Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ЯМР-спектроскопия спин-спиновое расщепление

    Существенно более эффективным является применение к анализу нефтей и нефтепро у ктов спектроскопии ЯМР С [235], позволяющей подойти к исследованию как качественного, так и — что особенно важно — количественного состава нефтей. Это обусловлено большим диапазоном химических сдвигов неэквивалентных ядер углерода (200 м. д.), на порядок превышающих соответствующий интервал для протонов. Используя современные методы регистрации, в спектрах ЯМР С можно получить более узкие линии, чем в спектрах ПМР. По сравнению с последними в спектрах ЯМР С спин-спиновые расщепления обычно отсутствуют, что также упрощает интерпретацию таких спектров. Отметим общие работы, посвященные применению ЯМР С в нефтяной промышленности и нефтехимии [235, 241, 242]. [c.141]


    При оценке интегральных кривых необходимо учитывать спин-спиновое расщепление с тем, чтобы уловить все линии, относящиеся к определенному сигналу. Как на особое преимущество количественного анализа при помощи ЯМР-спектроскопии высокого разрешения можно указать на тот факт, что определение можно проводить по одному-единственному спектру, при условии что каждый компонент смеси дает сигнал в спектре. Тогда в противоположность методам инфракрасной и ультрафиолетовой спектроскопии здесь не требуется съемка спектров эталонов. Абсолютное количество исследуемого компонента можно определить, примешивая к пробе точно взвешенное количество чистого вещества, с заведомо известным содержанием протонов, играющего роль внутреннего стандарта. Этот прием часто применяют, например, при определении степени дейтерирования частично дейтерирован-ных соединений 1831. [c.258]

    Двойной резонанс. Методика спектроскопии ЯМР, используемая для упрощения спин-спинового расщепления (т. е. понижения мультиплетности, обусловленной спин-спиновым взаимодействием). Она осуществляется путем облучения образца (радио) частотой, соответствующей резонансной частоте одного из ядер, вовлеченных в спин-спиновое взаимодействие в условиях обычного эксперимента Результат этого двоякий 1) исчезновение [c.577]

    Протонные обменные 2М-спектры, представленные на рис. 9.8.1 и 9.8.2, достаточно просты, поскольку отсутствует разрешенное скалярное спин-спиновое расщепление. В большинстве систем взаимодействие приводит к появлению нуль- и многоквантовых помех (см. разд. 9.4). Эти затруднения можно обойти, если изучать обменные процессы с помощью спектроскопии ЯМР С [9.20]. Пример изучения химического обмена по сигналам С описан в разд. 9.6 инверсия цикла / ыс-декалина приводит к попарным взаимным превращениям восьми положений (рис. 9.6.3). [c.625]

    Спектры ЯМР Н, как правило, очень сложны, что обусловлено спин-спиновыми взаимодействиями протонов, приводящими к размытым резонансным областям. Как будет показано ниже, в спектроскопии ЯМР С дело обстоит значительно проще, поскольку спин-спиновые расщепления здесь обычно отсутствуют. [c.15]

    Метод ЭПР-спектроскопии чрезвычайно чувствителен при обнаружении свободных радикалов. В благоприятных условиях легко может быть зафиксировано наличие свободных радикалов при их концентрации, составляющей 10"1 М. Идентификацию свободных радикалов простых углеводородов часто удается осуществить путем анализа тонкой структуры их спектров, возникающей при спин-спиновом расщеплении на протонах, расположенных достаточно близко к центрам, на которых распределен неспаренный электрон. Большое число водородов в трифенилметильном радикале и их расположение в орто-, мета- и пара-положениях приводит к чрезвычайно сложному ЭПР-спектру, в котором обнаруживается по крайней мере 21 линия. Другие радикалы могут дать более простые спектры. Спектр метильных радикалов, генерируемых в иодистом метиле рентгеновским излучением при —196 °С, содержит 4 резонансные линии в соответствии с ожидаемым для взаимодействия электрона с п+1 протонами (см. 1, разд. 2-6,В). [c.365]


    На рис. 2.25,6 показан спектр ПМР этилового спирта, полученный при высоком разрешении, т. е. с помощью спектрометра более высокого класса. Нетрудно видеть, что этот спектр гораздо богаче полосами, чем представленный на рис. 2.25, а. Наблюдающееся при этом расщепление обусловлено так называемым спин-спиновым взаимодействием, т. е. влиянием друг на друга спинов ядер соседних функциональных групп (в данном случае протонов метильной и метиленовой группировок). Эффект спин-спинового расщепления, имеющий важное значение в спектроскопии ЯМР, открывает широкие возможности исследования этим методом взаимного влияния связей и групп в молекулах. То обстоятельство, что постоянная экранирования а определяется электронным окружением ядра, позволило ввести в спектроскопию ЯМР понятие о химическом сдвиге, сущность которого заключается в следующем. Обычно на практике не определяют абсолютные значения напряженностей полей Hn и Яо (это достаточно трудная задача), а измеряют разности напряженностей. В этом случае отсчет напряженностей производится от некоторого значения Яст, относящегося к веществу, выбранному в качестве эталонного или стандартного. Имея в виду, что [c.83]

    С.р. применяют гл. обр. в спектроскопии ПМР для упрощения расшифровки спектров и увеличения их информативности. Действие С.р. иллюстрирует рис. 1. Как видно, при введении р-дикетоната европия полностью разрешаются сигналы И не только при разных атомах С в цикле, но и сигналы Н в экваториальной и аксиальной ориентации При этом проявляется расщепление, обусловленное спин спиновым взаимодействием. Разрешение спектра смеси Л и Х-изомеров, достигаемое в присут. хирального С.р (рис. 2), достаточно для определения энантиомерного соста ва смеси. [c.307]

    В заключение мы обсудим два механизма спин-спинового взаимодействия, которые играют лишь ограниченную роль или совсем не осуществляются в спектроскопии ЯМР высокого разрешения. Первый представляет собой прямое магнитное взаимодействие ядерных моментов через пространство, уже упоминавшееся раньше (разд. 3, гл, I). Его также называют диполь-дипольным или просто диполярным спин-спиновым взаимодействием. Как показывает качественное рассмотрение, это взаимодействие ведет к расщеплению резонансного сигнала на величину АВ  [c.137]

    Уникальной особенностью спектроскопии ЯМР является косвенное спин-спиновое взаимодействие (ССВ), приводящее к расщеплению линий спектра на мультиплеты. Оно возникает в молекуле при наличии в ней нескольких ядер с ненулевым значением спина, разделенных одной или несколькими химическими связями. При взаимодействии п эквивалентных ядер А [c.418]

    Наиболее сложным вопросом при установлении структуры разветвленных сахаров является определение конфигурации у места разветвления. Такой общий для всех моносахаридов метод, как ЯМР-спектроскопия, в этом случае не может дать необходимой информации, так как разветвленные моносахариды типа А вообще не содержат протона у места разветвления, а в разветвленных моносахаридах типа Б сигнал соответствующего протона бывает сильно расщеплен в результате спин-спинового взаимодействия с протонами трех соседних углеродных атомов, что крайне затрудняет трактовку спектра. Поэтому при определении конфигурации у места разветвления приходится пользоваться другими приемами. [c.346]

    Как уже отмечалось, ядра Р , изотопное содержание которых в природном фосфоре составляет 100%, наиболее удобны после протонов и фтора для исследования методом ЯМР-спектроскопии, так как они обладают спином 2 и значительным магнитным моментом. Тем не менее прямой резонанс на ядрах Р затруднен в связи с тем, что интенсивность сигналов Р составляет лишь 6,6% от протонного сигнала (в том же поле), причем наблюдать этот сигнал трудно еще и вследствие относительно низкого содержания этих ядер в обычных органических молекулах по сравнению с протонами. Последнее обстоятельство часто приводит к значительной мультиплетности линий резонанса Р [например, в спектре ЯМР Р триметил-фосфата (СНзО)зРО сигнал фосфора расщеплен на 10 компонент] вследствие спин-спиновой связи с большим количеством протонов, что также затрудняет использование прямого резонанса на ядрах фосфора, особенно при исследовании разбавленных растворов. Поэтому изучение спин-спиновой связи ядер фосфора с водородом и фтором приобретает важную роль при исследовании [c.135]

    Атомные ядра и электроны обладают магнитными моментами. Это свойство используют в технике магнитной резонансной спектроскопии наложение магнитного поля на ядра и электроны приводит к расщеплению квантовых состояний магнитного момента на ряд энергетических уровней (расщепление Зеемана). Относительно направления приложенного магнитного поля магнитный момент ориентируется в определенных направлениях, отличающихся по магнитной энергии. Наряду с магнитным моментом, ядра и электроны имеют спиновый момент количества движения. Компонент момента количества движения вдоль направления приложенного магнитного поля является целым или полуцелым числом, кратным основной единице момента количества движения Ь (константа Планка, деленная на 2ц). Ядро (или система электронов) со спином / (или 5) могут иметь только 2/ -Ь 1 различных ориентаций в постоянном магнитном поле и, следовательно, 2/ +1 состояний с различной магнитной энергией. Переходы магнитного момента между этими состояниями, сопровождающиеся резонансным поглощением магнитной энергии, происходят под действием излучения соответствующей частоты и поляризации. Наблюдая интенсивности и частоты резонансного поглощения в исследуемом материале, можно установить детали окружения ядер и электронов. Так как большинство веществ, представляющих интерес в гетерогенном катализе, является твердыми телами, в последующем изложении будет обращено особое внимание на магнитный резонанс в твердых телах. [c.9]


    Характер спин-спинового расщепления позволил получить большое количество ценных данных о строении соединений, исследуемых методом ЯМР-спектроскопии. Протонный спектр ал-лилмагнийбромида относится к типу АХ (стр. 290—293) и поддается анализу только при допущении, что равновесие BrMg H2 H= Hj Hj= H H2MgBr [c.319]

    С развитием ПМР-спектроскопии решение вопроса о пр надлежности соединения к цис- или транс-ряру в некотор случаях значительно упростилось. Дело в том, что конст спин-спинового расщепления транс протоков (13—21 Гц) з чительно больше, чем для цис-протонов (5—16 Гц)  [c.390]

    Эффект, наблюдаемый для гомополимеров стирола, может быть также использован при анализе его сополимеров. Так, например, было показано, что спектроскопия ЯМР представляет собой хороший метод характеристики распределения мономерных остатков в сополимерах стирола и бутадиена [524] или метилметакрплата [544]. Принцип этого метода можно проиллюстрировать путем сравнения спектров, которые ожидаются для сополимеров, содержащих 50 мол.% стирола, причем стирольные остатки распределены либо случайно, либо в длинных блоках. В первом случае длинные цепи, состоящие из остатков стирола, наблюдаются редко и поэтому поглощение, характерное для фенильных атомов водорода, проявляется в виде отдельного пика, в то время как для сополимера имеет место расщепление этого ника, подобное расщеплению, отмеченному для гомополимеров стирола. Кроме того, диамагнитное экранирование, создаваемое ароматическими кольцами, влияет на положение линий поглощения сополимера, что дает возможность оценить число сомономерных остатков, располагающихся рядом с О, 1 и 2 остатками стирола. С помощью спектроскопии ЯМР изучалась также последовательность мономерных звеньев в сополимерах винилхлорида и вини-.ниденхлорида [545]. В данном случае наиболее удобно сосредоточить анализ на области спектра, содержащей линию поглощения, характерную для метиленовых атомов водорода поливинилиденхлорида. Эта линия появляется в гомополимерах винилиденхлорида в виде синглета, однако в сополимерах, в которых остатки винилиденхлорида располагаются рядом с винилхлоридными звеньями, спин-спиновое расщепление, являющееся результатом взаимодействий с а-водородными атомами, создает сателлитный пик, который может быть использован для характеристики распределения мономерных звеньев вдоль молекулярной цепи. [c.187]

    Кроме химического сдвига ценную информацию о структуре органических соединений можно получить, изучая спин-спиновое взаимодействие ядер. Это явление в спектроскопии ЯМР обусловлено магнитным взаимодействием химически неэквивалентных ядер, которое осуществляется через электронные облака атомных связей н приводит к дополнительному расщеплению сигналов в спектре. Одиако это взаимодействие быстро исчезает с увеличением расстояния. Это взаимодействие лучше разобрать на примере 1,1,2-трнх-лорэтана  [c.89]

    ЯМР-СПЕКТРОСКОПИЯ. Наличие фтора можно показать с помощью ЯМР-спектроскопии либо прямым наблюдением за ядром фтора, либо паблюдепием за расщеплением сигналов протона под действием ядра фтора. Резонансная спектроскопия фтора в данной книге не обсуждается, хотя можно сослаться на гл. 29. Некоторые типичные константы спин-спинового взаимодействия ядер водорода и фтора приведены в табл. 6-2. Влияние галогенов на химические сдвиги протонов обсуждается в гл. 29. [c.245]

    Спин-спиновое взаимодействие, передаваемое а-электрон ми, уже было представлено схематически на рис. II. 12. Мом но составить аналогичную диаграмму и для я-механизма. Ра1 смотрим группу СН с 5р -гибридным атомом углерод (рис. IV. 27, а). В первом приближении взаимодействие меж протоном и я-электроном на 2рг-орбитали невозможно, т скольку протон лежит точно в узловой плоскости этой орб1 тали. Однако из данных спектроскопии ЭПР известно, чт это заключение не верно, так как наблюдается сверхтонко расщепление линий в спектрах ЭПР ион-радикалов я-систе за счет прямого взаимодействия протона с неспаренным эле троном, расположенным на 2рг-орбитали того же углеродно  [c.130]

    Как указывалось выше, теперь спектры ЯМР С записываются исключительно с использованием спектроскопии ФП. Ее экспериментальные аспекты были весьма детально рассмотрены в гл. IX, и основные высказанные там положения в равной мере применимы и к ЯМР- С-ФП. Запись спектров проводят с использованием сигнала ТМС как внутреннего стандарта (см. разд. 2.2) и гетероядерной системы стабилизации, где резонансный сигнал Н от растворителя С0С1з служит опорным. Применяется широкополосное подавление протонов, и химические сдвиги определяются обычным способом, так как частоты линий печатаются непосредственно компьютером. Однако существует несколько проблем, связанных с развязкой от протонов, которые требуют специальных комментариев. Во-первых, исчезновение расщеплений спектральных линий лишает нас возможности измерять константы спин-спинового взаимодействия С, Н, т. е. приводит к потере ценной информации. Во-вторых, ядерный эффект Оверхаузера приводит к искажению интенсивностей, и интегрирование таких спектров вызывает сомнение. Наконец, отнесение резонансных сигналов к определенным атомам углерода в конкретной структуре никоим образом не является очевидным. [c.390]

    В разд. Непрямое спин-спиновое взаимодействие (разд. 9.3.2) было показано, что взаимодействие между соседними ядерными диполями по механизму непрямого спин-спинового взаимодействия вызывает расщепление сигналов и приводит к появлению характеристических мультиплетов. Эти сигналы содержат информацию о структуре молекул. Например, присутствие квадруплета и триплета в спектре свидетельствует о наличии этильной группы в молекуле. В разд. 4Метод ЯМР и ЯМР-спектрометр (разд. 9.3.2) мы узнали о том, что спектры ЯМР на ядрах С записывают обычно с использованием широкополосной протонной развязки, с помощью которой устраняются спин-спиновые взаимодействия. Это достигается путем облучения мощным полем с частотой, соответствующей переходу протонов. При этом ориентация спинов протонов меняется очень быстро, время жизни каждого состояния спина уменьшается и результирующее взаимодействие становится равным нулю. Исчезает расщепление сигналов, мультиплеты становятся сипглетами. Такая процедура широкополосной протонной развязки является гетероядерной развязкой, поскольку облучают протоны, а наблюдают резонансные сигналы ядер С. Возможно проведение и гомоядерной развязки эти эксперименты очень важны и используются, когда нужно в спектроскопии ПМР идентифицировать сигналы, принадлежащие взаимодействующим друг с другом протонам. В качестве примера можно привести ацетилсалициловую кислоту, ароматическая часть спектра которой приведена на рис. 9.3-30,а. Для того чтобы продемонстрировать этот подход, облучим образец резонансными частотами дублета дублетов, с центром при 6 = 7,95, соответствующего протонам Н-6 (протон в орто-положении к карбоксильной группе). Сравнивая исходный и развязанный спектр (рис. 9.3-30,6), мы видим, что дублет триплетов упростился (<У = 7,25), так что одно орто-взаимодействие теперь отсутствует. Следовательно, этот сигнал можно отнести к Н-5. Однако мы также видим упрощение другого дублета— дублета триплетов при 6 = 7,5, поскольку л ета-взаимодействие J(H-4/H-6) [c.246]

    Еще одной характеристикой спектра ЭПР является сверхтонкая структура, происхождение которой связано с взаимодействием между магнитным моментом наспаренного электрона и спинами ядер. Это взаимодействие аналогично спин-спиновому взаимодействию в ЯМР (гл. 2, разд. 3). Константа сверхтонкого расщепления А, так же как и константа взаимодействия / в ЯМР-спектроскопии, выражается в герцах Расщепление обусловлено наличием магнитного момента у ядра, вокруг которого вращается электрон, или у расположенного поблизости ядра, а также присутствием другого неспаренного электрона. Иногда наличие или отсутствие расщепления позволяет делать важные в химическом плане заключения Так, в спектре ЭПР иона металла в комплексе расщепление под воздействием ядер лиганда будет наблюдаться только в том случае, если лиганд связан с ионом ковалентной связью [c.349]

    Известно, что молекула PF5 имеет строение тригональной бипирамиды. Для нее можно было бы ожидать, что спектр ЯМР- Р будет содержать сложный мультиплет с относительной интенсивностью 2, соответствующий двум аксиальным атомам фтора, и другой мультиплет от трех экваториальных атомов фтора с интенсивностью 3. Мультиплетная структура возникает за счет спин-спинового взаимодействия ядер фтора каждого типа между собой и с ядром Р, которое имеет ядерньщ спин, равный V2. Но в действительности в спектре наблюдается только дублет с узкими компонентами. Это значит, что с точки зрения спектроскопии. ЯМР все пять атомов фтора эквивалентны, а дублетное расщепление [c.189]

    Расщепление сигналов ПМР было обнаружено в 1950 г. (Хан и Мэксуел, Проктор и Ю). В 1950 г. и последующих годах Рэмси объяснил появление химических сдвигов влиянием электронного окружения ядер данного изотопа, а расщепление сигналов — спин-спиновым взаимодействием между ядрами. Протоны, так же как и другие ядра со спином, не равным нулю, сами являются слабыми магнитами, создающими вокруг себя магнитные поля, которые могут взаимодействовать либо непосредственно через пространство (прямое спин-спиновое взаимодействие), либо вдоль цепи химических связей (непрямое спин-спиновое взаимодействие). Очевидно, что константы непрямого спин-снинового взаимодействия, зависящие от характера связей и геометрии молекулы, могут быть использованы для изучения последних. Таким образом, в самом начале 50-х годов были созданы теоретические основы для применения ПМР-спектроскопии в органической химии. [c.263]

    Для изучения фосфорорганических соединений важное значение сохраняет резонанс непосредственно на ядрах Р . В связи с появлением спектрометров с высокой напряженностью магнитного поля — около 24 кгс (100 Мгц при резонансе на протонах) — съемка спектров Р становится обычным равноправным методом наряду со спектроскопией Н и (на таких приборах резонанс Р осуществляется при частоте 40 Мгц). Однако и при использовании приборов с более слабым магнитом возможно плодотворное осуществление резонанса на ядрах фосфора. Б. И. Ионин совместно с В. Б. Лебедевым и А. А. Петровым использовал для получения спектров Р при частоте 13,1 Мгц генератор автодин. При этом оказалось удобным использовать в качестве эталона (внешнего) диэтилфосфит, спектр Р которого состоит из двух линий, вызванных расщеплением из-за спин-спиновой связи с непосредственно присоединенным протоном (рис -31). Величина расщепления ( 687 гц) может незначительно меняться в зависимости от температуры и характера примесей, но ее нетрудно определить по протонному спектру вещества. Использование такого эталона облегчает построение шкалы спектра. На рисунке представлено несколько спектров ЯМР Р . Эти спектры позволяют различить соединения, в которых диэтилфосфоновая группа соединена с углеродом в р -, вр - и р-гибридизации, благодаря чему удается оценить состав смеси а, Р-ацетиленового, алленового и Р, у-ацетиленового фосфонатов [67]. [c.264]

    Другое применение парамагнитных веществ в ЯМР-спектроскопии связано с эффектом динамической поляризации ядер. Это явление, широко исследованное Абрагамом [62], проявляется в том, что при добавлении к веществу парамагнитного соединения и при дополните.чьном облучении на частоте, близкой к частоте электронного резонанса (при использовании сильных магнитных полей), интенсивность сигнала ядерного резонанса увеличивается на 2—3 порядка. Такой метод был использован для наблюдения сигнала резонанса С при естественном содержании изотопа. В бензоле сигнал С состоял из дублета с расщеплением 159 гц, соответствующим спин-спиновой связи ядер С кольца с протонами [63]. [c.300]

    Очень велики возможности изотопа ввиду широкого диапазона химических сдвигов, большей чувствительности к структурным изменениям и простых спектров. Из-за низкого содержания он редко соседствует с другим таким обазом, редко происходит расщепление линий за счет спин-спиновых взаимодействий с С помощыо получают информацию об окружении атомов углерода, дополняя сведения по протонам. К тому же нет необходимости в ВгО, которая может иногда оказывать влияние на структуру. Однако из-за низкого естественного содержания (1%) его очень трудно обнаруживать обычными средствами. Решению этой проблемы до некоторой степени содействовало применение фурье-спектроскопии ЯМР, но чувствительность метода все еще ниже, чем в случае протонов. Окончательное решение задачи повышения чувствительности дает развитие методов обогащения хотя наряду с очевидным преимуществом, которое дает обогащение, появляются трудности, связанные с расщеплением линий. Однако даже несмотря на остающуюся проблему низкой чувствительности, уже заметен вклад ЯМР- С в биохимию. [c.515]


Смотреть страницы где упоминается термин ЯМР-спектроскопия спин-спиновое расщепление: [c.321]    [c.223]    [c.67]    [c.298]    [c.6]    [c.521]    [c.216]    [c.233]    [c.87]    [c.217]    [c.223]    [c.313]    [c.355]    [c.237]    [c.39]    [c.355]   
Основы органической химии (1968) -- [ c.52 , c.56 ]

Основы органической химии 1 Издание 2 (1978) -- [ c.64 , c.67 ]

Основы органической химии Часть 1 (1968) -- [ c.52 , c.56 ]




ПОИСК





Смотрите так же термины и статьи:

Спин-спиновое расщепление

Спин-эхо

Спиновое эхо и -спектроскопия

Спины

ЯМР-спектроскопия расщепление

ЯМР-спектроскопия спин-спиновой



© 2025 chem21.info Реклама на сайте