Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стандартное состояние, определени

    V Стандартная энергия Гиббса образования. Под стандартной энергией Гиббса образования А0° понимают изменение энергии Гиббса при реакции образования 1 моля пещества, находящегося в стандартном состоянии, из простых веществ, каждое из которых также находится в стандартном состоянии. Это определение подразумевает, что стандартная энергия Гиббса образования простого вещества, устойчивого в стандартных условиях, равна нулю. [c.175]


    Стандартное состояние, определенное при условии /°=1, ог давления системы не зависит. [c.31]

    Стандартное состояние, определенное в первых двух случаях, от давления системы не зависит, тогда как в третьем случае оно зависит от давления системы. [c.143]

    Отдельные группы реакций разбивают на подгруппы по виду кинетического уравнения, описывающего скорость процесса, по порядку и молекулярности реакции и по некоторым другим признакам. В качестве кинетического критерия реакционной способности химической системы можно было бы взять скорость реакции. Учитывая, что скорость реакции зависит от концентрации реагирующих веществ [см. уравнение (193.1)], разумно выбрать какое-то стандартное состояние по концентрациям реагирующих веществ. В качестве такого стандартного состояния принимают состояние системы, когда концентрации реагирующих веществ Сь Са,. .., С равны единице. При этом скорость реакции численно равна константе скорости реакции к. Следовательно, в качестве кинетического критерия реакционной способности системы в направлении определенной реакции при концентрациях реагирующих веществ, равных единице, можно принять константу скорости этой реакции. Последняя определяется предэкспо-ненциальным множителем А и энергией активации Е . Теория кинетики химических реакций должна раскрывать физическую сущность Л и и закономерности, определяющие влияние различных факторов — температуры, среды, катализатора, строения молекул и др., на Л и 2 следовательно, и на общую скорость процесса. Зная закономерности влияния различных факторов на Л и реакций, можно синтезировать эффективные катализаторы и создавать условия, при которых реакция пойдет в нужном направлении с высокими скоростями. [c.532]

    При достаточно малых концентрациях коэффициенты активности становятся постоянными и не зависящими от состава и, если выбрать за стандартное состояние бесконечно разбавленный раствор, можно положить коэффициенты активности равными единице. При этих условиях определение кп априори сводится к определению структурных параметров X, необходимых для определения суммы по состояниям для X, и к определению влияния растворителя на константу равновесия Кх- [c.431]

    Свободная энергия Р, теплосодержание И и энтропия 5 чистых веществ зависят от количества, давления, физического состояния и температуры вещества. Если определять стандартное состояние твердого вещества или жидкости как состояние реального твердого тела или жидкости при 1 атм, а стандартное состояние газа — как состояние идеального газа при 1 атм, то для одного моля вещества в определенных стандартных условиях эти свойства зависят только от температуры. Термодинамические характеристики при давлениях, отличающихся от атмосферного, можно рассчитать, используя численные значения этих функций для стандартных условий и основные термодинамические закономерности (уравнение состояния, коэффициент сжимаемости вещества и др.). Влияние [c.359]


    Стандартным состоянием жидкого или кристаллического вещества принято считать его наиболее распространенную форму при температуре 298 К и внещнем давлении 1 атм. Аналогичное определение применяется и в от-нощении газов, но для них стандартное состояние соответствует парциальному давлению в 1 атм. Стандартные теплоты образования соединений из образующих их элементов приведены в табличной форме в приложении 3 для большого числа веществ. [c.102]

    Здесь АН°1 —теплота образования вещества при температуре Г, равная изменению энтальпии при его образовании из элементов при этой температуре, взятых в их стандартных состояниях (определение стандартного состояния дано на стр. 23). [c.151]

    Здесь — стехиометрические коэффициенты участвующих веществ, У — их коэффициенты активности в соответствующей шкале концентраций. Стехиометрические константы устойчивости являются термодинамическими константами, пригодными только для стандартного состояния, определенного детальным составом раствора. [c.16]

    Введение понятия активности дает термодинамически определенную величину, которую при соответствующем выборе стандартного состояния можно отнести непосредственно к составу идеальной смеси. Отклонение смеси от идеального состояния можно описать с помощью эмпирического коэффициента активности у. [c.16]

    Таким образом, в рамках безактивационной модели проблема расчета и прогнозирования диффузионных параметров полимерных сред сводится к выбору стандартного состояния, определению его диффузионных характеристик и расчету изменения свободного объема при переходе от стандартного состояния к реальному. [c.20]

    Для определения активности компонентов нужно знать стандартное состояние раствора. В качестве стандартного состояния для [c.246]

    Решение. Для определения ДЯ° воспользуемся уравнением (VI. 19). Тепловые эффекты образования исходных и конечных веществ в стандартном состоянии при 298 К находим в справочнике [М.]  [c.49]

    Определенные для веществ в стандартном состоянии стандартные энтальпии и другие стандартные термодинамические величины. обозначают верхним индексом (°), нижним индексом указывают температуру, при которой они определены например АЯ298 (определена при 298,15 К знаки, стоящие после запятой в индексе, обычно не указывают) или АЯюоо (определена при 1000 К). Такое единообразие делает расчеты строгими. Стандартная энтальпия образования вещества АЯ/ — это изменение энтальпии в процессе образования данного вещества в стандартном состоянии из термодинамически устойчивых фюрм простых веществ, также находящихся в стандартных состояниях. [c.166]

    Аддитивность э.д.с. схематически иллюстрируется рис. 19-10. В гл. 16 было объяснено, что нет необходимости табулировать изменение свободной энергии для каждой возможной реакции. Если имеются табулированные изменения свободной энергии для реакций определенного вида, а именно для реакций образования всех соединений из элементов в их стандартных состояниях, можно вычислить изменение свободной энергии для любой реакции, включающей эти соединения, основываясь на свойстве аддитивности свободных энергий. Точно так же нет необходимости табулировать напряжение любого мыслимого элемента или каждой мыслимой комбинации анодной и катодной реакций. Вместо этого достаточно иметь таблицы напряжений электрохимических элементов, в которых все электродные реакции скомбинированы с одним стандартным электродом. Это равнозначно выбору произвольного начала отсчета на рис. 19-10. Любую реакцию в электрохимическом элементе можно представить в виде двух полуреакций, одна из которых протекает на аноде, а другая на катоде. [c.174]

    Х = 1. Это условие вытекает из определения функций Ф (уравнение 86), а также из того, что в качестве стандартного состояния принимается состояние чистого компонента при температуре системы. При таком выборе стандартного состояния при Х1=0у2=1 и при Х1 = 1у1 = 1- [c.175]

    Абсолютные значения внутренней энергии различных веществ (но-видимому, очень большие) нам совершенно неизвестны. Однако разности между значениями внутренней энергии тех или иных веществ измерены во многих случаях с большей точностью. Основанием для этих измерений послужили экспериментальные определения тепловых эффектов различных химических реакций. Поскольку значения внутренней энергии зависят от температуры, от нее зависят и тепловые эффекты реакций. Поэтому для сравнительных расчетов используют стандартные значения тепловых эффектов, приведенные к определенной стандартной температуре. В качестве такой стандартной температуры условились принимать 25 - С (или 298,15 К). Тепловые эффекты реакций зависят также от агрегатного состояния участвующих в реакции веществ поэтому в термохимических уравнениях агрегатное состояние веществ обязательно учитывают Стандартным состоянием каждого данного вещества считается агрегатное состояние, присущее ему при температуре 25°С и давлении 101,3 кПа. [c.77]


    Агрегатные состояния и полиморфизм. Стандартное состояние для подавляющего большинства элементарных металлов — кристаллическое (за исключением франция и ртути, жидких при стандартных условиях). При нагревании до определенной температуры металлы плавятся, а при более высоких температурах оии переходят в газообразное состояние. [c.214]

    Рассмотрим для этого адиабатически изолированную систему, состоящую из двух частей и ". Если зафиксировать определенные стандартные состояния сравнения, то можно по способу, описанному в 8, определить внутренние энергии и, и и и". Удалим теперь адиабатическую перегородку между и ", но будем поддерживать адиабатическую изоляцию всей системы в целом и исключим также производство внешней работы. Тогда части системы и смешиваются при изменении температуры и давления, причем общая энергия останется постоянной. Этот процесс можно представить как изменение состояния открытой фазы, для которой изменение внутренней энергии равно [c.71]

    Рассмотренный в этой главе выбор стандартных состояний для химических потенциалов имеет общее значение для термодинамики жидких смесей. Как легко установить, он лежит также в основе определения свободной энергии разбавления ( 26). [c.172]

    Фугитивность стандартного состояния для любого компонента должна вычисляться при определенной температуре, а именно при температуре раствора, независимо от того, при каких условиях проводилась нормализация коэффициента активности — условиях симметричности или несимметричности. [c.16]

    Таким образом, значение изменения энергии Гиббса реакции можно рассчитать при любой температуре, когда известны зависимость теплоемкости от температуры [уравнение (У1-41)], энтальпии исходных веществ и продуктов в стандартном состоянии АЯгэа (для определения постоянной интегрирования /1), а также изменения энергии Гиббса АО в или абсолютные энтропии исходных веществ и продуктов в стандартном состоянии, необходимые для вычисления постоянных интегрирования /2 или /з- [c.153]

    Для определения коэффициента активности твердого растворенного вещества целесообразно выбрать второе стандартное состояние. Для этого преобразуем уравнение (VI, 64)  [c.226]

    Указанное неудобство устраняется, если представить и энтальпию, и внутреннюю энергию в виде суммы двух слагаемых значений этих функций в определенном стандартном состоянии и изменений их при переходе из стандартного состояния в рассматриваемое  [c.38]

    Для определенности теплоту образования любого вещества из простых веществ (не путать с теплотой образования нз атомов ) указывают, считая, что исходные простые вещества находятся в стандартном состоянии (см [c.56]

    В качестве стандартного состояния растворенного вещества выбирают гипотетический раствор единичной концентрации (измеренной в определенной шкале концентраций) при данных температуре и давлении, ведущий себя как идеальный. [c.35]

    В соответствии с определением стандартного состояния активность растворенного вещества равна единице при единичной концентрации и условии, что у = 1 при всех температурах и давлениях, т. е. что раствор ведет себя как идеальный. Тогда разность между химическим потенциалом растворенного вещества р, в [c.35]

    К сожалению, этот вывод нуждается в дополнительном обосновании. По определению, химический потенциал рассчитывается как частная производная энергии Гиббса по количеству /-го компонента при постоянных значениях остальных параметров, в частности давления. При этом давление должно оставаться неизменным как для реакционной системы, так и для стандартного состояния. Это требование накладывает определенные ограничения на процедуру переноса вещества из стандартного состояния в систему. [c.57]

    Стандартные энтропии. Чтобы энтропии веществ можно было сопоставлять и определять изменения энтропии в различных процессах, в том числе и химических реакциях, их, как и тепловые эффекты, принято относить к определенным условиям. Чаще всего значения 5 рассматривают при р = 101 кПа (1 атм) при этом газы считают идеальными, а для растворенных веществ (и ионов в растворах) пригшмают стандартное состояние, отвечающее концентрации, равной 1 моль/кг Н2О, предполагая, что раствор обладает свойствами бесконечно разбавленного раствора. Энтропия при этих условиях обозначается 5° и называется стандартной энтропией .  [c.179]

    Применяемые на практике мольные или парциальные мольные функции состояния Z, характеризующие термодинамическую систему, как правило, зависят от температуры, давления, а при реакциях в растворах также и от концентрации. В связи с этим, для того чтобы можно было табулировать данные о функциях состояния (что удобно для сравнения), оказалось целесообразным выбрать некоторое стандартное состояние, исходя из которого можно расчетным путем перейти к функции состояния для любого конкретного состояния системы. Примем и будем использовать в дальнейшем следующее определение стандартное состояние газа осуществляется при давлении р=101 325 Па=101,325 кПа (величины, относящиеся к стандартному состоянию, обозначают соответствующим символом с индексом О вверху справа). Давление 101 325 Па будем в дальнейшем называть нормальным давлением. Стандартное состояние зависит от температуры и поэтому записывается с индексом Т (Z t). В таблицах, как правило, приводят значения функций состояния при температуре 298,15К (Z°29s,i5) - Чтобы охарактеризовать стан- [c.216]

    У денствптелыгостп стандартное состояние но может быть состоянием прп бесконечном ра. шеденни, так как оно должно представлять собой определенное термодинамическое состояние с фиксированным составом. Мы понимаем иод бесконечным разведением такое состояние системы, в котором взаимодействие между частицами растворенного вещества пренебрежимо мало, и в реальном стандартном состоянии система будет иметь, следовательно, некоторый состав, отвечающий этому идеальному условию. На практике чаще всего для обозначения концентрации пользуются молярностями, а за стандартное состояние обычно выбирается гипотетический одномолярный раствор , т. е. 1 М раствор, в котором взаимодействие растворенного вещества и растворителя равно нулю. [c.431]

    Абсолютные значения многих термбдинамических - функций (внутренней энергии, энтальпии и др.) для какого-нибудь данного вещества в настоящее время неизвестны, но изменения этих функций при переходе вещества из одного состояния в другое часто могут быть определены. Это дает возможность характеризовать значение рассматриваемой функции в интересующем состоянии по сравнению до значением ее в другом состоянии. Сопоставляя значения функции для различных состояний данного вещества, рассматривают отличие их от значения, относящегося к одному определенному состоянию (стандартное состояние). Так, свойства компонентов в растворах различной концентрации сравнивают со свойствами тех же компонентов в чистом состоянии при той же температуре, свойства неидеальных газов часто сопоставляют со свойствами их в состоянии идеального газа при той же температуре и при том же давлении (или при давлении р=1 атм).  [c.183]

    В настоящее время справочные термодинамические данные (в особенности для органических веществ) нередко являются значительно более полными для газообразного состояния веществ, чем для жидкого и кристаллического. Это приводит к необходимости определения термодинамических свойств жидкостей и кристаллов по данным о свойствах тех же веществ в газообразном состоянии. В других случаях возникают и обратные задачи. Справочные данные для газов относятся обычно к стандартному состоянию. По-втому для таких пересчетов необходимы термодинамические пара- [c.46]

    Все описанные соотношения справедливы не только для кислородсодержащих соединений. Так, для углеводородов применимы те же соотношения, но число атомов кислорода принимается равным нулю. Для соединений, содержащих серу, азот, фосфор, в уравнении (VI,1) постоянство суммы теплот образования и теплот сгорания сохраняется, но в правую часть уравнения входит новый член, представляющий теплоту сгорания перечисленных элементов (точнее говоря — соответствующих простых веществ). Конечное состояние продуктов сгорания в этом случае принимается иногда условно. Здесь важно лишь, чтобы это состояние было одинаковым конечным состоянием, принятым при определении теплоты сгорания данного соединения. Одинаковыми должны быть и исходные состояния данного элемента в реакции, к которой относится теплота сгорания простого вещества, и в реакции образования рассматриваемого соединения нз простых веществ. Практически это замечание относится главным образом к сере, так как для нее параметры реакций образования и, в частности, теплоту образования -в настоящее время часто относят к исходному состоянию ее в виде газа с двухатомными молекулами, 5г(г). Хотя стандартное состояние такого газа в обычных условиях физически нереализуемо, термодинамически оно определено достаточно хорошо, а использование параметров его в качестве вспомогательных расчетнь1х величин дает возможность при выражении влияния температуры на параметры реакций образования избежать искажающего влия ния изменений агрегатного состояния серы при повышенных температурах. К тому же при сопоставлении серусодержащих соединений с аналогичными кислородными соединениями параметры реакций образования с участием 5г(г), естественно, показывают более закономерные соотношения, чем параметры реакций образования с участием серы ромбической. [c.210]

    Сравнение (129.1) с (124.1) показывает, что в термодинамике реальных растворов активности отводится такое же место, какое в термодинамике идеальных растворов отводится концентрации. Активность поэтому иногда называют эффективной или действующей концентрацией. При определении активности существенное значение имеет выбор стандартного состояния. В термодинамике растворов наибольшее распространение имеют системы стандарных состояний — симметричная и несимметричная. В симметричной системе за стандартное состояние каждого компонента раствора принимается состояние чистого вещества, и в этом состоянии активность каждого компонента принимается равной единице  [c.364]

    Скачки потенциала между фазами не поддаются экспериментальному определению. Поскольку э. д. с. электрохимической системы может быть легко измерена, то принято электродный потенциал считать равным э. д. с. цепи, составленной из водородного (слева) и данного электрода (справа). Водородный электрод при этом взят в стандартном состоянии (ан+ = 1) парциальное давление газа равно нормальному атмосферному давлению (1,013 10 Па) и его потенциал при любой температуре условно принят нулю. Электродные потенциалы при этом выражают в условной водородной шкале. Э. д. с. правильно разомкнутой цепи M Pt, HalLjM соответствует электродному потенциалу системы L M, для которого примем обозначение фьм  [c.469]

    Энтальпии компонентов пелесообрагию отсчитывать от определенного стандартного состояния, которое принимается аа нулевой уровень. При этом в величину энтальпии включается запас химической. энергии, определяемый тепловыми эффектами реакции перехода к нулевому уровню. При соответствующем выборе стандартного нулевого состояния значения энтальпий всех компонентов однозначны. Будем принимать за нуль аитальпии газообразных водорода, воды и (гнертиых газов ( Si.,, Аг и т. д.) и твердого углерода при О К. Значения энтальпий ряда компонеитов продуктов сгорания горючих газов при указанной системе отсчета приведены в Приложении 3. [c.113]

    В качестве примера рассмотрим потенциометрическое определение активности и коэффициента активности кадмия в сплавах кадмий — олово разного состава при 500°. Активность кадмия можно рассчитать двумя способами в зависимости от стандартного состояния. За стандартное состояние выбирается чистый кадмий (первое стандартное состояние). Составляем концентрационную цепь с электродами из исследуемого сплава кадмий — олово и из чистого кадмия (электрод сравнения). В качестве электролита используется смесь расплавленных солей КС1—Li l с добавкой d lj-  [c.292]


Смотреть страницы где упоминается термин Стандартное состояние, определени: [c.137]    [c.59]    [c.370]    [c.436]    [c.168]    [c.165]   
Введение в электрохимию (1951) -- [ c.183 ]




ПОИСК





Смотрите так же термины и статьи:

Определение стандартной фугитивности по принципу соответственных состояний

Состояние стандартное



© 2025 chem21.info Реклама на сайте