Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сложные эфиры алифатических карбоновых кислот

    Для алифатических систем, не обладающих столь жесткой геометрией, как бициклооктан, попытки приложения указанных закономерностей натолкнулись на значительные трудности. Задача была решена Тафтом путем анализа процесса кислотного и основного гидролиза сложных эфиров алифатических карбоновых кислот. Было обнаружено значительное сходство переходных состояний этих реакций [c.176]


    В 1950-х годах бьшо предложено уравиение, аналогичное уравнению Гаммета, ио применимое для чисто алифатических соединений, которые не являются производными бензола. Используя вьшоды Ингольда, сделанные еш е в 1930 году, Тафт сравнил переходные состояния для кислотного и основного гидролиза сложных эфиров алифатических карбоновых кислот (см. разд. 18.8.2, гл. 18)  [c.301]

    Во-вторых, при установлении шкалы постоянных о была выбрана в качестве стандартной другая реакционная серия — гидролиз сложных эфиров. Однако с самого начала Тафт стремился привести величины а к единому масштабу с гамметов-скими о путем введения соответствующего условия стандартизации величина р для щелочного гидролиза сложных эфиров алифатических карбоновых кислот принималась равной р для щелочного гидролиза замещенных бензоатов. Позже величины индукционных постоянных о° для замещенных фенилов были прокалиброваны , исходя из величин а для мета-замещенных фенилов. Таким образом, величины и а должны иметь один и тот же масштаб, отличаясь друг от друга только выбором начала шкалы (стандартного заместителя). Устранение последнего несоответствия достигается применением соотношения (1.29). [c.144]

    СЛОЖНЫЕ ЭФИРЫ АЛИФАТИЧЕСКИХ КАРБОНОВЫХ КИСЛОТ [c.187]

    Сложноэфирная конденсация. Сложноэфирная конденсация — взаимодействие двух молекул сложного эфира алифатической карбоновой кислоты с образованием сложного эфира р-кетонокислоты. Эта реакция идет под влиянием основных катализаторов. Ее простейший и в то же время важнейший пример — конденсация двух молекул уксусноэтилового эфира с образованием ацетоуксусного эфира  [c.354]

    Химические сдвиги и константы спин-спинового взаимодействия для ядер 41 в сложных эфирах алифатических карбоновых кислот (5 в м. д. относительно ТМС, Л в Гц) [c.227]

    Продуктом реакций гидроксильных соединений (спиртов и фенолов) с кислотами являются сложные эфиры. Здесь мы рассматриваем лишь сложные эфиры, образованные карбоновыми кислотами и алифатическими спиртами. Реакция их образования в общем виде изображается уравнением  [c.170]

    Сложные эфиры трехосновных карбоновых кислот и алифатические спирты. ... [c.341]

    Сложные эфиры, спирты, карбоновые кислоты и простые эфиры не мешают определению алифатических амидов. В условиях определения амины, альдегиды и метилкетоны подвергаются окислению. Помехи, однако, удается устранить предварительным окислением этих групп бромом в нейтральном растворе. Большинство ароматических амидов и N-метилформамид мешают определению алифатических амидов, присутствие же высших N-алкиламидов и ди-Ы-алкиламидов не влияет на анализ. [c.168]


    Опытные значения дипольных моментов эфиров алифатических карбоновых кислот варьируют в зависимости от вида и в пределах 1,45—2,0 D [3] и мало зависят от температуры. Последнее обстоятельство указывает на жесткость конфигурации сложного эфира. Сопоставление опытных значений дипольных моментов с величинами, подсчитанными но моментам отдельных связей для каждой конфигурации [75], свидетельствует в пользу транс-структуры [c.126]

    Направление, сила и индивидуальность запаха сложных эфиров находятся в зависимости от их строения. Эфиры низших карбоновых кислот и низших алифатических одноатомных спиртов - летучие жидкости с травянистым запахом или запахом цветов, фруктов. Сложные эфиры низших карбоновых кислот и терпеновых спиртов обладают запахами цветочного направления, сложные эфиры с алифатическими и ароматическими радикалами также чаще всего имеют цветочные запахи. Из ароматических карбоновых кислот и ароматических спиртов получаются сложные эфиры, обычно не обладающие сильными запахами, но эти соединения имеют высокую температуру кипения и способны обусловливать равномерное испарение составных частей парфюмерных композиций, являясь фиксаторами запаха (см. Бензоаты). Сложные эфиры карбоновых кислот - самый обширный класс душистых веществ как по числу представителей, так и по объему промышленного производства. Они применяются в парфюмерной промышленности практически во всех видах продукции, входят в состав ароматизаторов для моющих средств и других товаров народного потребления. Сложные эфиры также широко применяются в пищевой промышленности для составления пищевых эссенций, придающих кондитерским изделиям, безалкогольным напиткам и другим продуктам запах фруктов, ягод и т. п. [c.88]

    Сложные эфиры уксусной кислоты (ацетаты) в сравнении со сложными эфирами других карбоновых кислот наиболее часто используются в качестве душистых веществ. Наряду с ацетатами низших алифатических спиртов, обладающих фруктовыми или фруктово-ягодными запахами, широко применяются ацетаты терпеновых спиртов, обладающие в основном цветочными запахами, а также ацетаты ароматических спиртов, имеющие сильный, приятный запах цветов, фруктов и зелени. Все ацетаты, применяемые в качестве душистых веществ, - жидкости, не застывающие при комнатной температуре. [c.93]

    Сложные эфиры ароматических карбоновых кислот и алифатических спиртов. [c.299]

    Существенно, что процесс элиминирования цикла типа II не ограничивается алифатическими кетонами. Так, например, аналогичные пики, связанные с перегруппировкой, наблюдаются в масс-спектрах тех альдегидов, сложных эфиров, амидов, карбоновых кислот, нитрилов, алкилбензолов и алкилхинолинов, которые могут образовывать шестичленные промежуточные состояния с переносом у-атома водорода. Фотохимия и радиационная химия большинства из этих соединений разработана не очень хорошо, тем не менее на основе их масс-спектров можно предсказать, что в структурно подходящих случаях элиминирование цикла будет одной из первичных реакций в олефинах [502, 657, 664]. По мере увеличения современных знаний в области масс-спектрометрии, фотохимии и радиационной химии, будет интересно выяснить, можно ли развить аналогичные корреляции для других типов процессов. [c.453]

    Реакция Дарзана. Реакция заключается в конденсации альдегидов и кетонов со сложными эфирами а-галогензамещенных алифатических карбоновых кислот в присутствии спиртовых растворов алкоголятов щелочных металлов. Наиболее эффективным катализатором является грет-бутоксид калия. Реакция не останавливается на стадии образования хлоргидрина. В присутствии сильного основания происходит дегидрогалогенирование с образованием глицидного эфира  [c.228]

    Ароматические сложные эфиры получаются при помощи стандартных методов (разд. 8.3.1). Эти вещества проявляют обычные свойства сложноэфирной группировки, правда, эфиры ароматических карбоновых кислот менее активны, чем соответствующие алифатические производные. Электрофильное замещение в ароматическом кольце протекает обычным образом (разд. 3.5.2, Б). [c.163]

    В предыдущих синтезах (№ 63—65) описано получе-е полиэфиров (полиарилатов) из дихлорангидридов карбоновых кислот и дифенолов. Полиарилаты на ос-ве алифатических дикарбоновых кислот могут быть кже получены реакцией ацидолиза сложных эфиров фенолов свободной кислотой [85]. [c.155]

    Рафинирование обессмоленного воска проводится путем окисления примесей смолы азотной, хромовой кислотами, в результате чего смолы окисляются до СО2 и воды. Одновременно происходит частичная деградация восков - сложные эфиры омыляются до кислот и спиртов, последние в свою очередь окисляются до алифатических карбоновых кислот. В конечном итоге получается продукт, основу которого составляют предельные карбоновые кислоты (до 90 мас.%). [c.23]


    Вулканизаты ХБК характеризуются отличной стойкостью к действию концентрированной соляной и 15%-ной фосфорной кислот, разбавленных и концентрированных растворов щелочей, низкомолекулярных алифатических карбоновых кислот, кетонов, гликолей и сложных эфиров [17]. Стойкость к растительным маслам и животным жирам несколько хуже, чем у БК, но тем не менее лучше, чем в случае НК. [c.188]

    Гидрирование алифатических карбоновых кислот и сложных эфиров [c.795]

    Гидрирование алифатических карбоновых кислот и сложных эфиров широко применяется в промышленном органическом синтезе при получении спиртов. [c.795]

    Синтез алифатических карбоновых кислот, сложных эфиров и амидов [2]. С алифатическими галогеналкилами и тозилатами [c.366]

    Таким образом, развитие отечественного производства традиционных типов сложноэфирных продуктов сдерживается недостаточным выпуском исходных алифатических спиртов и карбоновых кислот, хотя по отдельным юс видам (2-этилгексанол, себациновая кислота) объем выработки нарастает. Однако и он не в состоянии удовлетворить быстро увеличивающуюся потребность в сложных эфирах. В качестве перспективных видов сырья следует отметить нафтеновые кислоты, получаемые из них спирты, оксиэтилированные вторичные спирты и алкилфенолы, а также алифатические карбоновые кислоты - продукты окисления жидких парафинов и керогена прибалтийских сланцев, [c.8]

    Сырьем для синтеза сложных эфиров двухосновных карбоновых кислот являются алифатические одноатомные спирты и двухосновные карбоновые кислоты. Могут быть использованы спирты различного строения с числом атомов углерода от 6 до 10—12. Из двухосновных кислот для получения сложных эфиров требуемых качеств пригодны главным образом адипиновая, метиладипиновая, азелаиповая и себациновая. Источники получения кислот [c.494]

    Сырьем для синтеза сложных эфиров двухосновных карбоновых кислот являются алифатические одноатомные спирты и двухосновные карбоновые кислоты. Производятся спирты различного строения и различного молекулярного веса и их количество, очевидно, может полностью удовлетворить все требования промышленности сложных эфиров. Из двухосновных кислот для получения сложных эфиров требующихся качеств пригодны главным образом глутаро-вая, аГдипиновая, метиладишшовая, азелаиновая, себациновая  [c.102]

    Ранее всего стали известны соединения включения холеиновых кислот [310]. Дезоксихолевая и апохоле-вая кислоты, которые получаются добавлением алифатических кислот к некоторым желчным кислотам, дают соединения включения с целым рядом веществ различных типов. К последним относятся некоторые углеводороды, многие сложные эфиры, спирты, карбоновые кислоты, фенолы, эфиры и алкалоиды. Некоторые аспекты химии холеиновых кислот недостаточно ясны. Рентгенографическое изучение кристаллов этих комплексов показало, что они имеют открытые структуры [112, 146]. Дезоксихолевая кислота действует как обволакивающая скорлупа , оставляя для моле-кул- гостей канал, параллельный продольным углеродным осям. Уиланд [309] обратил внимание на противоречивое поведение кристаллических комплексов в растворе. Изучение кристаллических структур показывало, что комплексы являются соединениями включения, в которых холеиповые кислоты кристаллизуются [c.25]

    При щелочном омылении эфиров бензойной кислоты (значения р от +2,2 до +2,8) полярный эффект заместителей делается хорошо заметным то же можно получить для щелочного омыления эфира алифатической карбоновой кислоты. Вследствие этого разница в скорости омыления эфира замещенной уксусной кислоты в щелочной среде обусловлена как полярным эффектом заместителей, так и указанным ранее стерическим влиянием заместителей. Здесь Тафт постулировал, что стерическое влияние заместителей при катализируемом кислотой омылении сложных эфиров и при их омылении, катализируемом щелочью, должно быть практически равным, поскольку переходные состояния обеих реакций [(а) и (б) соответственно] различаются только отсутствием двух протонов, которые к тому же глубоко погружены Б злектроккую оболочку других атомов. [c.121]

    При окислении органических соединений наряду с гидроперекисями, кислотами, спиртами и кетонами образуются сложные эфиры, которые в ходе реакции подвергаются различным превращениям. В некоторых случаях вместо углеводородов предлагается использование сложных эфиров в качестве исходного сырья для получения карбоновых кислот. Так, уксусную кислоту можно получить окислением втор-бутилацетата [1] и этилацетата [2], а дикарбоновые и низшие монокарбоновые кислоты — при окислении метиловых эфиров монокарбоновых кислот [3, 4]. Сложные эфиры, как и кислоты, окисляются по свободнорадикальному цепному механизму. Первичным промежуточным продуктом реакции является гидроперекись, образующаяся в результате окисления метоксильной и метиленовых групп кислотного или спиртового остатка сложного эфира. Окисляемость сложных эфиров существенно зависит от структуры спиртового и кислотного остатков. Наибольшей реакционной способностью обладает соответствующая а-С—Н связь алкоксильной группы. Сложные эфиры алифатических ненасыщенных кислот окисляются по механизму, предложенному для самих кислот (см. [c.239]

    К настоящему времени изучено окисление алифатических, алициклических и ароматических углеводородов, терпенов, спиртов, альдегидов, кетонов, сложных эфиров различных карбоновых кислот, иитрило1В, гетероциклических соединений азота, гидразинов, сульфидов, элементоорганических соединений ртути, мышьяка, сурьмы и фосфора и многих других классов органических соединений. [c.102]

    Большинство эфиро1В арилкарбаминовых жислот — твердые кристаллические вещества, почти без запаха, плохо растворимые в воде, умеренно— в углеводородах и хорошо — в галоидпроизводных углевадородов, алифатических кетонах и сложных эфирах низших карбоновых кислот. [c.474]

    По такому же принципу протекает и открытый Перкиным старшим [80] синтез непредельных сложных эфиров или карбоновых кислот из альдегидов (карбонильная компонента) и ангидридов алифатических кислот (метиленовая компонента) в присутствии основных конденсирующих средств, например ацетата натрия, пиридина или тритилнатрия [81]  [c.330]

    Ароматические карбоновые кислоты этерифицируются медленнее, чем алифатические, но реакции можно ускорить введением больших количеств катализатора. В отдельных случаях скорость образования сложных эфиров у ароматических кислот близка к нулю. Зависимость между скоростью реакции и строением кислот изучена достаточно хорошо. Было найдено, что введение заместителей в ароматические кислоты снижает скорость образования сложных эфиров. Наличие заместителя в орто-положении наиболее сильно тормозит реакцию при заместителях в мета- и пара-положении скорость несколько возрастает. На основании экспериментальных исследований было выведено следующее эмпирическое правило метиловые эфиры ароматических кислот не образуются, если в кольце, рядом с карбоксильными группами, стоят заместители Alk, Аг, С1, NO2. NHa, СООН и т. д. Это можно пояснить рядом примеров. Меллитовая кислота (I) совершенно не дает эфира, пиромелли-товая же (II) образует 90% эфира, так как в ней орто-положения свободны  [c.468]

    Этот метод синтеза применим только для получения сложных виниловых эфиров, простых виниловых эфиров (из фенола) и винил-сульфидов (из тиофенола или алкилтиола) [164]. Для проведения реакции ароматическую или алифатическую карбоновую кислоту нагревают саму по себе или в каком-нибудь растворителе с дивинил-ртутью, полученной из хлорида ртути(II) и винилмагнийбромида в тетрагидрофуране [165]. В отсутствие растворителя реакция обычно проходит более чем на 50% за время меньше 5 мин при нагревании на паровой бане. Для безопасности реакцию необходимо проводить в хорошо вентилируемой тяге, поскольку дивинилртуть высоко токсична. Если проводить реакцию в инертном растворителе, можно выделить образующийся в качестве промежуточного соединения винилртутный эфир R 00Hg H = H2. Выходы виниловых сложных эфиров составляют от 38 до 74%. [c.306]

    Для улучшения термостойкости сополимера ТФЭ — Э и сохранения высоких прочностных свойств при 150—200°С предложено вводить при сополимеризации небольшие количества [1—6% (мол.)] третьего компонента, например перфтор (алкил-виниловые) эфиры, перфторбутен-1, перфторпентен-1, перфтор-пропилен [32]. Для улучщения адгезии сополимера ТФЭ — Э к металлу предложено при сополимеризации добавлять 0,001— 0,1 моль (на 1 моль ТФЭ) олефиновой кислоты (акриловой, ме-такриловой, фумаровой) н 0,01—0,5 моль олефина (алифатического, галогенированного) или сложных виниловых эфиров алкановых карбоновых кислот [33]. [c.116]


Смотреть страницы где упоминается термин Сложные эфиры алифатических карбоновых кислот: [c.199]    [c.504]    [c.249]    [c.103]    [c.353]    [c.521]    [c.28]   
Смотреть главы в:

Химия и технология пестицидов -> Сложные эфиры алифатических карбоновых кислот


Основы органической химии (1968) -- [ c.0 ]

Основы органической химии 1 Издание 2 (1978) -- [ c.0 ]

Основы органической химии Часть 1 (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Алифатические карбоновые кислот эфиры

Алифатические эфиры



© 2025 chem21.info Реклама на сайте