Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генри при адсорбции

    В описанных ниже методах определения удельной поверхности, основанных на применении закона Генри, адсорбция измеряется с помощью газовых хроматографов и пикнометров. [c.53]

    Газовая хроматография не только быстрый и точный метод анализа и контроля состава сложных смесей, но и быстрый метод физико-химического исследования адсорбции на поверхности раздела газ—твердое тело и газ—нерастворяющая жидкость, а также исследования растворов газов или паров в жидкостях. В этой главе мы уже рассматривали ( 3 и 4) некоторые примеры таких физико-химических исследований, а именно способы определения из хроматографических данных констант равновесий изотерм распределения Генри (адсорбции и растворения), теплот адсорбции и растворения в области применимости уравнения Генри и, наконец, удельной поверхности крупнопористых и непористых адсорбентов по известному значению абсолютного удерживаемого объема 1/л,з для адсорбента той же природы и близкой геометрической структуры (см. стр. 525 сл., 538 сл.). [c.552]


    Области гетерогенного реагирования. Рассмотрим мономо — лекулярную необратимую реакцию на однородной поверхности Н пористого зерна катализатора. Пусть адсорбция (хемосорбция) реактанта на активной поверхности следует закону Генри, то есть реакция имеет первый порядок по поверхностной концентрации С , то есть [c.96]

    Изотермы адсорбции газов. Уравнение Генри [c.439]

    Константы равновесия Ка или Кх не зависят от концентрации. Их числовые значения могут быть определены из начальной части изотермы адсорбции на однородной поверхности (область Генри) по уравнениям (XVI, 26) или (XVI, За). Отношения же р/а или р/а при разных давлениях должны быть определены из экспериментальной изотермы адсорбции в широком интервале значений р. На рис. XVI, 2 показаны зависимости от б для бензола и четыреххлористого углерода на поверхности графитированной сажи, полученные из изотерм адсорбции, приведенных на рис. XVI, 1. [c.443]

    Таким образом, уравнение изотермы адсорбции Генри соответствует уравнению состояния идеального двумерного газа. [c.477]

    Так как величины д при постоянной температуре постоянны, то это уравнение представляет уже знакомое нам уравнение (XVI, За) изотермы адсорбции Генри (см. стр. 439 и сл.) [c.510]

    В классическом приближении (т. е. в рамках классической кинетической теории) кинетическая энергия молекулы при переходе ее из объема газа на поверхность не изменяется. Поэтому при изменении характера движения молекулы, например в случае нелокализованной адсорбции (при замене одной степени свободы поступательного движения на колебательное) или в случае локализованной адсорбции (при замене трех степеней свободы поступательного движения на три степени свободы колебательного), б этом приближении 7зя=9йя- неспецифической адсорбции можно далее допустить, что внутримолекулярная энергия и внутримолекулярные движения также не изменяются, т. е. что Таким образом, при неспецифической адсорбции в классическом приближении изменяется только потенциальная энергия Ф молекулы адсорбата по отношению к ад сорбенту и соответствующая сумма состояний д ф. Константа Генри в этом приближении сводится к выражению [c.510]

    Это выражение показывает, что константа Генри для адсорбции определяется в основном потенциальной энергией адсорбционных сил. [c.510]

    Так как для разных по геометрической или электронной структуре молекул значения констант Генри, по крайней мере при подходящей температуре, обязательно различаются (поскольку они связаны с энергией молекулярного взаимодействия, разной для разных молекул, см. стр. 487 сл.), то теория равновесной хроматографии в области изотермы распределения Генри приводит к выводу об обязательном газо-хроматографическом разделении любых компонентов. В действительности этому мешают, во-первых, как мы уже видели, отклонения изотермы распределения (адсорбции, растворения) от изотермы Генри и, во-вторых, как мы увидим в дальнейшем, диффузионные и кинетические факторы. Эти причины приводят к асимметричному искажению и размыванию хроматографической полосы, что ведет к наложению полос близких по свойствам веществ друг на друга и поэтому мешает четкому разделению компонентов. [c.557]


    В случае газо-адсорбционной хроматографии обычно пользуются не концентрацией с данного компонента в объеме адсорбционного слоя, а количеством адсорбированного вещества на единицу массы адсорбента а или на единицу его поверхности а=а/з (з—удельная поверхность, см. стр. 439—441). Это вызывается, во-первых, тем, что в адсорбционных опытах непосредственно измеряется не концентрация с , а адсорбированное количество а и, во-вторых, тем, что для адсорбционных слоев на неоднородных поверхностях величина для разных частей поверхности не постоянна. Поскольку мы ограничиваемся здесь областью применения изотермы адсорбции Генри и поскольку мы можем рассматривать величину Сд как среднюю для единицы массы или единицы поверхности адсорбента, то (см. стр. 440) [c.560]

    Так как единица массы адсорбента может обладать разной величиной удельной поверхности, то величина удельного удерживаемого объема (как и соответствующие величины константы изотермы адсорбции Генри Ка.с или Ка.р) в случае газо-адсорбционной хроматографии не является характеристикой природы системы данный компонент газовой смеси—поверхность адсорбента. Физико-химической константой, зависящей при данной температуре только от природы этой системы, будет абсолютная величина удерживаемого объема, т. е. отнесенная к единице поверхности твердого тела, а именно  [c.561]

    Поскольку удерживаемый объем Уд, согласно уравнениям (19) и (23), пропорционален константе уравнения изотермы распределения (растворимости или адсорбции) Генри К или Ка.р, то величины удерживае- [c.562]

    В случае газо-адсорбционной хроматографии аналогичным путем МОЖНО определить теплоты адсорбции. Из уравнения (23) следует, что константа равновесия уравнения изотермы адсорбции Генри [c.563]

    Связь 1/д или с константой Генри и с теплотой адсорбции или растворения позволяет сделать целесообразный выбор неподвижной фазы для газо-хроматографического разделения различных по свойствам веществ. Для разделения легких газов, очевидно, надо резко увеличить значение величины К, а следовательно, и Q. Этого нельзя добиться при газо-жидкостной хроматографии, потому что теплоты растворения газов малы. Поэтому для разделения легких газов и паров низкокипящих жидкостей применяют газо-адсорбционную хроматографию, используя молекулярные сита (цеолиты), пористые стекла, силикагели, алюмогели, неполярные активные угли (в зависимости от природы раз деляемых газов и паров). Для разделения паров жидкостей, кипящих при температурах от комнатной до 200 °С, хорошие результаты дает газо-жидкостная хроматография, причем неподвижная жидкость выбирается в соответствии с природой разделяемых компонентов для разделения неполярных веществ применяют неполярные жидкости (различные парафиновые и силиконовые масла) для разделения полярных веществ применяют полярные жидкости, такие, как полиэтиленгликоль, различные сложные эфиры и т. п. Часто применяют последовательно включенные колонки с разными по природе неподвижными фазами, меняют также направление потока газа-носителя после выхода части компонентов. Увеличивая однородность поверхности путем укрупнения пор и регулируя адсорбционные свойства соответствующим химическим модифицированием поверхности твердых тел, удается применить для разделения среднекипящих и высококипящих компонентов газо-адсорбционную хроматографию, обладающую тем преимуществом, что неподвижная фаза нелетуча при высоких температурах. [c.568]

    В области концентраций, более высоких, чем отвечающие предельно разбавленным растворам, простейшее уравнение изотермы растворимости Генри уже не соблюдается. Для нахождения зависимости величины 7 от мольной доли л . в этой области значений концентраций надо определить изотерму равновесия Сд==/1(с) или х =[ р) из формы хроматографической кривой так же, как это было показано выше в случае определения изотермы адсорбции из газо-хроматографических данных, т, е. графическим интегрированием (см. стр. 589 сл.). В этом случае значения парциального давления р находят из соответствующих значений концентрации с выходящего из колонки газа. Величину растворимости а определяют интегрированием хроматографической кривой до соответствующего значения с. По найденному значению растворимости а вычисляют соответствующую величину мольной доли л и находят коэффициент активности пользуясь формулой (118)  [c.594]

    Это уравнение соответствует модели локализованной адсорбции без учета сил притяжения между молекулами адсорбируемого вещества, поэтому при расчете константы равновесия /С/ для каждого компонента можно использовать те же соотношения, что при использовании уравнения Генри. Несложно заметить, что вычисляемое значение поверхностной концентрации будет зависеть от сорбции всех компонентов газовой смеси. [c.49]


    Согласно (1.5) коэффициент а равен концентрации в объеме, соответствующей половинному заполнению поверхности. Уравнение (1.5) описывает изотермическую адсорбцию на активной поверхности и называется изотермой Лангмюра (рис. 1.3). При малых концентрациях адсорбата в газовой фазе, пока ЬС I, оно дает 0 = ЬС, т. е. при малых степенях заполнения поверхности адсорбция протекает по закону Генри (участок О А на рис. 1.3). При больших концентрациях, когда йС 1, 0 = 1, что соответствует насыщению поверхности адсорбента (участок ВТ) на рис. 1.3). Чем больше Ь, тем при меньших объемных концентрациях наступает насыщение поверхности. [c.16]

    Изотермы для всех газов приведены в координатах уравнения Дубинина—Радушкевича. Таким образом оказалось возможным выяснить зависимость механизма адсорбции при низких температурах и давлениях от температуры, пористой структуры адсорбента и природы адсорбируемого газа. Во всех случаях, когда низки силы взаимодействия адсорбированных молекул с адсорбентом (инертные газы, широкопористый адсорбент) и сравнительно высока энергия тепловых колебаний молекул адсорбента, имеет место адсорбция с образованием монослоя. Изотермы адсорбции соответствуют закону Генри (адсорбция неона при 60 К на угле БАУ, адсорбция неона при 20,4° К и кислорода при 80° К на силикагеле). Во всех остальных случаях адсорбция происходит по механизму объемного заполнения пор и хорошо описывается уравнением Дубинина — Радушкевича. Однако линейная зависимость lg IV от [lg (р,,/р)1 как правило, не имеет места при больших значениях [1 (р /р)] , т. е. при больших значениях работы адсорбции А. При давлениях 10 — 10 мм рт. ст. значения адсорбции начинают систематически отклоняться вниз от экстраполированной прямой. Чем меньше силы взаимодействия адсорбат — адсорбент, тем позже начинается отклонение от уравнения Дубинина — Радушкевича и тем меньше величина отклонений от него. Например, изотерма адсорбции неона на угле БАУ при 20,4° К описывается этим уравнением вплоть до самых больших значений [1 (ра/р)] . [c.415]

    Константа Генри адсорбции быстро уменьшается с повышением температуры. Уравнение (18) применимо к газоадсорбцн-онной хроматографии, а также к газожидкостной хроматографии (см. уравнение (44), величина Vg пропорциональна константе Генри). Однако энтальпия адсорбции заметно больше, чем энтальпия испарения, особенно при малых степенях заполнения поверхности, встречающихся в аналитической ГАХ, поэтому зависимость удельных удерживаемых объемов от температуры в ГАХ намного сильнее, чем ГЖХ. [c.102]

    Нелинейность изотермы адсорбции возникает как следствие неоднородности поверхности носителя при малых заполнениях поверхности справедлив закон Генри (адсорбция происходит на наиболее активных и однородных адсорбционных центрах). По мере заполнения наиболее активных центров адсорбция проходит по менее активным центрам, рост степени покрытия поверхности носителя приводит к участию в адсорбции все менее и менее активных центров, вследствие чего общий адсорбционный потенциал поверхности снижается. Следовательно, задача выбора носителя с линейной изотермой адсорбции сводится к. выбору материала с химически и геометрически однородной поверхностью. Геометрическая однородносгь поверхнос1и носителя теоретически недостижима, поскольку носитель должен обладать определенной пористостью для размещения на нем ие- [c.44]

    В области концентраций или давлений адсорбированного вещества, превышающих давление паров в области Генри, адсорбция описывается уравпением Ланлмюра  [c.141]

    Уравнение (8.9) называется уравнением изотермы Лэнгмюра. Пр к слабой адсорбции, когда Ь<<1, уравнение (8.9) переходит к виду а = Ь С , то есть при малых степенях заполнения поверхности адсорбция протекает по закону Генри (областьлинейной адсорбции). [c.99]

    Таким образом, при малых давлениях газа величина адсорбции а (на I г адсорбента) или а (на единицу его поверхности) пропорциональна концентрации или давлению адсорбата в газовой фазе. Это соотношение для адсорбции аналогично уравнению Генр для растворимости газа. Уравнение (XVI, 1в), как и каждое из уравнений (XVI, 1г), (XVI, 2а), (XVI, 26) или (XVI, За), является простейшим уравнением изотермы адсорбции. Оно называется уравнением Генри для изотермы адсорбции, а его кор -станта—константой Генри. [c.441]

    Отклонения от этого простейшего уравнения изотермы адсорбции,означающие, что коэ1 )фициент активности не равен единице, обусловлены в случае однородной поверхности адсорбента (как и соответствующие отклонения от уравнения Генри при распределении вещества между объемными фазами) силами взаимодействия между молекулами адсорбата в адсорбционном слое. Обычно это силы 2,0 притяжения при при-ближени к плотному заполнению поверхности они переходят в силы оттал-кнвания. [c.442]

    Например, в начальной части изотермы адсорбции на однородной поверхности адсорбция пропорциональна (см. уравнение XVI, За) давлению (область Генри), следовательно, (1 ш=(Ипр, поэтому из уравнения (XVII, 42а) получается — кТйа и 1г = йТа или 1ка — кТ, т. е. уравнение (ХУП, 39). [c.477]

    Учет потенциальной энергии взаимодействий адсорбат—адсорбат приводит к уравнениям изотерм адсорбции, содержаш,им помимо константы Генри, ха-рактеризуюш,ей энергию взаимодействий адсорбат—адсорбент, другую константу, характеризующую энергию взаимодействия адсорбат—адсорбат. Прн этом получаются, например, уравнения вида (XVI, 35) или (XVI, 36) и (XVII, 46). [c.511]

    Если форма изотермы распределения (адсорбци или растворения) отклоняется от закона Генри, то в уравн(ини (8) производная d jd не постоянна, величина ее изменяется с изменением концентрации с. Поэтому скорость и перемещения данной концентрации в газовой фазе вдоль колонки также не постоянна. [c.555]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]

    Поскольку давление, объем и температура связаны между собой уравнением Клапейрона, то зависимость одного типа может быть преобразована в зависимость другого типа. Поэтому достаточно остановиться на рассмотрении изотерм адсорбции. На прак тике наиболее часто используются изотермы Лэнгмюра, Фрейндлиха, Генри, Шлыгина—Фрумкина—Темкина—Пыжова, Бру-науэра—Эммерта—Теллера (БЭТ) (табл. 3.1). Каждая из них связана с определенными допущениями относительно структуры поверхности адсорбента, механизма взаимодействия молекул адсорбента и адсорбата, характера зависимости дифференциальных теплот адсорбции от степени заполнения поверхности катализатора адсорбатом. Например, наиболее широко используемая изотерма Лэнгмюра основана на следующих допущениях 1) поверхность адсорбата однородна 2) взаимодействие между адсорбированными молекулами отсутствует 3) адсорбция протекает лишь до образования монослоя 4) процесс динамичен, и при заданных [c.150]


Смотреть страницы где упоминается термин Генри при адсорбции: [c.76]    [c.57]    [c.441]    [c.442]    [c.445]    [c.455]    [c.511]    [c.521]    [c.555]    [c.557]    [c.561]    [c.589]    [c.589]    [c.71]    [c.60]    [c.81]    [c.170]   
Основные процессы и аппараты Изд10 (2004) -- [ c.571 , c.572 ]

Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.603 , c.604 ]




ПОИСК





Смотрите так же термины и статьи:

Генри



© 2025 chem21.info Реклама на сайте