Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды полициклические, окисление

    Боковые цепи, понижая стойкость ядра, увеличивают способность нафтенов окисляться молекулярным кислородом. Чем больше заместителей в ядре, чем выше их молекулярный вес, тем менее стоек нафтеновый углеводород к окислению. Окисление нафтеновых углеводородов в основном протекает по месту присоединения боковой цепи или в полициклических соединениях — в месте соприкосновения колец и то и другое обусловливается наличием в молекуле третичного углеродного атома. Глубокое окисление в большей части сопровождается разрывом полиметиленового кольца в месте присоединения боковых цепей. [c.268]


    В нефти и продуктах ее перегонки находятся соединения, содержащие кислород и серу вместе. Это—нейтральные смолы, асфальтены и асфальтогеновые кислоты, часто встречающиеся в значительных количествах в высококипящих дестиллатах и остатках. Они принадлежат к высшим полициклическим соединениям с короткими боковыми цепями. Согласно Маркуссону [81] атомы кислорода и серы в этих соединениях находятся в мостиках , т. е. в середине циклов, и связывают атомы углерода в циклы. Содержание кислорода в нейтральных смолах и асфальтах достигает 5— 10% и содержание серы 0,5—5%. При гидрогенизации нефтяных продуктов смолы и асфальтены превращаются в углеводороды, а находящиеся в них кислород и сера дают воду и сероводород. С другой стороны, нейтральные смолы и асфальтены могут быть получены из высокомолекулярных полициклических углеводородов путем окисления. Эти реакции показывают, что имеется очень тесная связь между полициклическими углеводородами и нейтральными смолами и асфальтенами. Нужно упомянуть, что в результате окисления парафиновых углеводородов или длинных парафиновых боковых цепей получаются преимущественно кислоты, тогда как нейтральные смолы образуются в результате окисления ароматических углеводородов. [c.98]

    При окислении нафталина или о/) по-ксилола кислородом воздуха с 70—80 %-ным выходом получается фталевый ангидрид высокой чистоты. Сообщается также [347], что сырьем для производства фталевого ангидрида могут служить и другие полициклические ароматические углеводороды, содержащиеся в каменноугольной смоле. Процесс окисления нафталина или орто-ксилола во фта- [c.589]

Рис. 2. Влияиие полициклических ароматических углеводородов иа окисление сернистого масла Рис. 2. Влияиие <a href="/info/845724">полициклических ароматических углеводородов</a> иа <a href="/info/14903">окисление сернистого</a> масла
    Изучалось тормозящее действие полициклических углеводородов на окисление бензальдегида [110]. 10 мл бензальдегида окисляли при 20° С без ингибитора и в присутствии 5 10- моля ароматического углеводорода (табл. 73). Изучение кинетики окисления бензальдегида при 60° С с инициатором (перекисью бензоила) в присутствии разнообразных полициклических углеводородов [111, 112] показало существование определенной связи между тормозящим действием ароматического углеводорода и индексом свободной валентности атомов углерода [ИЗ]. Индекс свободной [c.288]


    В случае производных бензола большая скорость отщепления протона (II) ведет к замещению, а не к присоединению, но, как показывают многие исследования по галогенированию высших ароматических углеводородов, полициклические ароматические соединения по поведению гораздо более напоминают олефины, и поэтому может происходить присоединение к начальному катиону (IV). Затем быстро протекает дальнейшее окисление промежуточного спирта (V) с образованием хинона  [c.129]

    В 3.17] показано, что указанные расхождения являются следствием склонности полициклических ароматических и нафтено-ароматических углеводородов к осмолению при длительном хранении и в процессе определения диэлектрических потерь при нагреве. Добавление к фракции ароматических углеводородов ингибиторов окисления, хранение и нагрев образца в электроде для определения диэлектрических потерь в среде инертного газа снижают рост б фракции. [c.175]

Рис. 8. Образование продуктов окисления в тяжелых (полициклических) ароматических углеводородах и 4%-ном растворе ПМА в этих углеводородах при окислении на приборе барботажного типа. Обозначения те же, что и на рис. 4. Рис. 8. <a href="/info/1547532">Образование продуктов окисления</a> в тяжелых (полициклических) <a href="/info/7163">ароматических углеводородах</a> и 4%-ном растворе ПМА в <a href="/info/422435">этих углеводородах</a> при окислении на приборе <a href="/info/818978">барботажного типа</a>. Обозначения те же, что и на рис. 4.
    Стойкость ароматических углеводородов к окислению зависит от их строения. Полициклические ароматические [c.13]

    Разность между скоростями сульфирования ароматических моно-ядерных углеводородов и последующего сульфирования образовавшихся на первой стадии моносульфокислот достаточно велика, что позволяет достичь значительной конверсии в необходимые продукты. Однако для высших ароматических полициклических соединений (антрацен, фенантрен) эта разность невелика, поэтому в большинстве случаев образуется много как моно-, так и полисульфокислот. В этом случае скорость окисления также достаточно велика. [c.324]

    Возможность подобных преобразований чистых нафтеновых углеводородов при окислении установлена Н. И. Черножуковым и С. Э. Крейном [1]. Повидимому, и при совместном присутствии нафтено-парафиновых и нафтено-ароматических углеводородов полициклические нафтеновые углеводороды являются неустойчивыми и в присутствии кислорода претерпевают указанные выше изменения. [c.113]

    Г. И. Кичкин и А. С. Великовский [97] показали, что с увеличением в масле количества полициклических ароматических углеводородов склонность масел к окислению в тонком слое уменьшается. В этом можно усмотреть известную аналогию с тем, что говорилось выше об окислении масел в объеме и о роли при этом ароматических углеводородов. [c.73]

    Для тяжелого нефтяного сырья предложена схема образования н окисления коксовых отложений в реакторе, включающая последовательное (консекутивное) термическое и окислительное превращение преимущественно асфальто-смолистых соединений, а также полициклических ароматических углеводородов на катализаторах, включающих оксиды [c.95]

    В ТО же время более высокая избирательность этого растворителя позволяет наиболее полно извлечь из сырья полициклические ароматические углеводороды и смолы, что дает возможность получать масла с более высоким индексом вязкости, но меньшей стабильностью против окисления. Характеристика депарафинированных масел, предварительно очищенных НМП и фенолом, приведена ниже  [c.111]

    Это можно, по-видимому, объяснить повышенным содержанием смол, полициклических ароматических углеводородов и малоактивных сернистых соединений во вторичных дистиллят ах, оказывающих антикоррозионное действие в присутствии воды по двум механизмам. В области малых концентраций - путем предотвращения окисления углеводородной части дистиллятов при сравнительно высоком содержании - вследствие образования на поверхности металла защитной пленки. [c.97]

    Для повышения выхода кокса из прямогонных остатков предпочтительно использовать гудрон, имеющий более высокую коксуемость. В отдельных случаях приходится отходить от этого общего правила. При выдаче рекомендаций для коксования прямогонных остатков эхабинских (сахалинских) нефтей нами был выбран мазут, а не гудрон, так как бензиновая фракция, полученная при коксовании гудрона (в полную противоположность мазуту), оказалась настолько нестабильной, что не поддавалась обычным методам очистки. Применение специальных методов очистки было мало эффективно. По-видимому, в вакуумном отгоне эхабинской нефти нафтенового основания находятся в повышенном количестве гомологи нафталина и другие полициклические ароматические углеводороды, которые, по данным Н. И. Черножукова и С. Э. Крейна [274], являются эффективными ингибиторами против окисления нафтеновых и парафиновых углеводородов молекулярным кислородом, а при отгоне вакуумного газойля из остатка эти естественные ингибиторы удалялись. [c.25]


    Теоретические основы. При обработке серной кислотой из масляной фракции удаляются асфальтосмолистые вещества, непредельные углеводороды, нафтеновые кислоты, частично сернистые соединения, полициклические ароматические углеводороды. Под воздействием серной кислоты в сырье протекают реакции окисления и полимеризации асфальтосмолистых веществ и сульфирования части ароматических и нафтеновых углеводородов. [c.250]

    Образование новых молекул в результате сочетания двух или большего числа молекул углеводородов и образование ароматических структур в результате дегидрирования способствуют появлению в битуме более жестких структур — асфальтенов. Эти новые полициклические ароматические компоненты изменяют первоначальную коллоидную структуру битума. Смолы и в меньшей степени масла превращаются при окислении сернистым ангидридом в асфальтены. Величина отношения асфальтены/смолы возрастает, и асфальтены коагулируют — битум переходит из золя в гель. Сера за счет еще невыясненного механизма во время реакции внедряется в углеводородные структуры, что важно для повышения твердости. После завершения реакции кислород сернистого ангидрида в окисленном продукте не обнаруживается он удаляется в виде реакционной воды. Это, пожалуй, самое убедительное свидетельство того, что термин окисление здесь неуместен, а скорее — дегидроконденсация насыщенной и полу-насыщенной (нафтено-ароматической) частей сырья. [c.137]

    Способность к окислению ароматических углеводородов также зависит от строения и растет с увеличением числа колец. В результате окисления полициклических ароматических углеводородов [c.264]

    При окислении полициклических ароматических углеводородов целесообразнее получать кислоты и ангидриды с большим числом атомов углерода (например, из фенантрена не фталевый, а дифеновый ангидрид). Это не только исключает сгорание значительной части сырья до диоксида углерода и воды, но и дает вещество с новыми свойствами, в частности, с повышенной термостойкостью. Однако получение таких продуктов связано с усложнением технологического процесса. [c.101]

    Химические методы используют для определения в смесях содержания полициклических ароматических углеводородов. Так, антрацен определяют после окисления его хромовым ангидридом в уксусной кислоте в виде антрахинона либо гидролизом продукта взаимодействия антрацена и малеинового ангидрида с последующим титрованием водного раствора малеиновой кислоты [43, с. 366— 369]. Последний метод пригоден для анализа технического антрацена. [c.132]

    Арены с короткими алифатическими боковыми цепями и полициклические углеводороды, циклы которых соединены промежуточной цепочкой углеродных атомов (дифенилметан и т. п.) менее стойки к окислительному воздействию кислорода. При их окислении образуются также в основном фенолы и продукты конденса-дии (смолы). [c.239]

Таблица 3.3. Вольтамперные характеристики полициклических ароматических углеводородов при окислении в ацетонитриле. На фоне 0,1 М тетраэтиламмоний перхлората при 25 °С отн. А I 0,01 М АгС104 [14] Таблица 3.3. <a href="/info/584970">Вольтамперные характеристики</a> <a href="/info/845724">полициклических ароматических углеводородов</a> при окислении в ацетонитриле. На фоне 0,1 М тетраэтиламмоний перхлората при 25 °С отн. А I 0,01 М АгС104 [14]
    Основным процессом технологии производства нефтяных масел является их очистка избирательными растворителями, предназначенная для удаления из масля ных дистиллятов и деасфаль-тизатов смолистых веществ и полициклических ароматических и нафтено-ароматических углеводородов с короткими боковыми цепями, а также серосодержащих и металлорганических соединений. В этом процессе закладываются такие важнейшие эноплуа-тационные характеристики масел, ка вязкостно-температурные свойства и стабильность против окисления. Эффективно сть селективной очистки обусловлена. качеством сырья, природой и расходам растворителя, температурой процесса, кратностью обработки и конструктивными особенностями оформления блока экстракции. [c.90]

    Для получения карбоновых кислот производных полициклических углеводородов, например, нафталинкарбоновых кислот из соответствующих им гомологов нафталина, удобным окислителем оказался водный раствор бихромата натрия при работе в автоклаве при 250 °С, выходы большей частью выше 90% [421]. Окисление другими окислителями, как известно, часто приводит в случае полициклических углеводородов к окислению ароматического ядра, не затрагивая алкильной группы, с образованием гомологов хинонов. [c.1805]

    Окисление является следующей побочной реакцией, более часто наблюдающейся при сульфировании полициклических углеводородов и.пи полиалкилированных производных бензола, особенно нри повышенных температурах. Этому типу реакции отдавалось предпочтение на более ранней стадии развития промышленного процесса окисления нафталина олеумом до фталевого ангидрида в присутствии ртути в качестве катализатора. [c.525]

    Аналогичным образом здесь снова следует ожидать, что склонность к полисульфированию и окислению должна быть связана с полициклическими углеводородами. [c.538]

    Су1цествует связь между нейтральными смолами, асфальте-1[ампи высокомолекулярными полициклическими углеводородами. Так, ири окислении тяжелых ф ракций нефти, содержащих высоко- [c.334]

    Исключительно стабильны против действия кислорода воздуха голоядерные ароматические углеводороды бензол, нафталин, антрацен, фенантрен, дифенил и др. Они очень мало изменяются даже при высоких температурах и давлениях. Ароматические углеводороды с алифатическими цепями и полициклические ароматические углеводороды по стабильности, несколько уступают моно -и бициклическим. С увеличением числа и длины боковых цепей стабильность ароматических углеводородов падает. Наличие третичного углеродного атома, несимметричность строения, усложненность молекулы также снижают иу стойкость к окислению. Наф-тено-ароматические углеводоролдл одинакового строения с аро- [c.14]

    Из приведенных данных видно, что знание закономерностей, связывающих канцерогенность высокомолекулярных полициклических конденсированных ароматических углеводородов с их строением, даст в руки человека мощные химические средства в борьбе за снижение канцерогенности продуктов, вырабатываемых в ряде отраслей химикотехнологических производств, в том числе и на нефтеперерабатывающих заводах, и откроет новые пути устранения возможности воздействия на людей, занятых на этих предприятиях, канцерогенно-активных веществ. В борьбе за сокращение случаев раковых заболеваний в результате длительного воздействия на кожный покров человека канце-рогенно-активных химических веществ процессам каталитического гидрирования и окисления, как химическим методам дезактивации канцерогенности, принадлежит большое будущее. Дальнейшее систематическое и глубокое изучение связи канцерогенности веществ с их строением на примерах индивидуальных высокомолекулярных углеводородов и их производных позволит использовать канцерогенность как метод индикации на наличие определенных структурных элементов в молекуле. [c.292]

    Из полициклических ароматических углеводородов в цромыш-ленном масштабе осуш,ествляется окисление антрацена с получением антрахинона при одновременном образовании фталевого ангидрида  [c.40]

    Каталитическое жидкофазное окисление. Газофазное окисление не может быть использовано в случаях, когда образуются кислоты, не способные к образованию стабильных циклических ангидридов. Серьезные трудности возникают и при газофазном окислении боковых алкильных групп, так как промежуточные продукты окисления последних с большой скоростью сгорают, образуя диоксид углерода и воду. Даже при окислении о-ксилола во фталевый ангидрид подбор селективных катализаторов и оптимальных условий процесса был весьма сложен [60, с. 356—357]. При газофазном каталитическом окислении не удается получить и многих индивидуальных продуктов окисления полициклических ароматических углеводородов. Однако, если получение фталевого ангидрида жидкофазным окислением о-ксилола, несмотря на близкий к теоретическому выход целевого продукта, не выдержало конкуренции с газофазным окислением [61, 62], то терефталевую кислоту и диметилтерефталат получают только жидкофазным окислением л-ксилола. Только жидкофазное окисление можно использовать для синтеза поликарбоновых кислот из триметилбен- [c.41]

    Однако прямой синтез ди- и полика,рбоновых кислот этим методом невозможен. Первая карбоксильная группа тормозит окисление в среде углеводорода, а продукты дальнейшего окисления метилбензойных кислот (кислотоспирты, альдегидокислоты) связывают в комплексы незначительные количества катализатора (1—3-10 моль/моль углеводорода) и прекращают процесс. Не удается использовать окисление в среде углеводорода также при получении карбоновых кислот из ароматических полициклических углеводородов и их гомологов. [c.43]

    Относительно невысокая энергия связи Саг—Н, а также малая стабильность продуктов присоединения кислорода к лишенным заместителей ароматическим углеводородам приводит к тому, что при некаталитическом окислении полициклических ароматических углеводородов развиваются процессы окислительной де-гидрополиконденсации, ведущие к образованию высокомолекулярных продуктов. [c.45]

    Высокие термическая стабильность и температура кипения полициклических ароматических углеводородов определяют их малую летучесть и повышенную термостойкость, стойкость к действию радиации полимерных материалов и пластификаторов, являющихся их производными. Повышенная по сравнению с моноцик-лическими ароматическими углеводородами реакционная способность облегчает получение полимерных материалов при взаимодействии полициклических ароматических углеводородов с формальдегидом [106]. При окислении полициклических ароматических углеводородов получаются разнообразные хиноны, ди- и полн- [c.100]

    Сложность использования полициклических ароматических углеводородов заключается в следующем. Во-первых, получить индивидуальные вещества с высокой селективностью затруднительно. Монозамещенные полициклических ароматических углеводородов, например, представляют собой сложные смеси изомеров, которые очень трудно разделить. Пр0из 0дные фенантрена, флуорена и антрацена легче и с большим выходом синтезируются из производных бензола, чем из соответствующих полициклических углеводородов. Кроме того, фенантрен в газовой фазе, например, окисляется по двум, обладающим близкой реакционной способностью участкам (положения атомов углерода 9—10 и 1—4). Таким образом образуется сложная смесь промежуточных продуктов окисления, которые далее с высокой скоростью окисляются до фталевого и малеинового ангидридов и продуктов полного сгорания [128, с. 70]. Фталевого ангидрида в этом случае получается гораздо меньше, а расход углеводорода тепловыделение много больше, чем при окислении нафталина и о-ксилола, что подтверждается следующими цифрами  [c.101]

    В производстве группы периноновых красителей применяется нафталинтетракарбоновая кислота, получаемая окислением пирена в жидкой или газовой фазе. В частности, при конденсации с о-арилендиаминами она дает кубовые красители, образующие окраски высокой стойкости к свету и стирке [149, с. 425—431]. На эти цели расходуется несколько сотен тонн пирена. Другие полициклические ароматические углеводороды в значительных количествах не используются. [c.110]


Смотреть страницы где упоминается термин Углеводороды полициклические, окисление: [c.14]    [c.241]    [c.14]    [c.70]    [c.121]    [c.8]    [c.335]    [c.58]    [c.243]    [c.291]    [c.446]   
Органическая химия Том 1 перевод с английского (1966) -- [ c.338 ]




ПОИСК





Смотрите так же термины и статьи:

Полициклические



© 2025 chem21.info Реклама на сайте