Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константы в алкенах

    Физические константы алкенов [c.156]

    В заключение настоящего параграфа приводим численные значения логарифмов констант равновесия реакций дегидрирования парафинов и 1-алкенов, рассчитанные по спектроскопическим данным Вагмана, Кильпатрика, Питцера и Россини [34]. [c.272]

    Константы равновесия и их логарифмы для реакции димеризации нормальных 1-алкенов в -1-алкены 13] [c.325]


    Логарифм константы равновесия образования 1 ю / алкенов (моноолефинов) от Сг до С о ) [2] [c.485]

    Логарифм константы равновесия образования алкенов (моноолефинов изостроения) С,, С5 и С ) [2] [c.486]

    При использовании данных табл. 1—3 состав смеси, гексенов и гептенов будет одинаковым, так как константы равновесия однотипных реакций (например, алкен-1ч 1 ис-алкен-2, цис-алке. н-2 транс-алкен-2 и т. д.) одинаковы. В реакциях изомеризации обычно образуются смеси н-изомеров с двойной связью в положениях 1 и 2, смеси н-изомеров с двойной связью в положениях 1, 2 и 3 и скелетные изомеры (см. гл. 4 и 5). В связи с этим нами проведен расчет равновесных составов для этих изомерных форм (табл. 7). [c.20]

    При использовании данных табл. 46 состав смеси гексенов и гептенов будет одинаковым, так как константы равновесия однотипных реакций (например, алкен-1 ч= =алкен-2, цис, алкен-2,. [c.211]

    При достаточной применимости этих допущений оба уравнения для и оба урав нения для Ig/ довольно хорошо отражают фактические соотношения и приводят к результатам, не содержащим значительной погрешности. Так, при расчете константы равновесия реакции гидрогенизации этилбензола до этилциклогексана по данным для аналогичной реакции гидрогенизации толуола при 700 К уравнение (VII, 34) приводит к значению Ig/С оо = —4,89, а уравнение (IV, 29)—к значению —4,84, в то время как расчет по справочным данным, относящимся непосредственно к компонентам рассматриваемой реакции, приводит к значению —4,86. В табл. VII,20 сопоставлены результаты расчета Ig этой реакции по уравнению (VII, 34) для других температур. В табл. VII, 21 также сопоставлены Ig/ , но реакций гидрогенизации некоторых алкенов при 700 К. Хотя расчет был произведен в этом случае по первому члену гомологического ряда — этилену, однако для [c.293]

    Температуры, отвечающие одинаковым значениям констант равновесия в реакциях гидрогенизации. ч-алкенов-1 с образованием соответствующих алканов, рассчитанные по данным и отношения этих температур [c.295]

    Тепловые эффекты реакций гидрогенизации к-алкенов-1 в алканы при температурах, отвечающих одинаковым значениям констант равновесия, рассчитанные по данным и соотношения между этими тепловыми эффектами ( j, С3, j,. .. — число атомов углерода в молекуле алкена) [c.296]

    В монографии рассмотрены применения третьего закона термодинамики и приближенных следствий из него к расчету констант равновесия радикальных реакций присоединения и замещения, рекомбинации и диспропорционирования радикалов, реакций молекулярного диспропорционирования алканов и алкенов и реакций изомеризации радикалов, наряду с параллельным расчетом равновесий этих реакций по кинетическому методу. [c.8]


    Для выяснения конкурентных отношений между этими реакциями недостаточно знания скоростей прямых реакций, необходимо также знать положение равновесия в этих реакциях. Располагая величинами констант равновесия реакций соединения радикалов с молекулами алкенов, реакций замещения радикалов с молекулами алканов и алкенов, а также реакций диссоциации молекул на радикалы (мономолекулярным или бимолекулярным путем), можно выяснить, являются ли равновесия при некоторых из этих реакций в условиях крекинга причиной замедления реакций распада алканов, описанного в предыдущей главе. Так, например, реакции присоединения атомов Н к молекулам пропилена или изобутилена могут вызывать торможение цепного распада вследствие меньшей активности вторичных пропильных и третичных изобутильных радикалов в том лишь случае, когда эти радикалы обладают устойчивостью в условиях крекинга алканов, т. е. при значительном размере обратимой реакции образования их. Точно так же и реакции замещения Н и СНз-радикалов с молекулами алкенов, несмотря на возникновение в результате этих реакций менее активных радикалов, не смогут явиться серьезной помехой для развития цепей крекинга, если равновесия в этих реакциях в условиях крекинга сильно смещены в сторону исходных продуктов. [c.246]

    Значения констант равновесия реакций молекулярного диспропорционирования алканов и алкенов [354] [c.282]

    Значения стерических факторов и констант скоростей реакций Молекулярного диспропорционирования К ( =К.К ) алканов и алкенов [342, 343] [c.283]

    Если рассмотреть распад сложных молекул, то значения констант равновесия указывают на наибольшую вероятность процессов симметричного распада. Константы равновесия реакций диссоциации алканов на радикалы, как известно, определяют равновесные концентрации радикалов в зоне реакции. Найденные таким образом значения концентраций радикалов -СНз и -СзНа согласуются с экспериментальными данными [135]. Аналогичная тенденция возрастания констант равновесия с усложнением алканов и алкенов наблюдается в реакциях молекулярного диспропорционирования (см. табл. 10.1). При расчете равновесий этих реакций основное значение имеют тепловые эффекты, а энтропийные факторы играют второстепенную роль, так как Аг = 0. [c.114]

    Молекулярно-статистические выражения константы Генри для адсорбции на инертном адсорбенте с однородной поверхностью и потенциальная энергия межмолекулярного взаимодействия адсорбат — адсорбент. Нахождение атом-атомных потенциалов, удовлетворяющих экспериментальным значениям констант Генри для адсорбции на графитированной саже опорных молекул алканов, алкенов, алки-нов и ароматических углеводородов, и проверка возможности переноса найденных потенциалов на другие углеводороды. Адсорбция дейтерированных углеводородов. Нахождение атом-атомных потен-ци-алов для кислородсодержащих соединений, в частности гетероциклических. Зависимость атом-атомных потенциалов межмолекулярного взаимодействия от электронной конфигурации атомов в молекуле. [c.160]

    Углеводороды, содержащие в составе молекулы двойную связь, отличаются от алканов повышенной реакционной способностью. Их окисление в условиях тропосферы начинается с присоединения радикальных частиц или молекулы озона. Из приведенных ниже констант скоростей реакций [см /(молекула с)] четырех первых представителей гомологического ряда алкенов видно, что скорость присоединения гидроксила возрастает по мере замещения двойной связи алкильными группами при переходе от этилена к дизамещенному 2-бутену она увеличивается почти в десять раз. [c.180]

    Константы Н.Н-взаимодействия в алкенах [c.239]

    Физические свойства. Как и в случае предельных углеводородов, изменение физических констант алкенов зависит от числа углеродных атомов в цепи. Удельный вес первых членов гомологического ряда (до децена) лежит в пределах от 0,6 до [c.84]

    На основе термохимических и спектроскопических данных, Кильпатрик, Прозен и Питцери Россини [3] рассчитали логарифмы констант и константы равновесия реакции полимеризации (димеризации) нормальных 1-алкенов в интервале от 300 до 1500° К (табл. 1)  [c.324]

    Дальнейшее уточнение может быть внесено при учете неидеаль-ности газовой системы, для которой определяют х . Вместе с тем и при этом, заменяя парциальные давления Р] активностями fj или произведением коэффициента активности на парциальное давление Ц = У]Рз), мы не получим существенного изменения величин Х], так как у,- для различных изомерных алкенов близки. Иными словами, при изомеризации алкенов константа равновесия, выраженная через активности (Kf), близка к константе равновесия, выраженной через парциальные давления (А р). [c.15]

    Обработка экспериментальных данных, полученных при значительных степенях конверсии, по этой схеме приведет к необходимости определения 16 констант скоростей. Однако изучение превращений индивидуальных алкенов указывает на незначительные скорости цис-транс-изомертации, и записанную схему следует при кинетическом анализе заменить другой, в которой в два раза меньше констант (см. гл. 4).  [c.33]


    Количественные данные по реакциям рекомбинации метильных радикалов появились в ряде исследований [264, 265]. Как уже отмечалось, изучение реакций взаимодействия СНз-радикалов с молекулами алканов или алкенов показало, что при этих реакциях всегда протекает рекомбинация СНз. [130, 131, 260, 269], при этом стерический фактор реакции рекомбинации принимался равным единице. Исследование реакции рекомбинации СНз-радикалов в широком интеррале температур (434—1087° К) [260] показало, что стерический фактор изменяется почти в 50 раз и даже при комнатной температуре он меньше единицы [262]. Уменьшение стерического фактора реакции рекомбинации с повышением температуры ошибочно принималось за отрицательную энергию активации реакции. Из величины константы скорости реакции рекомбинации радикалов СНз, найденной расчетом [204], в предположении, что каждое столкновение является зффе <-тивным (нет энергии активации), также следует низкое значение стерического фактора порядка 0,01. Наконец, определение стерического фактора по температурной зависимости константы скорости рекомбинации СНз-радикалов при высоких температурах методом меченых атомов [120] дало значение 10 , что хорошо согласуется с рассчитанным выше для него значением. Естественно, что диспропорционирование метильных радикалов с образованием метана и метиленового бирадикала не наблюдалось и может явиться предметом рассмотрения как с энергетической, так и химической стороны. [c.222]

    Для реакций замещения радикалов с молекулами алка-Еюв и алкенов, которые идут без изменения числа молен, или для реакций диопропорцнонирования алканов с алкенами с хорошим приближением можно вычислить константы равновесия по приближенной формуле, не требующей знания теплоемкостей радикалов и имеющей вид  [c.248]

    Реакциями, обратными реакциям диспропорционирования алкильных радикалов, являются реакции молекулярногодиспропорционирования алканов и алкенов с образованием алкильных радикалов, которые относятся к реакциям инициирования радикалов. Эти реакции термодинамически сопряжены с реакциями диспропорционирования радикалов и представляют реальный источник получения радикалов в условиях, когда их скорость соизмерима со скоростью реакции диспропорционирования алкильных радикалов. Эти реакции вообще еще мало изучены. Однако, располагая знанием констант скоростей реакций диспропорционирования алкильных радикалов и констант равновесия обратимых реакций диопропорционироБания, можно оценить и константы скорости реакций молекулярного диспропорционирования алкана и алкена, являющихся продуктами диспропорционирования радикалов. Поэтому прежде всего следует вычислить константы равновесия этих реакций. [c.280]

    Предполагается, что в результате атаки протонированным олигомером формальдегида образуется /с-комгшекс 19 В случае незамещенного диена 17 он обладает высокой степенью симметрии и изомеризуется в открытый карбокатион медленнее, чем при использовании алкилзамешенных алкенов Поэтому имеется возможность его непосредственной трансформации в 1,3-диоксан 18 с транс-сочлепеиием циклов [7], 06 этом свидетельствует константа спин-спинового взаимо-дейсггви протонов при С и С , равная 11 Гц [12]. Подтверждением протекания реакции по указанному механизму является таюке отсутствие продуктов трансанулярной циклизации. [c.16]

    Скорость реакций электрофильного присоединения к алкенам и алкинам в соответствии с предложенной схемой механизма, как правило, описывается кинетическим уравнением второго порядка Электронодонориые заместители у кратных связей облегчают образование я- и а-комплексов и, следовательно, увеличивают скорость электрофильного присоединения и по двойным, и по тройным связям непредельных соединений, электроноакцепторные заместители снижают скорость присоединения. Приведенные в табл. 4 константы скорости реакций присоединения хлора к производным стирола хорошо иллюстрируют эту зависимость  [c.114]

Таблица 19. Константы спин-спннового взаимодействия С—Н для замещенных алкенов Таблица 19. Константы <a href="/info/131488">спин-спннового взаимодействия</a> С—Н для замещенных алкенов
    Во многих комплексах алкенов а-связи металл — углерод отсутствуют. Такие комплексы получают, например, обработкой безводного хлорида или бромида Р1(1У) непредельными органическими соединениями в безводных растворителях. Ионы [РёСи] , Ад+ и некоторые другие реагируют с этиленом в водном растворе константа равновесия /С= ] [С1 ]  [c.106]

    При гидрировании ряда алкенов С2Н4—С5Н10 на разведенных елоях платины начиная с амилена скорость гидрирования заметно снижается, а максимум активности смещается в сторону более концентрированных слоев, т. е. с амилена начинается явное услож-1 ение активного центра. Так, от этилена к амилену константа гидрогенизации г падает, а число атомов в ансамбле растет  [c.112]

    Вкратце поясним методику расчета характеристических констант применительно к углеводородам. Сначала в структурном углеводородном скелете выделяются из числа, представленных в табл. 4.3. данных, главная структурная составляющая, характеризующая принадлежность рассматриваемого соединения к какому-либо классу (роду) углеводородов. Таковыми мо1ут являются углеводород-углеводородные (С-С) связи с боковыми алкильными заместителями в изоалканых (различаются по принадлежности к первичному, вторичному, третичному или четвертичному углеродным атомам) двоичные и троичные С-С связи в алкенах и алкинах циклические заместители в цикланах и аренах и т.д. Далее рассматриваются все остальные алкильные и иные структурные составляющие. [c.47]

    Мы уже обсуждали взаимодействия в алкенах на двух примерах первый — когда рассматривали двухъядерную систему АХ, олефиновые протоны в коричной кислоте (см. рис. 9.3-12, с. 216), и второй пример — трехъадерная система АМХ, олефиновые протоны в стироле (см. рис. 9.3-19, с. 223). Анализируя два дублета в спектре коричной кислоты, мы нашли константу спин-спинового взаимодействия = 15,8 Гц. Это значение является типичным дня тпранс- [c.239]

    Взаимодействия через четыре связи можно часто наблюдать в ненасыщенных соединениях, например л1ета-взаимодействия в ароматических молекулах. В алкенах взаимодействия протонов в аллильной позиции всегда проявляются в спектре, и константа аллильного взаимодействия J может быть достаточ1ю большой, вплоть до ЗГц. Если в цепь взаимодействия включена тройная связь, обычно принимает значения от 1 до 4 Гц. [c.244]

    Известно, что термический пиролиз углеводородов протекает по радикально-цепному механизму, и введение в состав сырья активных радикалов позволяет существенно повысить скорость основных реакций процесса. Нами было показано, что фракции олефинов позволяют существенно повысить выход основных продуктов процесса. Повышенная реакционная способность олефинов объясняется наличием в их молекулах ослабленных связей в Р - положении относительно двойной связи, и поэтому суммарные константы скорости термического распада алкенов существенно меньще, чем у алканов с тем же числом углеродных атомов. По различным данным, относительная константа скорости распада олефинов в 1,7...3,2 раза вьипе, чем у соответствующих алканов с тем же числом углеродных атомов. Вследствие этого молекулы олефинов относительно ле1-че подвергаются распаду с образованием активных радикалов. Повышение выхода газообразных продуктов пиролиза при введении в состав сырья фракций олефинов, возможно, связано с высокой реакционной способностью данньгх углеводородов. [c.127]

    Сложность картины распада молекул прц крекинге усугубляется тем, что многие реакции, пдотекающие при,, крекинге,, - обратимы и в зависимости от условий основное направление реакции может быть сдвинуто в сторону синтеза или в сторону распада. К обратимым реакциям с дОстйВернОстью мЪхут быть отнесены реакции ]) образования простейших углеводородов из элементов, 2) гидрирования алкенов — дегидрирования алкильных цепей, 3) гидрирования ароматических углеводородов — дегидрирования шестичленных цикланов, 4) конденсации ароматических углеводородов, 5) изомеризации алканов, алкенов, цикланов, 6) полимеризации — деполимеризации алкенов и другие. Для подобных реакций были вычислены константы равновесия показывающие до какой глубины превращения могут быть в данных условиях проведены рассматриваемые реакции. Однако только для отдельных процессов, характеризующихся протеканием одной основной реакции (например, рассматриваемые ниже процессы избирательного катализа), можно говорить о приближении системы к равновесным соотношениям. В условиях обычного крекинга равновесные соотношения даже для отдельных обратимых реакций не достигаются. [c.29]


Смотреть страницы где упоминается термин Константы в алкенах: [c.134]    [c.294]    [c.296]    [c.297]    [c.282]    [c.195]    [c.48]    [c.244]    [c.390]    [c.756]    [c.1283]    [c.9]    [c.51]   
Руководство по ядерному магнитному резонансу углерода 13 (1975) -- [ c.90 , c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Алкены



© 2025 chem21.info Реклама на сайте