомов. Точная информация об атомном строении молекул и кристаллов многих веществ была получена в сравнительно недавнее время, примерно после 1913 г. Физики разработали много эффективных методов исследования строения веществ. Один из этих методов основан на интерпретации спектров веществ (рис. 19.6). Пламя, содержащее, например, пары воды, испускает свет, характерный для молекул воды такое излучение называют спектром водяного пара. Линии в спектре воды были определены экспериментально и интерпретированы было установлено, что оба атома Н в молекуле воды находятся на расстоянии 97 пм от атома кислорода. Было показано, кроме того, что два атома водорода не находятся на одной прямой с атомом кислорода молекула воды изогнута, причем угол, образуемый прямыми, соединяющими три атома, равен 105°. Спектроскопическими методами удалось определить как расстояние между атомами, так и углы между ними для многих простых молекул. [c.30]

    Строение многих соединений было установлено также методами дифракции электронов и дифракции рентгеновских лучей. В дальнейших разделах книги описано атомное строение многих веществ, установленное этими методами. В приложении IV описан метод дифракции рентгеновских лучей, применяемый для определения структуры кристаллов. [c.31]

    В последующих главах мы познакомимся с закономерностями, позволяющими предсказывать протекание многих химических реакций, теориями, объясняющими эти законы, и подробными сведениями об атомном строении вещества. В данной главе мы начнем с изложения общепринятых представлений об атоме и кратко проследим историю их возникновения..  [c.39]

    Простое вещество — вещество, состоящее из атомов одного элемента. Оно может иметь молекулярное или атомное строение. Некоторые элементы образуют несколько простых веществ. Это явление называется аллотропией. Аллотропия может быть связана с разли шым числом атомов в молекуле (например, обычный кислород О2 и озон О3) или рапи щсм в кристаллической решетке для веществ атомного строения (например, алмаз и графит). [c.123]

    В тех случаях, когда растворение одного вещества в другом не сопровождается явно выраженной химической реакцией, между растворяемым веществом и растворителем происходит такое взаимодействие, которое принято называть сольватацией. Сольватация — весьма широкое понятие, и поэтому, если в качестве растворителя используется вода, взаимодействие между растворяемым веществом и растворителем называют гидратацией. Говоря о сольватации или гидратации, имеют в виду механизм растворения, при котором осуществляется сильное взаимодействие растворителя и растворенного вещества с образованием ассоциированных групп частиц таким частицам нередко можно приписать определенную формулу. Если растворителем является вода, образующиеся комплексы называют гидратами в качестве примера приведем формулы некоторых двухвалентных и трехвалентных катионов, сольватированных водой А1(Н20)е , Си(Н20) +, №(Н20) + и Се(Н20)3 +. Число молекул воды, ассоциированных с каким-либо ионом растворенного вещества, определяется, с одной стороны, размером этого попа, а с другой стороны — его атомным строением. Маленький ион может быть окружен лишь небольшим числом вплотную приблизившихся к нему молекул растворителя, однако большой ион, например Се , или Ка" , может присоединить к себе довольно много молекул растворителя. Сольва- [c.207]

    С точки зрения атомно-молекулярного учения в процессе образования молекулы обычно участвует небольшое число атомов, которые соединяются всегда в строго определенном количественном соотношении. Поэтому количественный состав образующихся молекул, а следовательно, и состав образующихся веществ молекулярного строения оказывается постоянным. В процессах же образования кристаллов немолекулярного (атомного или ионного) строения участвует очень большое число частиц, которые соединяются не всегда в строго определенном количественном соотношении. Поэтому количественный состав образующихся атомных или ионных кристаллов может быть переменным в зависимости от способов их получения. Количественный состав сложных веществ удобно выражать через массовые доли элементов. [c.7]

    Эти два фактора — состав и структура — определяют многие физические свойства веществ, а ведь применение твердых тел связано именно с наличием у них определенной комбинации физических свойств, следовательно, такая систематика облегчает выбор веществ для практического использования. Примером могут служить алмаз и графит, области применения которых, несмотря на одинаковый состав, совершенно различны из-за резкого отличия их физических свойств, связанных с их атомным строением. Химический состав следует положить в основу на первоначальных стадиях создания систематики, о чем будет сказано ниже. [c.280]

    Каково же место особенного в системе отношений единичное —общее Тогда, когда единичное свойство становится специфической, отличительной чертой группы однопорядковых веществ или процессов, например, химических веществ одного класса (кетоны, альдегиды, спирты, кислоты и т, д.) или реакций одного типа (окислительно-восстановительные, полимеризации и т. д.), единичное выступает как особенное. Но это означает, что особенное свойство есть и общее, поскольку оно является отличительным для ряда определенных групп, классов химических веществ и реакций. В отличие, однако, от такого общего, которое характерно для всех химических веществ (атомное строение) или реакций (равенство веса исходных реагентов весу полученных продуктов), особенное есть менее общее. Таким образом, общее может [c.249]

    К.ак видно на рис. 126, температура плавления простых веществ в периодах вначале возрастает, затем падает. Наименьшую температуру плавления имеют простые вещества с молекулярной структурой, Б особенности одноатомные простые вещества s- и р-элементов VHI группы (благородные газы). В обычных условиях простые вещества молекулярного строения являются газами, жидкостями или относи-тель(ю легкоплавкими твердыми телами. Наиболее тугоплавки алмаз и кремний, имеющие ковалентные атомно-коордннационные решетки. [c.235]

    Простые вещества. Зависимость строения и свойств просты.х веществ от иоложения алементов в периодической системе. Получение простых веществ. Сложные вещества. Бинарные соединения. Двухэлементные соединения. Зависимость устойчивости и свойств двухэлементных соединений от атомного номера элемента с положительной степенью окисления. Неорганические полимеры с тетраэдрическими связями. Трехэлементные соединения. Их строение, свойства. Смешанные соединепия. Твердые расгвор1л. Эвтектические смеси. Оксосоединения /i-элементов. Силикат(.1, Алюмосиликаты. [c.181]

    Как мы уже отмечали, макрорадикальный характер твердых тел атомного строения предопределяет их высокую химическую активность, которая проявляется в виде хемосорбции. Но хемосорбция часто является только первым актом дальнейших сложных процессов. К таким процессам относятся, например, процессы молекулярного наслаивания, позволяющие осуществлять направленный синтез атомных твердых веществ с гарантированной воспроизводимостью. Но еще задолго до использования этих процессов внимание исследователей и производственников привлекали процессы гетерогенного катализа, относительно которых известно, что они также начинаются с актов хемосорбции, по крайней мере одного из катализируемых веществ. В определенных случаях твердое тело играет только роль инициатора (или, нередко, ингибитора) реакции, которая при этом развивается по законам цепных реакций, открытым Н. Н. Семеновым. Зная, что твердое тело является макрорадикалом, нетрудно себе представить, что соударение с ним молекул должно непрерывно генерировать радикалы — осколки этих молекул, обладающие неспаренными электронами, если свободные валентности твердого тела возрождаются. То же условие самовозобновления макрорадикала, а в более общем случае самовоспроизведение определенного набора функциональных [c.244]

    Содержание данного тома делится на три части. Часть А посвящена основам строения вещества (атомно-молекулярное учение, элементарные частицы, строение атомного ядра) в части Б рассмотрены основы физической химии часть В объединяет данные по соединениям и реакциям неорганической хнмии. [c.6]

    Выше (гл. II, 7) уже отмечалось, что для уточнения структурных параметров можно использовать и данные порошковой дифрактометрии (особенно при полнопрофильном анализе дифрактограммы). Этот метод имеет и некоторые преимушества перед монокристальным точнее (и проще) учитывается поглощение лучей в исследуемом образце, исчезает необходимость вводить поправку на экстинкцию. Однако возможности и точность полнопрофильного анализа порошковой дифрактограммы тем ниже, чем сложнее структура (чем больше наложений линий на дифрактограмме). Поэтому этот метод наиболее перспективен для сильнопоглощающих соединений с не слишком большими параметрами решетки (а также, естественно, для веществ, не дающих монокристаллов вообще, при условии, что их атомное строение в принципе известно на основе изоструктурности). [c.159]

    Химическим индивидом следует назвать наименьшее количество вещества, повторением которого в различном порядке можно воспроизвести данное вещество. Химическими индивидами являются атомы в атомной решетке простого вещества (С в решетке графита) или группы атомов в составе сложного (51С в решетке карбида кремния), молекулы в веществе молекулярного строения (Н2О в воде), ионные пары или более сложные конные комплексы в ионном веществе (НаС в поваренной соли, ЫагСОз-ЮНгО в кристаллической соде) и т. д. При таком определении изменение агрегатного состояния, полимор фный переход, механическое разрушение, образование некоторых растворов (например, газовых) не попадут в химические явления. [c.6]

    Итак, кристаллические вещества атомного и ионного строения не подчиняются закону постоянства состава. Здесь только следует отметить, что нестехиометри-ческий состав таких соединений обеспечивается образованием дефектов — катионных или анионных вакансий в ионных или нейтральных вакансий в атомных решетках. [c.37]

    Идеалистическая философия Канта оказала влияние на научные концепции немецких ученых, и прежде всего на известного электрохимика конца XVIII и начала XIX в. И. Риттера , который считал электричество чистой нематериальной силой — проявлением мистического мирового духа. Отрицание атомного строения вещества серьезно наказало немецкого ученого он не смог правильно объяснить процессы электролиза, которые тщательно изучал. [c.131]

    Закон эквивалентов также является следствием атомного строения вещества. Зная теперь состав молекул, например НС1 и Na l, легко представить, что масса водорода, равная 1 молю атомов (1,0079 г), эквивалентна 22,98977 г натрия (1 моль атомов). В НгО и НС1 эквивалентными количествами являются 7,999 г кислорода и 35,453 г хлора, так как именно такие количества приходятся на 1 моль атомов водорода. [c.20]

    В формуле (292) II — энергия активации процесса разрушения, у — коэффициент (показатель концентрации напряжений), Т — температура. Величина То (То 10 с) оказалась практически одинаковой для любых твердых тел и их состояний. Энергия и сохраняется постоянной для данного вещества при любом воздействии (отжиге, механической обработке, легировании, облучении и т. д.). В отличие от Тц и 17о коэффициент у легко изменяется в зависимости от обработки тела. Член 70 выражает ту работу, которую в разрушении тела выполняет внешняя сила (напряжение о). Остальную часть работы, т. е. и — "уа, выполняют тепловые флуктуации. Из того факта, что при различных обработках данного вещества величина и остается постоянной, а изменяется лишь коэффициент 7, следует важное заключение межатомное воздействие, определяемое ближним порядком в расположении атомов, не меняется при варьировании состояния вещества. Меняется, следовательно, не атомное строение тела, а надатомное (субатомное), т, е. происходят изменения взаимодействия, формы и величины областей с размерами в десятки—сотни атомных. Наличие такой субатомной структуры или дефектов определяет локальные напряжения в теле, а изменение данной структуры ведет к изменению уровня перенапряжения (к изменению 7). [c.183]

    Представления древнегреческих ученых об атомах просуществовали не дольше, че>1 сама Древняя Греция. Эти ранние философские идеи навряд ли оказали непосредственное влияние на представления об атомном строении вещества, которые получили развитие в конце XVIII—начале XIX вв. Химическая революция совпала по времени с американской и французской революциями. В семидесятых годах XVIII в. в лабораторных условиях впервые был получен кислород, хлор и ряд новых металлов, например марганец и вольфрам. Достаточно упомянуть лишь о нескольких подобных открытиях и новых идеях, чтобы показать, что в химии назревали большие перемены. [c.39]

    Среди мыслителей Древней Греции не было единства по вопросу о корпускулярной или непрерывной природе вещества. От них ведет происхождение привычное для нас слово атом, возникшее от древнегреческого атоцоа, что означает неделимый. Сторонники воззрения о бесконечной делимости вещества пользовались для выражения этого понятия термином гайл . Хотя в наше время представление об атомном строении веще- [c.56]

    Во второй половине XVIII в. естествоиспытатели считали атомное строение материи само собой разумеющимся. Однако его рассматривали лишь в качестве натурфилософской теории и не применяли при объяснении химических явлений. Господствовавшее в то время представление об особой роли в составе тел невесомых флюидов (свет, теплота и др.) не содействовало внедрению атомистики в химию. Заслуга в использовании атомного учения для объяснения закономерностей состава веществ принадлежит английскому ученому Джону Дальтону (1766— 1844). Он был сыном ткача и систематического образования не [c.76]


Библиография для Вещество атомное строение: [c.42]   
Смотреть страницы где упоминается термин Вещество атомное строение: [c.58]    [c.119]    [c.30]    [c.14]    [c.89]    [c.28]    [c.18]    [c.53]    [c.219]   
Общая химия (1964) -- [ c.24 ]




ПОИСК





Смотрите так же термины и статьи:

Вещества строение



© 2025 chem21.info Реклама на сайте