Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисахариды структура

Рис. 11-12. Важнейшие дисахариды. Структура мальтозы показана как при помощи проекции Хеуорса, так и в виде конформационной формулы. Рис. 11-12. <a href="/info/1538611">Важнейшие дисахариды</a>. Структура мальтозы показана как при помощи проекции Хеуорса, так и в виде конформационной формулы.

    При связывании двух молекул моносахарида образуются дисахариды. Связывание моносахаридов происходит в результате конденсации, при которой от двух гидроксильных групп, принадлежащих двум молекулам моносахаридов, отщепляется одна молекула воды. Если у моносахаридов имеется несколько гидроксильных групп, дисахариды могут связываться несколькими различными способами. На рис. 25.10 изображены структуры трех распространенных дисахаридов сахарозы (пищевой сахар), мальтозы (солодовый сахар) и лактозы (молочный сахар). Слово сахар связано в нашем представлении с понятием сладкий . Все сахара обладают сладким вкусом, но отличаются по интенсивности вызываемого ими вкусового ощущения. Сахароза примерно в шесть раз слаще лактозы, приблизительно в три раза слаще мальтозы, несколько слаще глюкозы, но зато примерно вдвое менее сладкая, чем фруктоза. Дисахариды могут гидролизоваться, т.е. способны вступать в реакцию с водой, в присутствии какого-либо кислотного катализатора с образованием моносахаридов. Гидролиз сахарозы приводит к образованию смеси глюкозы и фруктозы, в форме называемой инвертированным сахаром, которая имеет более сладкий [c.456]

Рис. 25.10. Структура молекул трех дисахаридов Рис. 25.10. <a href="/info/16101">Структура молекул</a> трех дисахаридов
    К углеводам относятся многие соединения, обладающие более сложной структурой, чем простые сахара. Большинство углеводов, встречающихся в природе, состоит из двух или более молекул сахаров. Названия различных классов углеводов показывают, из какого числа молекул простого сахара (моносахаридов) состоит молекула углевода (например, дисахариды и трисахариды), в то время как термины олигосахариды и полисахариды используются для обозначения соединений, содержащих мало или много моносахаридных фрагментов. Хотя многие полисахариды построены из гексоз, также хорошо известны полисахариды, содержащие тетрозы и пентозы. [c.280]

    Такая структура действительно строго регулярна и периодична, т. е. сдвиг определенного участка цепи вдоль ее оси приводит к точному наложению на следующий участок — подобно тому, как это имеет место в кристалле. В этом смысле молекула целлюлозы — одномерный кристалл. Иэ формулы 35 легко видеть, что такой минимальный участок (шаг цепи) — это не моносахаридный, а дисахаридный остаток. Поэтому с точки зрения конформации цепи повторяющимся звеном в целлюлозе является не остаток глюкозы, а остаток дисахарида — целлобиозы. [c.29]


    Точно такую же цепь можно, однако, построить иначе, взяв за основу структуру изомерных дисахаридов 36 и 37 (они получаются при сдвиге вдоль цепи не на два, а на одно моносахаридное звено).  [c.30]

    Дисахариды. Самый важный момент, который следует определить в структуре дисахарида после того как установлена природа его моносахаридных звеньев — это характер гликозидной связи какая гидроксильная группа участвует со стороны моносахарида— агликона и какова конфигурация гликозидной связи (а- или р-). Чаще всего реализуется связь 1-4, реже встречается гликозидная связь 1-6, еще реже — связь 1-3 (схема 3.6.4). [c.55]

    Ярко выраженная гидрофильность молекул углеводов определяется наличием значительного числа ОН-групп, обладающих способностью к образованию водородных связей с молекулами растворителя. Однако расположение ОН-групп характеризуется четко выраженной направленностью. При одном и том же элементном составе молекула каждого моно- или дисахарида, каждого их диастереоизомера образует единственную, только ей присущую пространственную систему активных центров. Вода, как известно, также обладает ярко выраженной структурой. Совершенно очевидно, что, рассматривая взаимодействие молекул углеводов с водой, необходимо учитывать комплементарность геометрии расположения углеводных ОН-групп и структурной матрицы растворителя. В этой связи при рассмотрении гидратации сахаров на первом плане неизменно находятся стереохимические аспекты данной проблемы. [c.78]

    Не менее информативными с точки зрения выявления особенностей гидратации углеводов являются данные по объемным свойствам растворов [57-60]. Стереоспецифичность гидратации, проявляющаяся в зависимости физико-химических характеристик растворов от конформационных свойств растворенного вещества и от способности структуры растворителя соответствовать структуре конформера, находит отчетливый отклик в объемных параметрах. Так, например, стереохимические изменения, сопровождающие превращение в растворе одного диастереоизомера в другой, непосредственно фиксируются при прецизионном измерении плотности [60]. Подробно данные по объемным свойствам водных растворов моно- и дисахаридов, а также влияние на них температуры и концентрации будут обсуждаться в следующем разделе. [c.80]

    Задача 34.4. Если мальтозу подвергнуть двукратной фрагментации с отщеплением одноуглеродного фрагмента, то образуется дисахарид, который восстанавливает реактивы Толленса и Фелинга, но не образует озазона. Какие соединения будут получаться при кислотном гидролизе этого дисахарида Какова структура (+)-мальтозы на основании этих данных  [c.968]

    Амилопектин дает при гидролизе лишь один дисахарид, (+)-мальтозу последовательность реакций метилирования и гидролиза приводит в основном к 2,3,6-три-0-метил-о-глюкозе. Подобно амилозе, амилопектин состоит из цепей, содержащих звенья о-глюкозы, причем каждое из звеньев соединено а-глюкозидной связью с атомом С-4 следующего звена. Однако структура этого вещества сложнее, чем структура амилозы. [c.976]

    Масс-спектрометрический анализ дает возможность решать и более сложные задачи при исследовании углеводов. Так, например, удается на основании одного только масс-спектра определять структуру дисахаридов, поскольку ряд пиков в масс-спектрах дисахаридов с разным типом связи между моносахаридами различается. [c.595]

    При образовании дисахарида конденсацией двух идентичных моносахаридов могут возникнуть 11 различных изомеров, если принимать во внимание только пиранозные формы, тогда как при образовании трисахарида число возможных изомеров достигает 176 [1]. Такое число изомеров объясняется возможностью образования гликозидных связей с участием различных гидроксигрупп. Для восьми из одиннадцати упомянутых выще дисахаридов в образовании гликозидной связи участвуют гидроксигруппа при С-1 Одной молекулы моносахарида в а- или р-конфигурации и гидроксигруппы при С-2, С-3, С-4 или С-6 второй молекулы моносахарида [ -(1 2)-, 3-(1 3)-связи и т. д.]. Три других изомера возникают путем образования гликозидной связи с участием гидроксигрупп при С-1 обеих молекул моносахаридов в а- или 3-кон-Фигурации. В природных полисахаридах реализуется лишь относительно небольшое число возможных структур, и они являются гораздо менее сложными вследствие специфичности участвующих [c.209]

    Сначала мы рассмотрим классификацию, номенклатуру и структуру моносахаридов, используя в качестве примера, главным образом, важнейишй в биологических процессах моносахарид - глюкозу. Далее познакомимся с дисахаридами и более сложными углеводами. [c.256]

    Катионная полимеризация мономера 25 инициируется координацией инициатора, РР5, с кислородным атомом ангидро-цикла, что ведет к оксони-евому иону 26. Последний своим электрофильным центро.м, С-1, атакует другую молекулу 25 по кислороду ангидро-цикла с образованием нового ок-сония, 27, являющегося уже производным дисахарида. Повторение такого процесса приводит к последовательному наращиванию цепи путем стереоспецифического формирования глюкозидных связей (стереоспецифичность обеспечивается обращением конфигурации при С-1 в каждом таком акте раскрытия ангидро-цикла мономера 25), Понятно, что сама природа используемой реакции и структура мономера определяют необходимые стерео- и регио специфичность полимеризации, Дебензилирование образующегося таким путем полимера 28 дает целевой полисахарид 23. [c.296]


    Дисахариды. — Наиболее распространенными в природе дисахаридами являются сахаро за (тростниковый сахар), лактоза (молочный сахар) и мальтоза, причем последняя в свободном состоянии встречается довольно редко. Большое значение имеют дисахариды мальтоза и целлобиоза, поскольку они представляют собой продукты гидролиза крахмала и целлюлозы соответственно. По растворимости в воде дисахариды очень сходны с моносахаридами. Сахароза значительно менее устойчива к действию кислот, чем метилгликозиды, и легко расщепляется на О-глюкозу и -фруктозу при кислотном гидролизе, а также под действием фермента инвертазы. Сахароза не восстанавливает фелингову жидкость и не дает производных с фенилгидразином, откуда следует, что обе ее структурные единицы не содержат свободных гликозидных гидроксилов, являющихся потенциальными карбонильными группами и, следовательно, в сахарозе оба моносахарида связаны друг с другом гликозидными связями. В отличие от большинства сахаров сахароза легко кристаллизуется, по-видимому, из-за того, что она не подвергается мутаротации в растворе. Циклическая структура обоих моносахаридов сахарозы доказана путем гидролиза ее октаметилового эфира (Хеуорс, 1916). [c.555]

    Мальтоза получается с выходом около 80% при ферментативном расщеплении (под действием фермента амилазы) крахмала. Поскольку этот дисахарид при гидролизе кислотой или при действии фермента мальтазы (а-глюкозидазы) дает только О-глюкозу, то он является а-глюкозилглюкозой. Мальтоза — восстанавливающий сахар и, следо-аательно, имеет одну потенциальную альдегидную группу. Метилированием доказано, что мальтоза имеет структуру 4-0-(а-О-глюкопирано-зил) -О-глюкопиранозы  [c.557]

    Если участвующий в образовании ацеталя гидроксил принадлежит Другой молекуле сахара, то образуются ди-, три- или в общем случае полисахариды. [[ Вспомните структуру сахарозы (тростникового, свекловичиого сахара) и лактозы (молочного сзчяра). Тростниковый сахар является не восстанавливающим дисахаридом и не дает карбонильных реакций. Почему Познакомьтесь ло учебнику с образованием мальтозы и целлобиозы при осторожном гидролизе крахмала (соответственно — клетчатки), а также с техническим получением глюкозы из крахмала и с осахариванием древесины .] [c.68]

    А ЭТИ остатки, как мы видим, могут иметь четыре различные структуры для каждого моносахарида. Ко и это еще не исчерпывает разнообразия дисахаридных структур, так как и полуацетальный гидроксил может служить местом присоединения гликозильного остатка. Примером таких дисахаридов — их называют невосстанавливающими, так как в отличие от остальных дисахаридов и от моносахаридов они не восстанавливают реагенты типа фелинговой жидкости или аммиачного раствора окиси серебра — может служить трегалоза (29). В таком дисахариде любой из двух моносахаридных остатков можно произвольно считать либо гликозильным, либо агликоном. Другой пример невосстанавливающего дисахарида — сахароза (или тростниковый сахар) (30), построенная из остатков В-глюкозы и В-фруктозы. [c.23]

    Подобная запись не только описывает структуру, но и является прямым выводом из результатов химического анализа этих структур. Например, можно осуществить такое расщепление гиалуроновой кислоты и агарозы, при котором практически единственными продуктами будут дисахариды 33 и 34 — гиалобиоуроновая кислота и агаробиоза соответственно, из чего следует, что именно они являются мономерами , из которых построены эти полимеры. [c.28]

    Применительно к гиалуроновой кислоте и агароэе дисахаридные фрагменты также не отражают строения конформационных повторяющихся звеньев зтих полисахаридов. Однако на этом примере нам хотелось бы указать на еще один аспект понятия повторяющегося звена. Дисахариды 33 34, как уже говорилось, являются продуктами частичного расщепления цепей химическими методами. Поэтому естественно приписать этим полисахаридам структуру из повторяющихся звеньев именно этих дисахаридов. Поскольку к такой структуре [c.29]

    Образование именно такого дисахарида с полной определенностью указывает на присутствие в исходной цепи отвечающей ему последовательности р-В-галактопирано-за — 3,6-ангидро-Ь-галактопираноза, а высокий выход этого дисахарида означает, что такая последовательность доминирует в цепях. Поскольку из мономерного анализа мы знаем, что два вида моносахаридных остатков входят в состав агарозы в соотношении 1 1, доминирование такого Сегмента возможно только в структуре цепи с чередующимися остатками. Таким образом, мы узнаем о наличии второго типа сегмента 3,6-ангидро-Ь-галактопираноза — [c.88]

    Наверное, нет растений, которые не содержали бы в той или иной своей части какого-либо соединения со структурой пиранового цикла это ка-техины, кумарины, флавоноиды, анто-цианы. Особенно широко распространены два последних класса. Обычно все они в растениях находятся в виде гликозидов разной структуры, т.е. все эти соединения относятся к группе агликонов, поскольку имеют по несколько фенольных гидроксилов. Освобождаются все они от углеводной части достаточно легко либо химическим (кислотным), либо ферментативным гидролизом. Например, кумарин, находящийся в растениях в виде гликозида, при сушке срезанной травы высвобождается в свободном виде и придает высушенной траве (сену) характерный приятный запах. Другое соединение этого класса — кверцетин, связанный гликозидной связью с дисахаридом (О-глюкоза, +1-рамноза) образует соединение под названием рутин (схема 8.2.3), которое относится к витаминам группы Р, регулирующим [c.205]

    Антибиотики этой группы представлены природными соединениями, имеющими структуру макроцикла с обязательным сложноэфирным фрагментом, т.е. их можно считать макроциклическими лактонами, однако встречаются и макроциклы с амидной связью — макроциклические лактамы. Размер цикла может колебаться от представителя к представителю в достаточно широком интервале, с числом атомов в цикле от 8 до 38. Кроме того, характерными структурными фрагментами этих веществ являются олефиновые связи в цикле, а также остатки моно- и дисахаридов в боковой цепи. Особенностью химических свойств макролидных антибиотиков можно считать высокую стабильность этих лактонов к щелочному гидролизу, несвойственному для обычных (у- и 5-) лактонов. [c.314]

    Рассмотрению углеводов мы посвятим две главы. В данной главе мы познакомим вас с классификацией, номенклатурой, структурой и реакционной способностью моносахаридов. В качестве примера мы будем чаще всего пользоваться глюкозой ( декстрозой ), поскольку она играет важную роль во многих биологических процессах, а большипство реакций, в которых она участвует, типично и для других моносахаридов. В начале следующей главы (гл. 26. Б) мы рассмотрим дисахариды, а затем перейдем к обсуждению углеводов с гораздо более сложной структурой. [c.420]

    Структурно углеводы можно рассматривать как гидроксилиро-ванные альдегиды и кетоны., 1е из них, которые содержат от трех до девяти атомов углерода, называют моносахаридами. При конденсации нескольких единиц с созданием между ними ацетальной связи возникают дисахариды (из двух моносахаридов), трисаха-риды и вообще полисахариды. Моносахариды подразделяются на альдозы и кетозы, в зависимости от наличия в их структуре альдегидной или кетонной групп (в явной или скрытой форме). По числу С-атомов моносахариды подразделяют на тетрозы (4), пентозы (5), гексозы (6) и т. д. [c.230]

    При разделении,гликопротеинов плазмы электрофорезом получают активную фракцию этих белков, состоящую из 5 компонентов с М 11 ООО + 32 000. Все компоненты содержат только аланин и треонин, структура углеводной части соответствует дисахариду о-галактозил-о-К-ацетилгалактозамину. [c.429]

    В гл. 2 монографии на основе анализа термодинамических свойств водных растворов моно- и дисахаридов рассмотрены стереохимические аспекты гидратации этих биологически и промышленно важных веществ. Большое внимание уделено влиянию структурного состояния воды в мутаротационном и конформационном равновесиях углеводов и роли специфических структур в проявлении их биологической активности. В этой же главе показано, как можно использовать термодинамический метод при анализе растворов биомолекул. [c.6]

    Как показано в [82], по влиянию на структуру воды дисахариды могут быть приближенно разделены на три группы. В первую группу авторы [82] включили сахарозу, туранозу и палантинозу, молекулы [c.90]

    Детальное сопоставление данных по сжимаемости и стереохимических характеристик позволяет выявить одну интересную особенность. Как и в случае моносахаридов, положение ОН-группы у четвертого углеродного атома в каждом кольце дисахарида имеет решающее значение для совместимости с водной структурой [82]. Это, в частности, отражается и на органолептических свойствах сахаров. Превращение сахарозы в лактосахарозу (переход 4е —> 4а) приводит к полной потере [c.99]

    Из табл. 2.20 мы видим, что при стандартной температуре моно- и дисахариды без исключений относятся к группе 3, т.е. они упорядочивают структуру воды. Положительный знак /122 и Tsi2 указывает на то, что если молекулы воды переходят из гидратной ко-сферы в окружение (in bulk), то степень Н-связывания убывает. Значения 22 > О по причине преобладания энтропийной составляющей над энтальпийной (энтальпийно-энтропийная компенсация), это означает, что существуют неблагоприятные условия для парного взаимодействия между гидратированными молекулами моно- и дисахаридов. [c.103]

    Посредством какого именно спиртового гидроксила второй лголекулы монозы осуществляется связь с первой молекулой Хорошо известны дисахариды и другие олигосахариды со всеми типами связи (по всем свободным гидроксилам). В олигосахаридах животного происхождения чаще всего встречаются связи через четвертый и шестой гидроксил в растительном мире и в микроорганизмах столь же широко известны связи через второй и третий гидроксил. Выпишем несколько формул наиболее важных биоз и покажем, как выясняются эта и другие оставшиеся детали их структуры. Приведем также фишеровские проекционные формулы, хеуорсовские перспективные и названия по всем способам номенклатуры  [c.469]

    Для исследования полисахаридов используют также рентгеноструктурный анализ [71,71а удовлетворительные рентгенограммы были получены для волокнообразующих полисахаридов. Обычно такие соединения имеют линейные молекулы, одиако присоединение боковых цепей, состоящих из одного моносахаридного остатка (если только они не расположены слишком часто), не мешает образованию кристаллов и, следовательно, применению этого метода. Высокоразветвленные полисахариды имеют кристаллическую структуру только в случае, если боковые цепи расположены упорядоченно, но в большинстве случаев эти соединения кристалличны лишь отчасти, что приводит к нарушению кристаллической решетки, появлению больших аморфных областей и затрудняет интерпретацию рентгенограмм. С помощью этого метода показано, например, как расположены повторяющиеся дисахарид-Hbie звенья в цепях гликозаминогликанов [72,73]. [c.233]

    Метод масс-спектрометрии позволяет решать весьма сложные структурные задачи органической химии, например, такие, как определение последовательности расположения аминокислот в полипептидах, установление строения производных моносахаридов, дисахаридов и олигосахаров. В масс-спектрах производных углеводородов, содержащих атомы Вг (79 и 81), хлора (35 и 37), серы (32 и 34), следует учитывать наличие изотопноразличимых положительно заряженных фрагментов. Частицам, имеющим идентичное строение, но содержащим изотопные атомы, соответствуют близлежащие пики определенной интенсивности. Во многих случаях соотношения пиков изотопов того или иного атома в молекуле помогают легче решить вопрос о ее строении. Представления о структуре получают, анализируя пути фрагментации, т. е. изучая число, интенсивность пиков и природу их возникновения. В табл. 4.1 приведены данные о типичных осколках различных классов соединений и их массовых числах. [c.104]


Смотреть страницы где упоминается термин Дисахариды структура: [c.119]    [c.156]    [c.25]    [c.464]    [c.602]    [c.379]    [c.177]    [c.41]    [c.61]    [c.87]    [c.91]    [c.99]    [c.555]    [c.240]    [c.254]   
Основы органической химии (1968) -- [ c.560 ]

Основы органической химии Часть 1 (1968) -- [ c.560 ]

Биохимия человека Т.2 (1993) -- [ c.147 ]

Биохимия человека Том 2 (1993) -- [ c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Дисахариды



© 2025 chem21.info Реклама на сайте