Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойная связь Тройная связь кислот

    Анализируемые соединения могут содержать цис- и транс-двойные связи, тройные связи, сопряженные структуры, разветвленные или циклические структуры, эпокси- и другие группировки, и поэтому их идентификация методом ГХ по временам удерживания считается ненадежной обычно для обнаружения ненасыщенных соединений, определения их ненасыщенности и установления структуры прибегают к помощи гидрирования. Так, например, метиловые эфиры жирных кислот, различающиеся по числу углеродных атомов и ненасыщенных связей в молекуле, во многих случаях имеют почти одинаковые времена удерживания очень часто смеси этих соединений удается разделить и количественно определить с использованием гидрирования. [c.213]


    Одна из основных особенностей атомов углерода, азота, кислорода и фтора состоит в том, что они в гораздо большей степени, чем другие элементы, способны образовывать двойные и тройные связи. Это связано с высокой электроотрицательностью, обусловленной большим зарядом остова, а также сильным отталкиванием между электронными парами на валентной оболочке. Вообще двойные и тройные связи образуют только сравнительно электроотрицательные элементы, т. е. такие, как углерод, азот, кислород и фтор, которые могут притягивать и прочно удерживать в области одной связи две или более электронные пары, несмотря на их взаимное отталкивание. Еще одна причина того, почему эти элементы с переполненной валентной оболочкой стремятся к образованию кратных связей, состоит в том, что двойная связь занимает в пространстве меньше места, чем две одинарные связи то же можно сказать об относительных размерах тройной связи и трех одинарных связей. Поэтому образование кратных связей как бы способствует уменьшению взаимодействия между электронными парами. Показательны в этом отношении угольная 0=С(0Н)2 и кремниевая Si(0H)4 кислоты известно также, что карбонильные соединения не полимеризуются, в то время как аналогичные соединения кремния (силиконы) — полимеры с одинарными связями  [c.105]

    Галоидировать присоединением можно ненасыщенные углеводороды с двойными или тройными связями, обрабатывая их галоида-ни, галоидоводородными кислотами или хлорангидридами кислот. [c.260]

    Различные производные углеводородов, содержащие двойные и тройные связи (хлоролефины, ненасыщенные спирты, альдегиды, карбоновые кислоты и т. д.), также проявляют способность к перечисленным реакциям. [c.390]

    При этом анализе непредельны(з поглощаются бромной водой или олеумом, т. е. серной кислотой, содержащей избыток серного ангидрида. При поглощении бромной водой происходит присоединение брома по месту двойной или тройной связи углеводорода с образованием соответствующих дибромидов и тетрабромидов по уравнениям [c.830]

    Этиленовые и ацетиленовые углеводороды и другие непредельные органические соединения способны присоединять по месту двойных и тройных связей элементы галогеноводородных кислот, образуя соответственно моно- или дигалогенпроизводные. Известно, что наиболее легко присоединяется по месту двойных связей HJ, наиболее трудно—НС1. [c.777]

    Под действием щелочного пероксида водорода триалкилбораны можно окислить до эфиров борной кислоты [237]. Реакция не затрагивает двойные или тройные связи, альдегиды, кетоны, галогениды или нитрилы. Группа К не подвергается перегруппировке. Эта реакция служит одной из стадий метода гидро-борирования, используемого для превращения олефинов в спирты (т. 3, реакция 15-11). Предлагаемый механизм реакции включает перемещение группы К от бора к кислороду [237]  [c.454]


    Ненасыщенные углеводороды легко присоединяют галогены, кислород, кислоты и т. п. В молекулах ненасыщенных углеводородов имеются кратные двойные или тройные связи между углеродными атомами в них, помимо о-связи, имеется одна или две я-связи таковы Н2С = СН2 — этилен НС = СН — ацетилен и т. д. [c.465]

    Эти двойные или тройные связи появляются в таких молекулах, как молекула уксусной или синильной кислоты  [c.54]

    Чаще всего, однако, для окисления вторичных спиртов до кетонов в качестве окислителя используют реагент Джонса - раствор строго рассчитанного количества СгОз Е водной серной кислоте. Нри этом спирт, растворенный в ацетоне, как бы титруется этим реагентом ири 0-25 °С. Преимущество метода состоит в том, что окисляемое вещество находится в растворе в ацетоне, и реакционная смесь разделяется на две фазы нижнюю, содержащую соли хрома (III), и верхнюю, содержащую продукты реакции. Другое важное достоинство реагента Джонса состоит в том, что вторичные спирты, содержащие двойную шш тройную связь, быстро окисляются до кетоиов без затрагивания кратных связей  [c.889]

    Холодная концентрированная серная кислота. Серная кислота относится к сильным кислотам она может протонировать и несвязанные электроны, и я-электроны двойной или тройной связи. [c.376]

    Влияние кратных связей и функциональных группировок на поведение вещества при ГЖХ, а также эффекты, возникающие из-за различий в положении двойных или тройных связей, настолько хорошо изучены, что большой объем информации о строении соединения может быть извлечен непосредственно из данных по его удерживанию одной или несколькими стационарными фазами. Природные смеси, содержащие только наиболее распространенные жирные кислоты, обычно идентифицируют исключительно этим методом. Такой метод обычно дает удовлетворительные результаты для основных компонентов смесей, однако всегда существует опасность, что соединения необычного строения, присутствующие в следовых или чуть больших количествах, могут быть неверно идентифицированы. [c.22]

    В них реакционноспособной двойной или тройной связи обычно приводит к присоединению, а не к замещению. В отличие от алкенов и алкинов ароматические улеводо-роды сравнительно легко вступают в реакции замещения. Например, при нагревании бензола в смеси азотной и серной кислот водород замещается нитро-группой ЫОз  [c.426]

    Производные фурана вступают в диеновый синтез с большим числом диенофилов, содержащих двойную или тройную связь. В результате размыкания кислородно о мостика в ад-дуктах происходит построение шестичленного карбоцикла [1093]. Так, ароматизация при действии кислот аддуктов (3i), полученных реакцией замещенных фуранов (30) с малеиновым ангидридом, использована для синтеза замещенных фталевых ангидридов (32), гидрирование одной двойной связи в аддуктах с дизамещенными ацетиленами (34) или с дегидробензолом, (33) и последующая ароматизация под действием кислоты — для синтеза производных бензола и нафталина соответственно Обработка кислотой аддуктов фуранов с ацетиленовыми диенофилами служит методом синтеза фенолов и нафтолов так, фенол (35) получают из аддукта (34), образовавшегося при реакции фурана (30) с диметилацетилендикарбоксилатом (36). Аддукт (33 R=H) фурана с дегидробензолом в метанольном растворе НС1 количественно превращается в нафтол-1. Ретродиено-вый, термический распад аддуктов применяется для синтеза труднодоступных 3,4-дизамещенных фуранов, например эфира дикарбоновой-3,4 кислоты (38) из аддукта (34), [c.485]

    Азот отличается от остальных элементов V группы также своей способностью образовывать двойные и тройные связи, используя для этого р-орбитали (я-связи, стр. 98), в то время как у высших гомологов азота эта возможность отсутствует. Эти высшие гомологи с О, N и 8 могут образовывать двойные связи, но лишь при использовании одной -орбитали и только в сопряженных системах, например кислородных кислотах и дихлоридфосфорнитридах. [c.456]

    В насыщенных жирных кислотах все свободные связи углеродных атомов заполнены водородом. Такие жирные кислоты не имеют двойных или тройных связей в углеродной цепи. Ненасыщенные жирные кислоты имеют в углеродной цепи двойные связи (-9=9-), первая из которых возникает между девятым и десятым атомами углерода от карбоксильной группы. Жирные кислоты с тройными связями (-С=С-) встречаются редко. Жирные кислоты, содержащие две и более двойных связей, называются полинена-сыщенными. Примером насыщенной жирной кислоты может служить стеариновая кислота, а ненасыщенной, имеющей одну двойную связь, — олеиновая, что видно из их пространственной модели и структурной формулы  [c.186]

    В этой главе мы прошли долгий путь рассуждений, начав с рассмотрения сравнительной химии элементов В, С, N и Si. Углерод несомненно играет особую роль, обусловленную наличием у его атомов одинакового числа валентных электронов и орбиталей, отсутствием отталкивающих неподеленных электронных пар и способностью образовывать двойные и тройные связи. Простые алканы, или соединения углерода и водорода, с простыми связями иллюстрируют многообразие соединений, которые может образовывать углерод благодаря своей способности создавать длинные устойчивые цепи. Алкилгалогениды - это своеобразный мостик от алканов с их сравнительно низкой реакционной способностью к изобилию производных углеродов спиртам, простым эфирам, альдегидам, кетоиам, сложным эфирам, кислотам, аминам, аминокислотам и соединениям других типов, которые не обсуждались в данной главе. Способность углерода образовывать двойные и тройные связи была проиллюстрирована на примере алкенов и алкинов, она играет чрезвычайно важную роль при образовании сопряженных и ароматических молекул. [c.337]


    Оксид алюминия ( APTW 6-09-5296—69, ч. для хроматографии ) — наиболее активный и доступный сорбент, обладающий удельной поверхностью 100—200 м г. На оксиде алюминия имеется несколько типов активных адсорбционных центров, Одни из них избирательно сорбируют кислоты, другие — основания. При этом для кислот рЛ <5 и оснований с /7Л >9 характерна хемосорбция. Среди адсорбционных центров, сорбирующих основания, имеются и такие, которые образуют комплексы с ароматическими углеводородами, что позволяет использовать оксид алюминия для разделения последних. Оксид алюминия эф( )ективен также для разделения ациклических углеводородов с различным числом двойных и тройных связей. [c.57]

    Кремний во многих элементооргаиических соединениях обычно имеет ковалентность близкую к четырем и так же, как и углерод, — тетраэдрическую направленность ковалентных связей. Связь его с углеродом малополярна. Связи кремния Si-Si и Si-Н легко разрушаются в полярных средах, а соответствуюшие соединения энергично реагируют с кислородом. Устойчивых кремнийорганических соединений, по своей структуре и составу аналогичных органическим соединениям с двойной или тройной связью между атомами кремния, не существует. Это связано с общим свойством для элементов третьего периода неспособностью к образованию прочных -связей. Поэтому отсутствуют устойчивые кремниевые аналоги органических соединений ароматических углеводородов, альдегидов, кетонов, карбоновых кислот, сложных эфиров. [c.593]

    Многие карбоновые кислоты успешно поддаются декарбоксилированию, либо в свободном виде, либо в виде солей, однако это не распространяется на простые жирные кислоты [350]. Исключение составляет уксусная кислота, которая в виде ацетата при нагревании с основанием с хорошим выходом дает метан. Декарбоксилированию успешно подвергаются те алифатические кислоты, которые содержат определенные функциональные группы, а также двойную или тройную связь в а- или -положении. Некоторые из них приведены в табл. 12.2. Декарбоксилирование ароматических кислот см. реакцию 11-41. При декарбоксилировании а-цианокислот могут образовываться или нитрилы, или карбоновые кислоты в зависимости от того, гидролизуется или нет цианогруппа в ходе реакции. Помимо соединений, перечисленных в табл. 12.2, декарбоксилирование можно провести для а,р-ненасыщенных и а,р-ацетиленовых кислот. Декарбоксилирование а-галогенозамещенных кислот сопровождается элиминированием [351]  [c.469]

    Косвенный метод восстановления [239] двойной связи заключается в гидролизе боранов (полученных по реакции 15-13). Триалкилбораны можно гидролизовать при кипячении с карбоновыми кислотами [240], а моноалкилбораны КВНг гидролизуются под действием оснований [241]. При восстановлении соединений с тройными связями образуются цис-олефкны [242]. [c.180]

    Илид фосфора также может содержать двойные или тройные связи и некоторые функциональные группы. Простые илиды (Р,Р = водород или алкил) высоко реакционноспособны и взаимодействуют с кислородом, водой, галогеноводородными кислотами и спиртами, а также с карбонильными соединениями и сложными эфирами, поэтому реакцию следует вести в отсутствие таких веществ. Если в а-положении илида содержится электроноакцепторная группа, например OR, N, OOR, СНО, то такие соединения оказываются значительно более стабильными. Устойчивость возрастает из-за делокализации заряда на атоме углерода вследствие резонанса  [c.399]

    Действие сильных окислителей [43]. Вторичные спирты легко окисляются в кетоны бихроматом в кислой среде [44] при комнатной температуре или небольшом нагревании. Это наиболее распространенный реагент, хотя применяют также другие окислители (например, КМп04, Вгг, МпОг, тетроксид рутения [45] и т. п.). Раствор хромовой и серной кислот в воде известен под названием реактива Джонса [46]. Титрование реактивом Джонса ацетонового раствора вторичных спиртов [47] приводит к быстрому их окислению до кетонов с высоким выходом, причем при этом не затрагиваются двойные и тройные связи, которые могут присутствовать в молекуле субстрата (см. реакцию 19-10), и не происходит эпимеризации соседнего хирального центра [48]. Реактив Джонса окисляет также первичные аллильные спирты до соответствующих альдегидов [49]. Широко применяются также три других реактива на основе Сг(У1) [50] дипиридинхром (VI)оксид (реактив Коллинса) [51], хлорохромат пиридиния (реактив Кори) [52] и дихромат пиридиния [53]. МпОг также отличается довольно специфическим действием на ОН-группы и часто используется для окисления аллильных спиртов в а,р-ненасыщенные альдегиды и кетоны. Для соединений, чувствительных к действию кислот, применяют СгОз в ГМФТА [54] или комплекс СгОз — пиридин [55]. Гипохлорит натрия в уксусной кислоте полезен для окисления значительных количеств вторичных спиртов [56]. Используют и окислители, нанесенные на полимеры [57]. Для этой цели применялись как хромовая кислота [58], так и перманганат [59] (см. т. 2, реакцию 10-56). Окисление перманганатом [60] и хромовой кислотой [61] проводят также в условиях межфазного катализа. Межфазный катализ особенно эффективен в этих реакциях, поскольку окислители нерастворимы в большинстве органических растворителей, а субстраты обычно нерастворимы в воде (см. т. 2, разд. 10.15). При проведении окисления действием КМп04 использовался ультразвук [62]. [c.270]

    Как уже было указано, двухосновные карбоновые кислоты содержат в молекуле две карбоксильные группы, и их поэтому называют также дикарбоновыми кислотами. Различают предельные и нтре блбные двухосновные кислоты первые являются производными предельных углеводородов, вторые — непредельных и содержат в молекулах двойные или тройные связи между углеродными атомамп. [c.173]

    Обмен галогена на водород в галогепорганнческих соединениях с галогеном яри двойной или тройной связи часто удается под действием амальгамы алюминия [373], алюмогидрида лития [374], а также цинковой ныли в смеси пиридина и уксусной кислоты [375], причем кратные снязи между атомами углерода по затрагиваются, Под действием амальгамы, натрия и первую очередь чаще всего происходит гидрирование по двойной связи, как, например, в випилгалигепидах. [c.73]

    Ввиду того что а, р-ненасыщенные кислоты с двойной и тройной связями не удается подвергнутьэлектролизу по Кольбе, нет ничего удивительного в том, что ароматические кислоты с карбоксильной группой, непосредственно связанной с бензольным ядром, также не реагируют в сколько-нибудь заметной степени в обычных условиях реакции Кольбе [49, 54, 55]. Это ограничение не относится к кислотам типа СбНб(СН2)пСООН [36, 54, 82, 94 см., однако, 20]. [c.18]

    Алюмогидрид лития широко используется в органическом синтезе как быстрый и сильный (даже при низкой температуре) селективный восстановитель, обеспечивающий количественное протекание реакций восстановления и высокую чистоту продуктов. Алюмогидрид лития превращает кислородсодержащие органические соединения (альдегиды, кислоты и их ангидриды, кетоны и сложные эфиры) в соответствующие спирты, галогенпронзводные углеводородов — в соответствующие углеводороды и восстанавливает нитрилы до первичных аминов. При этом двойные и тройные связи в исходных соединениях не нарушаются. Алюмогидрид лития восстанавливает даже те соединения, которые вследствие сте-рических препятствий восстанавливаются другими восстановителями с трудом [80, 92]. [c.23]

    Химик А. Бушарда в 1879 г. установил возможность превращения изопрена в каучукоподобный материал полимеризацией в присутствии соляной кислоты. Русский химик И. Кондаков в 1900 г. получил гомолог изопрена 2,3-диметил-1,3-бутадиен и доказал возможность получения из него каучукоподобного материала. Из этого вещества в Германии во время первой мировой войны стали изготовлять так называемый метилкаучук. Однако из-за низких технологических свойств и высокой стоимости к концу войны производство метилкаучука в Германии было прекращено. Во второй половине XIX века русские химики А. Бутлеров, А. Фаворский,-М. Кучеров, Н. Мариуца, Б. Бызов и другие начали работы по синтезу соединений с двойными и тройными связями, пригодных для получения синтетического каучука (СК), близкого по свойствам к натуральному. Для этого нужно было установить структуру НК. В 1924 г. немецкий химик Т. Штаудингер озонированием НК получил озонид С оН1бОб и установил, что молекула НК состоит из изопентено-вых (метилбутеновых) групп [c.6]

    Стимулирующее действие малых концентраций ингибиторов впервые набл дала И. Н. Путилова [43, с. 35]. На примере большой группы непредельн соединений, содержащих двойные и тройные связи было установлено, что м, лые концентрации этих добавок стимулируют коррозию Ст2 в серной и сол ной кислотах. Концентрация, вызывавшая стимулирование, зависела от пр роды органического вешества и составляла для веществ с двойными связя аллиловый спирт, акриловая кислота, метакриловая кислота, акрнлонитри. 5-10 М, для ацетиленовых соединений 10- М. Увеличение концентрац непредельных соединений приводило к устойчивому ингибированию. На рис. 5 Построенном по данным работы (43, с. 35], четко видно стимулирующее действ малых концентрацпп непредельных соединений. [c.50]

    Число полученных до настоящего времени фтористых органических соединений очень мало по сравнению с числом других галоидных соединений. В особенности мало изучены соединения алифатического ряда. Причина этого кроется в отсутствии хорошего общего метода их получения. Имеется много общих методов синтеза галоидных соединений, но все они мало пригодны для получения фтористых производных. Как известно, все эти методы — фторирование органических соединений свэбэдным фторэм, присоединение фтора или фтористоводородной кислоты к соединениям с двойной или тройной связью, замещение фтором гидроксильной группы— отличаются плохими выходами, и результаты их лишь в исключительных случаях оказываются удовлетворительными [1]. [c.127]


Смотреть страницы где упоминается термин Двойная связь Тройная связь кислот: [c.288]    [c.186]    [c.393]    [c.49]    [c.171]    [c.297]    [c.42]    [c.326]    [c.152]    [c.14]    [c.279]    [c.206]    [c.120]    [c.269]    [c.96]    [c.369]    [c.187]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.219 , c.220 ]




ПОИСК





Смотрите так же термины и статьи:

Двойная связь

Двойные тройные

Связь тройная



© 2025 chem21.info Реклама на сайте