Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натрий, производство ванны

    В сборнике представлены материалы по производству и применению гидридов щелочных металлов. Описаны различные способы получения гидридных продуктов, которые применяются для очистки поверхности металлов от окалины. Рассмотрены теоретические основы процесса гидрирования щелочного металла в среде его гидроокиси и процесс получения гидрида натрия в ванне травления, механизм восстановления окалины в восстановительном расплаве и результаты испытаний гидридного метода травления в заводских условиях. [c.2]


    Хлорное производство представляет собой сложный комплекс, оно включает процессы приготовления и очистки рассола, электролиза, охлаждения и перекачки водорода, а также мастерские по ремонту и сборке ванн и др. Для освобождения анолита от ртути применяют раствор сернистого натрия. В хлорном производстве опасность взрывов и загораний обусловлена возможностью образования смесей хлора с водородом. При попадании хлора в воздух производственных помещений или в атмосферу появляется опасность отравления. [c.41]

    Цианистый калий.—Хотя из цианистых металлов сначала лучше всего был известен цианистый калий, теперь в промышленности он имеет меньшее значение. Только в немногих специальных отраслях, как например, для некоторых гальванопластических ванн и для специальных химических производств, он выдерживает конкуренцию с более дешевыми Цианидами натрия и кальция. [c.35]

    В — от об. до т. кип. В растворах любой концентрации. Монель широко используется при производстве и работе с хлоридом натрия, когда важн-а чистота продукта. И — установки для перекристаллизации резервуары, испарители, ванны для промывки, фильтры для вертикальной подачи, вибрирующие охлаждающие конвейеры, емкости для хранения твердой соли, теплообменники, центрифуги, ковши, экраны, ресиверы, сушилки, насосы. [c.357]

    Варианты метода изотопного разбавления находят разнообразное применение для определения количества вещества, находящегося в реакционной емкости. Так, наиболее удобной методикой, определения количества ртут в электролитических ваннах производства едкого натра электролизом на ртутном катоде является изотопное разбавление препарата ртути с известной удельной актив-. [c.223]

    Показатели работы различных промышленных ванн для производства перхлората натрия [c.93]

    Первое крупнотоннажное производство химических волокон осуществлено по вискозному способу. Приоритет в его открытии (1893 г.) принадлежит английским исследователям — Кроссу, Би-вану и Бидлу. Бурный рост выпуска вискозных волокон стимулировался дефицитом натуральных волокнистых материалов, приемлемыми физико-механическими и хорошими санитарно-гигиеническими свойствами вискозных волокон, а главное — доступной сырьевой базой (древесная целлюлоза, едкий натр, сероуглерод, серная кислота). [c.10]

    Перхлорат калия может быть получен в электролитической ванне аналогично перхлорату натрия. Однако на практике этим методом не пользуются вследствие низкой растворимости перхлората калия по сравнению с перхлоратом натрия. В ваннах для производства K IO4 даже при больших скоростях циркуляции электролита происходит зарастание анодов кристаллами. Ферс-тер сообш,ил, что выход по току при электролизехлората калия ниже, чем при электролизе хлората натрия. [c.94]


    Конструкции ванн. Для производства хл( риоватистокисло о натрия применяют ванны, работающие периодически или непрерывно, с платиновыми, графитовыми и смешанными электродами. [c.367]

    Извлечение ценных продуктов из сточных вод. Очистка сточных вод приобретает в народном хозяйстве тем большее значе-Ш5е, чем больше она связана с рекуперацией ценных веществ. На всех предприятиях по производству вискозного волокна получающийся при мерсеризации целлюлозы загрязненный щелок очищают диализом NaOH регенерируется при этом на 95%. Рекуперация 30—40% применяемого сероуглерода (т. е. технически достижимой части) производится на всех предприятиях по производству вискозно-штапельного волокна и на большей части предприятий по производству искусственного шелка. На всех предприятиях (за исключением одного) регенерацию сульфата натрия прядильной ванны совмещают с кристаллизацией избытка сульфата натрия в виде декагидрата (десятиводнои соли). [c.177]

    Большое значение имеет состав, осадительной ванны, и особенно это касается содержания серной кислоты. Было показано, что свойства корда тем лучше, чем ниже содержание серной кислоты в осадительной ванне. Необходимо заметить, что корректировка концентрации серной кислоты должна сопровождаться соответствующим снижением содержания сульфата натрия в осадительной ванне. Формование на осадительной ванне с пониженной концентрацией серной кислоты идет всегда труднее, и поэтому снижение содержания серной кислоты требует понижения скоростей формования. В практике всегда исходят из компромисса качества волокна и экономики. Осадительная ванна, позволяющая осуществлять формование со скоростью 30 м1мин (по готовому волокну) и обеспечивающая получение корда типа супер П1 , должна содержать 58—60 г1л серной кислоты, 120—130 г1л сульфата натрия и 70—80 г/л сульфата цинка. Температура осадительной ванны может быть 39—42° С. Вначале рекомендовались и применяли на производстве ванны с более высокими температурами. Шмидекнехт и Кляре показали, что осадительная ванна оказывает большое влияние на форму поперечного среза волокна. Как уже указывалось, поперечный срез имеет более круглую форму при большей скорости коагуляции. Если все прочие параметры выбраны таким образом, что более высокая температура осадительной ванны ведет к ускорению процесса коагуляции, то это соответственно должно приводить к получению волокон с более круглой формой поперечного среза. [c.358]

    При получении волокон других типов поверхностноактйвные вещества используются в меньшей степени, чем при производстве искусственного шелка. Так, раствором катионактивного сапамина промывают нити из карбоксиметилцеллюлозы [52]. При получении пряжи из альгинатного волокна слипание нитей предотвращается путем выдавливания раствора альгината натрия в ванну, содержащую цетилпиридинийхлорид и подкисленный раствор хлорида кальция. Катионактивные смачиватели применяются также в осадительных и промывных ваннах [53]. [c.471]

    Производство электролитического водорода основано на электролизе воды постоянным током в электролизных ваннах (электролизерах) различных конструкций. В качестве электролита обычно используется водный раствор едкого кали или едкого натра. Электролизеры в зависимости от расположения электродов и способа подведения к ним элёктротока подразделяются на моно-полярные и биполярные. Наиболее распространены открытая мо-нополярная ванна с двойными плоскими металлическими электродами, подвешенными в стальном ящике (кожухе) ванны параллельно один другому и погруженными в электролит, и фильтр-прессные биполярные ванны, состоящие из ряда соединенных одна с другой электролитических ячеек с размещенными между ними электродами. [c.59]

    Полного ацеталирования поливинилового спирта Полученную суспензию ПВБ передавливают в достигнуть не удается, поэтому технические поливи- промыватель 7, в котором ее промывают обессолен-нилацетали содержат кроме ацетатных и ацеталь- ной водой при модуле ванны 1 8. Отработанные ных групп 15—20 мол. % гидроксильных групп. промывные воды не должны содержать соляной Производство поливинилацеталей осуществляет- кислоты. Отсос маточного раствора осуществляется ся различными методами. Эти методы можно раз- при помощи специальных фильтров, вмонтирован-делить на две группы пых в конусное днище аппарата 7 или опускаемых совместное омыление поливинилацетата и аце- в этот аппарат во время отсоса, талирования поливинилового спирта без выделения Далее ПВБ промывают 0,02%-ным водным распоследнего (однованные методы) твором едкого натра (стабилизация), поступающим раздельное получение поливинилового спирта и из емкости 8, при 55°С. Модуль ванны 1 8, про-его ацеталирование (двухванные методы). должительность промывки 2 ч. [c.41]


    К группе алкилфенольных присадок относятся алкилсалицилат кальция —АСК и многозольный алкилсалицилат кальция — МАСК. Производство этих присадок включает синтез алкилфенола и омыление его с получением натриевой соли, карбоксилиро-ванне алкилфенолята натрия, получение алкилсалициловых кислот с последующей их нейтрализацией гидроокисью кальция и получением присадки АСК  [c.314]

    Загрязнение топлив происходит при их производстве, транспортиро вании, хранении, заправке и непосредственно в топливных баках наземной, воздушной и морской техники. Зафязнителями являются почвенная пыль, продукты коррозии топливного об< удования, продукты износа перекачивающих средств, мыла нафтеновых кислот. На поверхности частиц зафязни-телей адсорбируются смолистые вещества (продукты окисления, гетероатомные соединения), поэтому в составе мехпримесей содержится до 50% и более органических соединений. В состав неорганической части зафязнений входят почвенная пыль (окислы креыния, алюминия, соли кальция, магния, натрия), продукты износа ( железо, медь, олово и др.). Зафязнения оказывают отрицательное влияние на работоспособность топливной аппаратуры реактивных и дизельных двигателей. Частицы зафязнений размером более 4 мкм вызывают абразивный износ поверхностей трения, попадая в зазоры 1,5 [c.73]

    Электролизом расплавов хлористых солей с катодом из жидкого свинца получают двойной сплав Na — Pb, из которого отгонкой может быть выделен чистый натрий, а также ценный тройной сплав свинца, содержащий 9% Na и 0,5% К и служащий исходным продуктом для производства тетраэтилсвинца. В качестве электролита применяется смесь 30—45 вес.% Nag Oa, 35—52 вес.% КС1 и 12—20 вес.% Na l. Жидкий циркулирующий катод облегчает катодный процесс и снижает напряжение на ванне (рис. ХУП-З). Аноды графитированы и для защиты от разрушения пропитаны фосфорной кислотой. Их вводят в электролит сверху напряжение на ванне регулируют в пределах 6,5—7 В путем подъема или опускания анодов специальным механизмом. Электролиз ведут при 620—700 °С, а — 1 А/см и — 0,3 А/см . При этом выход по току достигает 60—65%, а расход электроэнергии—1400 кВт-ч/т сплава. [c.522]

    Различия в растворимости сульфидов лежат в основе их определения в качественном анализе. Нерастворимые в воде сульфиды имеют разнообразную яркую окраску ( dS — желтый, ЗЬгЗз — оранжевый, PbS — черный и т. д.), что объясняет их широкое использование в качестве пигментов при производстве красок. Сплавы, полученные в результате прокаливания сульфидов щелочно-земельных металлов с добавками флюса (плавиковый шпат, бура) и следами солей тяжелых металлов, применяют для изготовления светящихся красок. В кожевенной промышленности сульфиды натрия, кальция, бария нужны для обезволашивания шкур, а в медицине ванны с раствором сульфида калия применяют для лечения кожных заболеваний. [c.243]

    Электролизер представляет ванну, сходную с ртутной, длиной 20 м., шириной 3 м и высотой 3 м. Неподвижные графитовые аноды расположены сверху и вся ванна тщательно герметизирована и теплоизолирована. Циркуляция свинцового катодного сплава с натрием осуществляется электромагнитным насосом при температуре процесса около 850° С. Натрий из сплава его со свинцом ( 10% Na) отгоняется в вакууме или в атмосфере инертного газа в специальных дистилляторах с остаточным давлением 0,1 мм рт. ст., а сцлав с 9,5% Na возвращается на электролиз. В сообщениях подчеркивается экономия капиталовложений и эксплуатационных расходов по сравнению с производством натрия в самых совершенных электролизерах Даунса. Отличительные особенности ванн Сцехтмана заключаются в большой мощности электролизера (производительность около 3 г и 4,5 т хлора в сутки), невысокой стоимости натрия и высокой чистоты натрия и хлора. При анодной плотности тбка 1—3 а/см напряжение на ванне 5 в, выход по току 90% и расход энергии 6450 квт-ч на 1 т натрия. [c.316]

    Аппараты с солевыми расплавами широко применяют также в цветной металлургии таким аппаратом является, например, электролизер с боковым подводом тока для производства магния из безводных хлористых солей магния, калия и натрия (рис. 3). У электролизера анодом служат графитовые бруски, а катодом — стальные пластины. Образующийся магний всплывает на поверхность ванны 1И периодически удаляется при помощи вакуумиого ковша, а хлор собирается под огнеупорной перегородкой (диафрагмой) и отводится к компрессорам для дальнейшего использования (например, хлорирования, т. е. вскрытия сырья), тогда как шлам оседает на дне ванны. [c.5]

    Распространенный в Советском Союзе способ хлорирования в среде расплавленных солей особенно важен при использовании титанового сырья, содержащего значительное количество примесей, образующих легкоплавкие хлориды. В качестве среды при хлорировании применяют расплав хлоридов калия и натрия. Эвтектическая смесь зтих солей плавится при 660 °С. На титаномагниевых комбинатах в производстве Ti lj используют отработанный расплав магниевых ванн примерного состава (в %)  [c.551]

    Предложен вариант описанного способа, совмещающий получение криолита с производством окиси алюминия из кремнистого боксита 2 . Шихту составляют из боксита, плавикового шпата и соды с таким расчетом, чтобы в получаемом спеке содержание алюмината натрия было значительно выше, чем требуется для получения криолита. Спек размалывают и выщелачивают. Фторид натрия и алюминат натрия переходят в раствор, который после обескремни-вания подвергают ступенчатой карбонизации. В первой стадии карбонизации выделяется гидрат окиси алюминия. Его оставляют в растворе в количестве лишь немного большем, чем это требуется для получения криолита. После отделения выделившегося А1(0Н)з раствор вновь карбонизуют, причем в осадок выделяется криолит. Способ этот, однако, сложен и мог бы представить некоторый интерес лишь для получения криолитизированного глинозема. [c.343]

    Формование волокна. Формование вискозного волокна, как принято в производстве химических волокон, называют прядением, а вискозу, соответственно, - прядильным раствором. Формование - важнейшая стадия технологического процесса, условия которой определяют структуру и свойства волокна. Формование осуществляют мокрым способом, т.е. прядильный раствор продавливают через фильеры (нитеобразователи) с отверстиями диаметром 0,04...0,10 мм в осадительную ванну -раствор, содержащий серную кислоту и ее соли. Серная кислота необходима для разложения ксантогената с получением регенерированной целлюлозы. Соли (сульфаты натрия, цинка и др.) регулируют процесс коагуляции. Состав ванны зависит от вида формуемого волокна. [c.593]

    После замены некаля на смесь канифольного и жирнокислотного эмульгаторов в производстве СК(М)С была внедрена каскадная схема коагуляции. Время пребывания скоагулиро-ванной массы в трех последовательно расположенных аппаратах с мешалками 3, 4, 5 составляет соответственно 3, 5 и 7 мин. В первый аппарат каскада 3 насосом 19 из емкости 1 подается латекс, содержащий высокоароматизированное масло ПН-6К и стабилизатор ВС-1, которые поступают из емкости 2. В этот же аппарат 3 поступает раствор электролита хлорида натрия, предварительно очищенный от ионов кальция и магния при обработке кальцинированной содой и щелочью. Во второй и третий аппараты каскада 4 и 5 подается серум, подкисленный серной кислотой. Прн этом во втором аппарате 4 рП=6,5-ь7,2, в третьем аппарате 5 рН=2,5ч-3,5, температура в аппаратах поддерживается на уровне 50 °С. Дальше крошка каучука из аппарата 5 поступает через вибросита 12 в промывочные емкости 13 и 14. [c.232]

    Большая часть ПВС применяется для производства поливинилацеталей и для изготовления синтетических волокон (винол — СССР, винилон — Япония). Волокна из ПВС получают продавли-ванием водного раствора полимера в коагулирующую ванну — насыщенный водный раствор сульфата натрия. Полученные волокна подвергают затем сушке, вытяжке и термообработке, после которой водорастворимость волокон снижается. Для придания водостойкости волокна обрабатывают формальдегидом, что приводит к их поверхностному ацеталированию. [c.131]

    Основными потребителями ртути являются электротехническая промышленность (производство жидких контаков, выпрямителей и люминесцентных ламп) и металлургия, где используют ее свойство растворять металлы с образованием амальгамы. Химическая активность металлов, растворенных в ртути, мала, и поэтому таким способом могут быть получены металлы, в чистом виде разлагающие воду. Например, при электролизе водного раствора КаС1 на ртутном катоде образуется амальгама натрия. Ее удаляют из электролизной ванны и обрабатывают водой. Таким образом, при электролизе удается получить два ценнейших продукта щелочь в катодном пространстве и хлор на аноде. Амальгамными способами извлекают Аи, С , Т1, Оа, 1п, РЗЭ, РЬ, Zn, 8Ь и другие металлы. Металлы отделяют от ртути отгонкой или электрохимическим способом с амальгамой в качестве анода. [c.179]

    Завод по производству перхлоратов был построен в 1893 г. в Мансбо (Швеция) в 1898 г. удалось получить небольшие количества перхлората аммония, причем режим производства еще не был отработан. Так, в одном случае ванна раствора хлората натрия окислялась до перхлората в течение 5—6 дней, а в другом— процесс затягивался на многие недели. К 1904 г. производство уже было налажено. Перхлорат калия впервые получили в промышленном масштабе в 1905 г. в Мансбо . [c.14]

    Нитробензолсульфокис-лота мета, натриевая соль (ТУ МХП 2503—51) N02 1 sOзNa Сульфиро- вание нитро- бензола 38 (паста) хлористый натрий (в пересчете на 100% прог кт) В производстве мета-ниловой кислоты и других промежуточных продуктов [c.816]

    Технико-экономические показатели производства перхлората натрия зависят частично от количества платины, потерянной в ванне. Разрушение платины происходит вследствие химической коррозии (преобладающий процесс) и путем эррозии. Платина, разрушаемая в результате коррозии, не обязательно должна находиться в электролите, удаляемом пз электролизера в растворенном состоянии часть ее может содержаться в шламе, выгружаемом из ванны. Можно предположить, что коррозия возникает на гранях кристаллов платины, где наблюдается наибольшая концентрация загрязняющих примесей. Когда материал на гранях химически разрушается, твердые кристаллы платины отделяются и попадают в шлам. Шумахер сообщил, что расход платины на 1 т готового перхлората натрия равен 5,6 г, по данным фирмы I. G. Farbenindustrie, А. G., Bitterfeld расход платины на 1 т перхлората калия составлял 3 г. Гейтман заявил (пат. США 28256243), что степень регенерации платины, потерянной в ванне для получения перхлората натрия, равна 91,9%. [c.105]

    В производстве искусственного шелка нитроцеллюлоза растворяется в спирто-эфирной смеси и выпрядывается либо в осадительной ванне (водяной или углеводородной) — мокрое прядение, либо непосредственно на воздухе с испарением растворителя — сухое прядение. Однако ввиду легкой вопламепяемости нитроцеллюлозы необходимо удалить из нее нитрогруппы. Достигается это после того, как опряденная нить обрабатывается теплыми разбавленными растворами сернистого натрия и кальция, что сни-н ает содержание азота до допей процента. Хотя таким образом моншо получить весьма тонкие номера пряжи, дороговизна производства сделала нитроцеллюлозный процесс получения шелка малоприменимым. Его схема представлена ниже (см. схему 3). [c.374]

    Метод позволяет определять самые разнообразные количества серы Гордон и Урнер , пользуясь 60%-ным изопропиловым спиртом в качестве фона, определяют от 0,12 до 12 мг сульфата в продуктах переработки нефти, а Е. Е. Крисс, С. И. Якубсон и Б. А. Гел-лерз титруют сумму сульфатов в ваннах вискозного производства при содержании 300 г/л сульфатов разбавляя 5 мл исходного раствора водой до 100 мл, они определяют, следовательно, около 1,5 г сульфат-иона, причем не добавляют органических растворителей. Определение эти авторы ведут также в слабоазотнокислотном растворе ис ходный кислый раствор нейтрализуют 15%-ным раствором едкого натра по метиловому оранжевому и добавляют 1 каплю азотной кислоты (концентрация не указана). Вместо каломельного электрода сравнения авторы этой работы применяют платиновую пластинку, площадью около 1 см , и устанавливают потенциал ртутного капельного электрода —1,9 в относительно этой пластинки. [c.295]


Смотреть страницы где упоминается термин Натрий, производство ванны: [c.214]    [c.194]    [c.263]    [c.202]    [c.396]    [c.65]    [c.9]    [c.703]    [c.65]    [c.91]    [c.92]    [c.104]   
Технология электрохимических производств (1949) -- [ c.605 , c.608 ]




ПОИСК





Смотрите так же термины и статьи:

Гидросернистокислый натрий гидросульфит производство ванна

Надборнокислый натрий, производств ванна

Производство натрия

Хлорноватистокислый натрий, производство ванны



© 2025 chem21.info Реклама на сайте