Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сахароза структура

    При связывании двух молекул моносахарида образуются дисахариды. Связывание моносахаридов происходит в результате конденсации, при которой от двух гидроксильных групп, принадлежащих двум молекулам моносахаридов, отщепляется одна молекула воды. Если у моносахаридов имеется несколько гидроксильных групп, дисахариды могут связываться несколькими различными способами. На рис. 25.10 изображены структуры трех распространенных дисахаридов сахарозы (пищевой сахар), мальтозы (солодовый сахар) и лактозы (молочный сахар). Слово сахар связано в нашем представлении с понятием сладкий . Все сахара обладают сладким вкусом, но отличаются по интенсивности вызываемого ими вкусового ощущения. Сахароза примерно в шесть раз слаще лактозы, приблизительно в три раза слаще мальтозы, несколько слаще глюкозы, но зато примерно вдвое менее сладкая, чем фруктоза. Дисахариды могут гидролизоваться, т.е. способны вступать в реакцию с водой, в присутствии какого-либо кислотного катализатора с образованием моносахаридов. Гидролиз сахарозы приводит к образованию смеси глюкозы и фруктозы, в форме называемой инвертированным сахаром, которая имеет более сладкий [c.456]


    Дисахариды. — Наиболее распространенными в природе дисахаридами являются сахаро за (тростниковый сахар), лактоза (молочный сахар) и мальтоза, причем последняя в свободном состоянии встречается довольно редко. Большое значение имеют дисахариды мальтоза и целлобиоза, поскольку они представляют собой продукты гидролиза крахмала и целлюлозы соответственно. По растворимости в воде дисахариды очень сходны с моносахаридами. Сахароза значительно менее устойчива к действию кислот, чем метилгликозиды, и легко расщепляется на О-глюкозу и -фруктозу при кислотном гидролизе, а также под действием фермента инвертазы. Сахароза не восстанавливает фелингову жидкость и не дает производных с фенилгидразином, откуда следует, что обе ее структурные единицы не содержат свободных гликозидных гидроксилов, являющихся потенциальными карбонильными группами и, следовательно, в сахарозе оба моносахарида связаны друг с другом гликозидными связями. В отличие от большинства сахаров сахароза легко кристаллизуется, по-видимому, из-за того, что она не подвергается мутаротации в растворе. Циклическая структура обоих моносахаридов сахарозы доказана путем гидролиза ее октаметилового эфира (Хеуорс, 1916). [c.555]

    Если участвующий в образовании ацеталя гидроксил принадлежит Другой молекуле сахара, то образуются ди-, три- или в общем случае полисахариды. [[ Вспомните структуру сахарозы (тростникового, свекловичиого сахара) и лактозы (молочного сзчяра). Тростниковый сахар является не восстанавливающим дисахаридом и не дает карбонильных реакций. Почему Познакомьтесь ло учебнику с образованием мальтозы и целлобиозы при осторожном гидролизе крахмала (соответственно — клетчатки), а также с техническим получением глюкозы из крахмала и с осахариванием древесины .] [c.68]

    Другим характерным свойством связанной воды — воды граничных слоев вблизи гидрофильных поверхностей, по современной терминологии, — является ее пониженная, по сравнению с объемной водой, растворяющая способность. Это также является следствием измененной структуры воды. Как известно, под действием внешнего давления и температуры меняется растворяющая способность и объемной воды. Пониженную растворяющую способность граничных слоев воды использовали, в частности, для количественных оценок содержания связанной воды в дисперсных системах. При этом в качестве индикаторов, слабо проникающих в связанную воду, брали электролиты и сахарозу [1]. [c.9]

    Качество отформованных изделий зависит от свойств конфетной массы и формовочного материала. При отливке первостепенное значение имеет вязкость конфетной массы, которая зависит от ее температуры, влажности и доли твердой фазы. При оптимальной температуре отливки обеспечивается жидкое структур-но-вязкое строение массы. Если температура снижена, то в результате кристаллизации сахарозы увеличивается доля твердой фазы, масса приобретает пластичные свойства и плохо заполняет объем формы. Повышение температуры массы при отливке приведет сначала к уменьшению доли твердой фазы (из-за растворения кристаллов сахарозы), затем при затвердевании корпусов конфет произойдет увеличение размеров кристаллов, оставшихся в твердой фазе при перегреве массы. В результате конфеты будут грубыми и твердыми, а на их поверхности произойдет образование белых пятен. [c.136]


    Вероятно, заслуживает внимания действие органических веществ на структуру воды затворения [298, 299]. Вода имеет области льдоподобной и разупорядоченной структур, последняя играет преимущественную роль в растворении. Органические вещества, такие как сахароза, способствуют большему разрушению структуры воды и понижают энергию гидратации ионов. Это может замедлить скорость гидратации вяжущих и зародышеобразование новых фаз. [c.114]

    В кондитерском производстве глюкозно-фруктозный сироп по функциональным свойствам сравнивают с инвертным сахаром. Его применяют при изготовлении мягких конфет, помад, зефиров, жевательных резинок. Замена 100 % сахарозы глюкозно-фруктозным сиропом не изменяет сладость, аромат и структуру продукта. Наличие большого количества моносахаридов в сиропе и особенно гигроскопичной фруктозы обеспечивает отличную смачивающую способность. Благодаря этому кондитерские изделия долго остаются свежими, не засыхают. Глюкозно-фруктозным си"-ропом можно заменить до 20—50 % сахарозы в тортах, до 20 % — при выработке белой глазури, 25—75 % — в глазури для зефира и полностью заменить сахарозу в желейных начинках. В карамельном производстве сироп не применяют из-за высокой гигроскопичности. [c.147]

    Из других биополимеров наибольшую известность имеет дек-стран. Декстраны представляют собой водорастворимые полисахариды, синтезированные из сахарозы с помощью некоторых микроорганизмов или бесклеточных энзимов, выделенных из культур этих микроорганизмов. Декстраны имеют разветвленную пространственную структуру. Степень полимеризации их колеблется в широких пределах в зависимости от условий синтеза. Получение декстрана сводится к ферментативной обработке раствора полисахаридов, с последующим осаждением спиртом (метанолом или этанолом). Декстран производится в ряде стран и используется для различных целей. Для стабилизации промывочных жидкостей на водной основе он производится в ФРГ, США, на Кубе. [c.155]

    Затем в растениях глюкоза превращается в крахмал или целлюлозу — их основную структурную часть. Сахароза и крахмал быстро усваиваются человеческим организмом, что делает их удобной формой для запаса энергии. Целлюлоза же не усваивается в организме человека, поскольку отличается от крахмала по способу соединения остатков сахаров друг с другом (рис. 1У.5). Из-за такой структуры большинство животных (за исключением жвачных животных, многих насекомых, в том числе термитов) не могут использовать целлюлозу как источник энергии. Неперевариваемая человеком клетчатка играет, однако, важную роль в поддержании нормального состояния желудочно-кишечного тракта. [c.246]

    При потере корнеплодом 10 /о и более воды наступают необратимые изменения клеточных структур. При этом поглощение кислорода уменьшается на 30 %, выделение диоксида углерода увеличивается в 4 раза, активность фермента инвертазы, расщепляющей сахарозу, возрастает в [c.7]

    Концентрационные изменения структуры растворов сахарозы рассматривались в [77, 78]. Авторы этих работ пришли к выводу, что в различных областях диапазона концентраций взаимодействие сахарозы с водой специфично. В разбавленных растворах, когда число молекул воды, связанных с молекулой сахарозы, превышает число гидрофильных активных центров, структура воды остается практически невозмущенной. Гидратная оболочка (или ячейка [78]) препятствует сближению молекул сахарозы, что равносильно отталкиванию. По мере увеличения концентрации толщина водного окружения падает. Однако, как считают авторы [78], раствор все еще находится в состоянии максимальной стабилизации вплоть до некоторой предельной концентрации (0,05 м.д. [77], 0,06 м.д. [78]). Этот состав отвечает структуре клатратного типа (клатрат 1 [100]) и обладает максимальной плотностью. [c.103]

    Большие полимерные ионы органических кислот, а также сахароза упрочняют структуру воды. [c.253]

    Характеристика продукции, сырья и полуфабрикатов. Помадные конфеты — сахарные кондитерские изделия, которые состоят из мелких (10... 20 мкм) кристаллов сахарозы, распределенных в насыщенном водном растворе различных сахаров сахарозы, глюкозы, мальтозы и декстринов. Такую структуру изделий получают из помадной массы — полуфабриката, образованного в результате определенной технологической обработки сахара, при которой сахар из крупнокристаллического состояния переходит в мелкокристаллическое, отчего помадная масса легко растворяется и тает . В отличие от сахара в помадной массе содержится от 9 до 12 % воды. Кроме того, в ней находятся мельчайшие пузырьки воздуха, придающие ей некоторую пышность и белую окраску. [c.131]

    К аналогичным выводам Приводит анализ данных по U22 Дл Расчетов глюкозы-< 5 и сахарозы-dg в тяжелой воде. Как и следовало ожидать, при низких температурах перенос молекул сахарида в более структурированную среду - D2O сопровождается увеличением l 22-Влияние температуры на i 22 в тяжелой воде проявляется сильнее, что связано с более высоким темпом разрушения ее структуры. [c.105]


    Продуктами расщепления полностью метилированной сахарозы оказались тетра-О-метил-О-глюкоза П и неизвестная в то время тетра-0-метилфруктоза 111. Структуру последней установили только десять лет спустя, причем было показано, что она имеет фуранозный 2, 5-окисный цикл. Кроме того, найдено, что свободная, несвязанная фруктоза имеет более стабильную пиранозную структуру. Глюкоза связана с фура-нозой а-глюкозидной связью, так как сахароза расщепляется ферментом мальтазой (а-Д-глюкозидазой) фруктозидная связь имеет р-кон-фйгурацию. [c.555]

    Поскольку Ас Пх—Ио, то D практически является линейной функцией относительно — п . Изменяя показатель преломления внешней среды Hq в предположении, что толщина и структура пленки остаются при этом неизменными, и измеряя оптическую отражаемость, можно определить показатель преломления и толщину Я, не прибегая к измерениям утла Брюстера. Изменение Ид может быть достигнуто добавлением в водную среду электролитов Na l, a lg или сахарозы. [c.111]

    Особые свойства граничных слоев воды проявляются также и в том, что вследствие отличия структуры воды изменяется ее растворяющая способность. Пониженная растворяющая способность широко использовалась ранее для определения количества связанной воды в дисперсных системах [68]. При этом в качестве индикаторов, не проникающих в связанную воду, широко использовались сахароза, глюкоза, некоторые спирты. Одним из нас [69] была развита теория нерастворяющего объема, основанная на рассмотрении поля поверхностных сил, выталкивающих молекулы растворенного вещества из граничного слоя. Современная форма этой теории обсуждается в главах X (см. 1) и V. [c.205]

    Вещество Структура сладкого вещества и его класс Степень сладости сравнительно с сахарозой Вид источник получения [c.250]

    Среди веществ со сладким вкусом мы находим соединения с различными структурами. Так, кроме сахаров и рассмотренных выше веществ, 2-амино-4-нитрофенилпропиловый эфир и 6-хлоро-о-триптофан во много раз слаще сахарозы. [c.331]

    Для установления зависимости скорости развития дисперсных структур от фазового состава новообразований и степени гидратации вяжущего в присутствии эффективных замедлителей твердения — ВК и мелассы (основным компонентом последней является сахароза) были проведены термографические исследования и определены потери веса образцов при прокаливании. На рис. 56 показаны термограммы образцов цемента и основных минералов цемента ( gS, СдА, aS04 н смеси СдА с aSOj), полученных после трехчасовой гидратации при температуре 90° С. В случае СдА, aS04 и их смеси остальные минералы клинкера заменялись тонко размолотым кварцевым песком. [c.112]

    Действие таких широко известных замедлителей, как сахар (частично они входят в ССБ, а в наших опытах использовали мелассу, состоящую на 60% из сахарозы) и различных органических кислот, например винной, объясняется по-разному. Наряду с признанием адсорбционного механизма замедления гидратации сахарами путем уменьшения растворения исходного вяжущего в связи с действием пересыщений, поддерживаемых коллоидными частицами Са(0Н)2, рост которых задержан поверхностно-активной добавкой [383], принимается во внимание образование в суспензии сахарата кальция, более растворимого, чем Са(0Н)2, и потому снижающего выход кальция из структуры негидратированных материалов в раствор [59, 365]. [c.160]

    А ЭТИ остатки, как мы видим, могут иметь четыре различные структуры для каждого моносахарида. Ко и это еще не исчерпывает разнообразия дисахаридных структур, так как и полуацетальный гидроксил может служить местом присоединения гликозильного остатка. Примером таких дисахаридов — их называют невосстанавливающими, так как в отличие от остальных дисахаридов и от моносахаридов они не восстанавливают реагенты типа фелинговой жидкости или аммиачного раствора окиси серебра — может служить трегалоза (29). В таком дисахариде любой из двух моносахаридных остатков можно произвольно считать либо гликозильным, либо агликоном. Другой пример невосстанавливающего дисахарида — сахароза (или тростниковый сахар) (30), построенная из остатков В-глюкозы и В-фруктозы. [c.23]

    Структуру эукариотических хромосом (хроматина) изучают с помощью различных подходов, в первую очередь биохимических и электронно-микроскопических. Биохимические исследования обычно основаны на выделении препарата ядер. Ядро — самая крупная и тяж лая (по плотности) органе чла клеток. Препарат ядер довольно легко получить. Для этого ткань или клетки разрушают и центрифугируют, а затем очищают ядра, пропуская их через плотный раствор сахарозы с помощью повторного центрифугирования. Полученные ядра стабилизируют в процессе выдатения двухвалентными катионами (Са- или Mg- , полиаминами, а также 0,15. М Na l, т. е. близкой к физиологической ионной силой. Такой препарат ядер сохраняет многие прижизненные свойства, в том числе способность синтезировать РНК и ДНК- [c.234]

    Метилирование и гидролиз показывают, что (+)-сахароза содержит остаток о-глюкопиранозы и о-фруктофуранозы. [Неожиданное появление относительно редко встречающегося в сахарах пятичленного фуранозного цикла не вызвало существенных трудностей в доказательстве структуры и синтезе (+)-сахарозы.] (+)-Сахарозу можно с равным успехом называть как а-о-глю-копиранозил-р-о-фруктофуранозид или как р-о-фруктофуранозил-а-о-глюко-пиранозид. [c.972]

    Предложены " изделия, содержащие пироуглерод с плотностью 1,1-1,6 г/ м модулем упругости от 40-100 кH/мм шероховатостью поверхности до 1 мкм в качестве различного рода протезов, в том числе сердечных клапанов и их компонентов. Углеродные отложения применяются в качестве энтеро- и гемосорбентов при лечении интоксикаций, аллергий, бронхиальной астмы, артериосклероза, кардиоишемии, гепатита и др. Показано, что терапевтический эффект определяется их пористой структурой и ионообменными свойствами. Полученные водород- и металл-замещенные углеродные отложения являются эффективными катализаторами в реакциях инверсии сахарозы и гидролиза эфиров жирных кислот, а также позволяют селективно улавливать тяжелые металлы и радионуклиды. [c.104]

    Отрицательный знак изотопных эффектов А, У °2 указывает на наличие усиления гидратации данных сахаридов в тяжелой воде, поскольку дейтериевые связи более прочны, чем протиевые. Смена знака ггКл при повышенных температурах связана, вероятно, с более быстрым темпом разрушения структуры жидкой ОгО по сравнению с Н2О. Эта тенденция, по-видимому, проявляется и в случае других молекулярных агрегатов с водородной связью. Например, сахарозы при Т 298 К меняют знак с отрицательного на положительный, т.е. объем, занимаемый гидратированной молекулами ОгО сахарозы, становит- [c.96]

    Сладость Г.б -ди-О-метилсахарозы меньше, чем сладость сахарозы. Из эtиx результатов следует, что сладкий вкус в первую очередь определяется гидроксильной группой в положении Г. Исследования кристаллической структуры молекулы сахарозы показали, что прочные внутримолекулярные водородные связи связывают оба цикла [48, 49]. [c.22]

    Результаты спектрального изучения молекулярной структуры сахарозы. Общим и наиболее широко используемым ме< годом определения типа и положения заместителей, а также конформации производных сахарозы является ЯМР-спектро-скопия [83, 84]. В ПМР-спектре октаацетата сахарозы константы спин-спинового взаимодействия протонов а-о-глюко-пиранозного фрагмента (71,2 = 3,7 /2,3= 10,5 Уз.4=9,5 Л.5 —9,7 Гц) подтверждают Сркоиформацию цикла (85,86]. Соответственно константы протонов -о-фруктоф/ранозиого фрагмента (Лу, 4 = 5,5 = 5, Гц) согласуются с конформацией, в которой атомы С-2, С-3, С-5 и 0-5 лежат в одной плоскости, а атом углерода С-4 выведен из этой плоскости. [c.41]

    Ряд полисахаридов, включая различные виды крахмала, содержит один редуцирующий конец, что обусловливает возможность раскрытия-кольца и образования свободной альдегидной группы, обладающей восстановительными свойствами. В других случаях редуцирующий конец заблокирован . Один из видов такой блокировки (реализуемой, как предполагается, в инулине) состоит в том, что конец цепи имеет структуру сахарозы. В других полисахаридах возможно присутствие концевой трегалозы. Встречаются циклические полисахариды, сахарные цепи которых замкнуты в кольцо и вообще не имеют свободного редуцирующего конца. Эти полисахариды, как правило, присоединены к молекулам белка или липида. [c.115]

    Как показано в [82], по влиянию на структуру воды дисахариды могут быть приближенно разделены на три группы. В первую группу авторы [82] включили сахарозу, туранозу и палантинозу, молекулы [c.90]

    Детальное сопоставление данных по сжимаемости и стереохимических характеристик позволяет выявить одну интересную особенность. Как и в случае моносахаридов, положение ОН-группы у четвертого углеродного атома в каждом кольце дисахарида имеет решающее значение для совместимости с водной структурой [82]. Это, в частности, отражается и на органолептических свойствах сахаров. Превращение сахарозы в лактосахарозу (переход 4е —> 4а) приводит к полной потере [c.99]

    В рабочих секциях машины 14 помадный сироп перемещается в зазоре между коаксиальными цилиндрическими поверхностями неподвижного корпуса и быстров-ращающегося шнека. Эти поверхности выполнены из металла и снабжены охлаждающими водяными рубашками. Помадный сироп, соприкасаясь с холодными поверхностями, интенсивно охлаждается и превращается в пересыщенный сахарный раствор, в результате этого происходит процесс кристаллизации сахарозы. Чтобы обеспечить мелкокристаллическую структуру помадной массы, одновременно с охлаждением продукт подвергается интенсивному перемешиванию. Из машины 14 готовая помадная масса стекает в промежуточную емкость 15. В зависимости от рецептуры температура помадной массы составляет 65...85 °С. [c.135]


Смотреть страницы где упоминается термин Сахароза структура: [c.154]    [c.154]    [c.154]    [c.234]    [c.408]    [c.116]    [c.149]    [c.41]    [c.54]    [c.82]    [c.349]    [c.87]    [c.96]    [c.99]    [c.137]    [c.205]    [c.546]    [c.547]   
Основы органической химии (1968) -- [ c.561 , c.563 ]

Основы органической химии 2 Издание 2 (1978) -- [ c.29 , c.31 ]

Основы органической химии Часть 1 (1968) -- [ c.561 , c.563 ]




ПОИСК





Смотрите так же термины и статьи:

Сахароза



© 2025 chem21.info Реклама на сайте