Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неводные растворы реакции

    Прайс установил, что в неводных растворах реакция между фенантреном и бромом обратима, и определил ее скорость и константу равновесия. [c.114]

    Чтобы объяснить появление максимума на кривой электропроводности, часто наблюдаемого в концентрированных неводных растворах электролитов, необходимо допустить существование наряду с заряженными ионными тройниками также незаряженных ассоциированных соединений. Они могут возникать, наиример, по реакции [c.133]


    Одна из важных областей применения кислотно-основных реакций в неводных растворах — химический анализ. Методы неводного титрования позволяют быстро и точно определять состав таких смесей, которые невозможно анализировать в водных растворах. [c.285]

    В настоящее время все чаще приходится иметь дело с процессами, происходящими как в водных, так и в неводных растворах, и при низких, и при повышенных температурах, а кроме того, изучать все возрастающее число реакций, протекающих при высоких и сверхвысоких температурах и давлениях, в расплавах, газах. Поэтому ограничиваться рассмотрением электродных потенциалов Е°, а на их основании и э. д. с. означало бы искусственно сузить круг изучаемых явлений совершенно частным (хотя и практически важным) примером очень разбавленных растворов в одном растворителе при одной температуре (25° С) и одном давлении. В связи с этим мы уделили внимание и неводным растворам, и высокотемпературным процессам и сочли целесообразным прийти к представлению о Е° через ДО. [c.5]

    Хотя теория сольвосистем дает единую схему для большого числа реакций в неводных растворах, она не охватывает всех особенностей кислотно-основного взаимодействия. Ограниченность этой теории сводится, в основном, к следующему. [c.241]

    По понятным историческим причинам химики в первую очередь изучили и взяли на вооружение реакции, происходящие в водных растворах. Однако далеко не во всех случаях вода является самым подходящим растворителем огромное количество веществ вообще не может существовать в водной среде. В последние десятилетия процессы, протекающие в неводных растворах, получили широчайшее применение в промышленности и научных исследованиях. Многие из этих процессов являются кислотно-основными. [c.253]

    Реакция среды (pH неводного раствора) 6,3-7,0 - - 6,0-7,0 [c.437]

    Процесс комплексообразования. Сольватированные катионы металлов в водных и неводных растворах способны образовывать комплексные соединения с анионами или молекулами по ступенчатым реакциям  [c.167]

    Если появление первых исследований химических реакций в-неводных растворах относится к началу столетия, то бурное развитие теории и практики титрования в неводных средах наблюдается лишь в последние два десятилетия. Это находит отражение в быстро растущ,ем числе публикаций. Следует отметить, что препаративное применение растворителей предшествовало их использованию в аналитических целях оно стимулировало разработку различных теорий кислот и оснований применительно к неводным средам, расплавам солей, а также реакциям кислотно-основного взаимодействия, протекаюш.им в отсутствие растворителей. Развитие теории в свою очередь послужило основой аналитических исследований. [c.337]


    При кондуктометрическом титровании по изменению электрической проводимости контролируют взаимодействие титранта и определяемого в растворе вещества находят эквивалентные точки реакций нейтрализации, осаждения, окисления — восстановления, комплексообразования, вытеснения слабых кислот или оснований из их солей в водных и неводных растворах. В процессе одного кондуктометрического титрования можно определить содержание нескольких компонентов в смесях. [c.58]

    Характер равновесий, возникающих при титровании кислот в неводных растворах, показывает следующая схема, где приведены уравнения реакций, протекающих при титровании кислоты НА в этиловом спирте бензольно-метанольным раствором гидроксида тетраэтиламмония  [c.218]

    Работы по созданию химических источников тока, использующих неводные растворители, по электросинтезу ряда веществ и электроосаждению металлов в неводных средах вызвали интерес к исследованию структуры двойного слоя и кинетики реакций в неводных растворителях. Измерения в неводных растворах позволяют решить и ряд теоретических проблем, например выяснить роль взаимодействия металл — растворитель, роль адсорбции атомов водорода и кислорода в структуре двойного слоя и др. [c.389]

    Еще в конце XIX в. было установлено влияние добавок кислот и оснований на скорость реакций в водных растворах. Это привело к заключению, что ионы водорода н гидроксила отличаются каталитическими свойствами. Дальнейшие исследования показали, что каталитическая активность кислот и оснований сохраняется и в неводных растворах, где электролитическая диссоциация весьма слаба. [c.408]

    Трихроматы получают действием на неводные растворы дихроматов азотной кислотой р = 1,19—1,39 г/смз, тетрахроматы получаются при действии азотной кислоты с р = 1,39—1,41 г/см . Уравнение реакции в молекулярном виде для последнего случая может быть записано в виде [c.206]

    О влиянии растворителей на потенциалы полуволн имеется еще мало экспериментальных данных, но и они говорят о том, что следует учитывать изменение характера восстановления и изменение состояния вещества под влиянием растворителей. Изменение потенциала полуволн в неводных растворах зависит от изменения нормального потенциала восстанавливающего вещества изменения падения потенциала в растворе с изменением сопротивления раствора изменения pH раствора изменения потенциала анода или межфазового потенциала, если полярографирование ведется с вынесенным анодом изменения характера восстановления в связи с различием в химических реакциях между восстанавливающимся веществом и фоном, в частности растворителем, а также в связи с влиянием растворителя на равновесие различных форм восстанавливающегося вещества. [c.466]

    Хотя неводные растворы исследованы еще недостаточно, все же возможна некоторая классификация реакций, протекающих в этих растворах. Для неводных растворов принимают те же типы реакций, что и для водных растворов. Однако некоторые реакции в разных растворителях идут по-разному, и именно поэтому неводные растворы так интересны. [c.350]

    Пожалуй, наиболее изученной областью химии неводных растворов являются кислотно-основные реакции, исследование которых началось еще с сольво-систем. Согласно определению сольво-сп-стем, кислота может быть рассмотрена как вещество, которое путем прямой диссоциации или реакции с растворителем дает катион, характерный для растворителя основание — вещество, которое путем прямой диссоциации или реакции с растворителем дает анион, характерный для растворителя. В случае протонного растворителя катионом является сольватированный протон, и при этом условии протонное представление о кислоте эквивалентно понятию о кислоте как о сольво-системе. Например, типичные реакции нейтрализации в аммиаке протекают следующим образом  [c.351]

    Новые методы анализа, основанные на использовании реакций, которые протекают в неводных растворах, имеют большое значение. [c.391]

    Согласно Измайлову, диссоциация кислот, солей и оснований на ионы в водных и неводных растворах зависит от ряда сопряженных динамических равновесий образования сольватов — продуктов присоединения электролита к молекулам растворителя, диссоциации сольватов с образованием сольватированных ионов лиония и лиата, ассоциации сольватированных ионов с образованием ионных пар, или двойников. Соотношения между активными концентрациями продуктов этих реакций зависят от свойств растворенного электролита и растворителя, а также от их концентраций. [c.395]


    В кондуктометрическом титровании для анализа индивидуальных веществ и разнообразных смесей используются самые различные типы химических реакций нейтрализации, осаждения и комплексообразования в водных и неводных растворах. [c.89]

    Жидкие растворы играют громадную роль в жизнедеятельности организмов. Они находят самое различное применение в практике в технологии получения полупроводников и полупроводниковых приборов, в очистке веществ, в гальванических процессах получения и очистки металлов, в работе химических источников тока, в процессах травления металлов и полупроводников и т. д. Для нас особое значение будут иметь водные растворы электролитов. Но и неводные растворы играют большую роль в теории и практике. Неводные растворители применяют для обезжиривания и для удаления всяких органических загрязнений с поверхности полупроводников и металлов перед их травлением, перед осаждением покрытий и т. д. Такими растворителями являются спирты, ацетон, трихлорэтилен и др. В природе, в лабораториях, в заводской практике постоянно приходится иметь дело с растворами. Чистые вещества встречаются гораздо реже. Громадное число реакций протекает в жидких растворах. [c.148]

    Согласно теории Бренстеда реакция нейтрализации должна быть названа реакцией протолиза. Особенно большое значение реакции протолиза имеют в неводных растворах. Например, в метиловом спирте реакция протолиза протекает так  [c.327]

    Лаборатория органической химии Заведующий Е. L. Hirst Направление научных исследований химия стероидов химия циклических нитронов радиациотшя химия неводных растворов реакции свободных радикалов ароматические полициклические ч гетероциклические соединения определение размера и формы макромолекул методы разделения высокомолекулярных соединений роль полисахаридов в росте растительных клеток биохимический синтез и физико-химические исследования углево- [c.256]

    Согласно приведенному в гл, 2 определению Аррениуса, кислота представляет собой вещество, повышающее концентрацию ионов водорода в водном растворе, а основание - вещество, повышающее концентрацию гидроксидных ионов. Более общее определение кислот и оснований было предложено в 1923 г. Бренстедом и Лаури. Определение Бренстеда-Лаури применимо не только к водным, но и к неводным растворам. Согласно Бренстеду-Лаури, кислотой называется любое вещество, способное высвобождать ионы водорода, или протоны, а основанием-любое вещество, способное соединяться с ионами водорода и, следовательно, удалять их из раствора. Теперь, когда мы понимаем, что молекулы воды находятся в равновесии со своими диссоциированными ионами Н и ОН , нетрудно убедиться, что в случае водных растворов оба определения оказываются эквивалентными. Кислоты, как в представлении Аррениуса, так и в представлении Бренстеда, hsj wt h веществами, высвобождающими ионы водорода. Если основание, в представлении Бренстеда, соединяется с ионами водорода, это значит, что в водном растворе оно смещает равновесие реакций (5-5) в сторону диссоциации до тех пор, пока не восстанавливается баланс. В результате образуются дополнительные гидроксидные ионы, и, таким образом, в водных растворах определение основания по Бренстеду совпадает с определением основания по Аррениусу. [c.214]

    Аналогия между реакциями нейтрализации, протекающими в иидньгх и неводных растворах, может быть показана на следующих примерах. [c.409]

    Приводим некоторые примеры реакций, протекающих в неводных растворах при ислотио основном титровании. [c.410]

    Представление о кислотах и основаниях в неводных растворах рассматривается в обобщенной теории кислот и оснований (в теории протблитического равновесия) (Бренстед). Согласно этой теории кислотой называется химическое соединение, способное в течение реакции отдавать протон кислота — донор протона. Реакция присоединения протона к другому веществу, участвующему в реакции с кислотой, называется реакцией протонизации. Соединения НС1. NH4 и HjO — кислоты, так как они способны отщеплять протон  [c.420]

    Соотношения линейности (IX, 49) и (IX, 51) получили широкое подтверждение на многочисленных рядах однотипных катализаторов в кислотно-основном катализе в водных и неводных растворах. Соотношение линейности (VIII, 51) было проверено на реакции разложения нитрамида в разных растворителях и в присутствии различных основных катализаторов  [c.425]

    Пример общего катализа — реакция диспропорционирования СЮ + 010 — r + lOi. В неводных растворах она не идет (или идет весьма медленно), а в воде происходит быстро, по-види-AiOMy, вследствие образования и разрыва связей  [c.229]

    Практически поступают так. К водному раствору соли свинца прили-вают неводный раствор дитизона (зеленого цвета) и смесь энергично встряхивают. Хлороформ или четыреххлсристый углерод почти нерастворимы в воде, и после встряхивания неводная фаза отделяется от водной теперь органический растворитель окрашен уже ие в зеленый, а в красный цвет, так как содержит образовавшийся при реакции дитизонат свинца. [c.261]

    Серную кислоту тщательно отмывают водопроводной водой, несколько раз бйдистнллятом или тридистиллятом. Посуда, которая обрабатывалась хромовой смесью, заполняется (после отмывки водопроводной водой) дистиллированной водой на 12—18 ч, поскольку десорбция прочно адсорбирующихся на стекле ионов СгаО происходит во времени. При исследовании процессов, особенно чувствительных к следам органических примесей, водопроводную воду не применяют для мытья посуды и ячеек, а после их обработки теплой серной кислотой их промывают бидистиллятом. Поскольку серная кислота хорошо смачивает стекло, ячейку и посуду необходимо многократно промывать водой, иначе результаты эксперимента могут быть искажены реакцией электровосстановления ионов гидроксония. Если работают с неводными растворами, то посуду и ячейки сушат в сушильном шкафу (внимание нельзя сушить ячейки в собранном виде и с ртутными контактами ). [c.28]

    Уравнения (IV.15) — (1У17) используют также для определения I и а в неводных растворах кислот и оснований. Согласно современной теории кислот и оснований Бренстеда и Лоури кислоту определяют как вещество, способное отдавать протон, а основание — как вещество, способное принимать протон от кислоты. Реакция присоединения водорода называется реакцией протонирования. Нейтрализация сопровол<дается переходом протона от кислоты к основанию, причем кислота или основание может быть нейтральной молекулой или ионом. Кажущаяся сила кислот и оснований в любом растворителе зависит от степени их взаимодействия с растворителем. Это определяется кислотностью или основностью самого растворителя. [c.47]

    Метод кондуктометрического титрования основан на изменении электропроводности объема раствора во время протекания в нем химической реакции (пейтрализации, осал<дения, замещения, окисления— восстановления, комилексообразования). В результате реакции изменяется ионный состав раствора. Иоиы с одной абсолютной скоростью и эквивалентной электроироводностью заменяются или иа ионы с другими значениями этих характеристик, или в системе образуется плохо диссоциирующее, малорастворимое или комплексное соединение (особенно хелатное). Кондуктометри-ческое титрование применяют для объемного анализа водных и неводных растворов, физиологических и биологических жидкостей 114 [c.114]

    Методы потенциометрического титрования. Потенциометрическое титрование-—один из объективных электрохимических способов объемного анализа — служит для определения концентрации раствора и константы электролитической диссоциации слабой кислоты и слабого основания. Его применяют при исследовании растворов, окращенных и мутных многокомпонентных с малой концентрацией слабых электролитов и других, визуальное титрование которых затруднено. Виды потенциометрического титрования аци-днметрическое, алкалиметрическое, иодометрическое и другие основаны на реакциях осаждения, окисления, восстановления, комп-лексообразования и т. п. в водных и неводных растворах. Потенциометрическое титрование проводят компенсационным и некомпенсационным методами. [c.167]

    Новое направление в исследованиях многокомпонентных систем было создано работами Н. С. Курнакова и привело к развитию физико-химического анализа — учению о зависимости свойств физико-химических систем от состава. К числу больших достижений XX в. относятся теория растворов сильных электролитов П. Дебая и Э. Хюккеля (1923), теория цепных реакций (Н. А. Шилов, Н. Н. Семенов), теории катализа. В последние годы интенсивно развиваются методы исследования строения и свойств молекул. К ним относятся электронный резонанс (ЭМР), масс-спектрометрия и др. Большой вклад в развитие физической химии внесли советские ученые Я. К. Сыркин, М. Е. Дяткииа (метод молекулярных орбиталей), Н. Н. Семенов (теория цепных реакций), А. Н. Фрумкин (фундаментальные исследования в области электрохимии), Н. А. Измайлов (теория электрохимии неводных растворов). [c.8]

    Кислотные или основные свойства электролитов в неводных растворах объясняются 15 известной мере тем, что соответствующие продукты реакции растворенного электролита с молекулами растворителя, подобно аквакомплексным соединениям (а), сообщают растворам кис- [c.396]

    Гальванические элементы имеют разное назначение. Так, некоторые из них применяют в качестве источников постоянного тока, например, элементы Якоби —Даниэля, Лекланше, аккумуляторы. С другой стороны, изучение электродвижущей силы (э. д. с.) гальванических элементов (метод э. д. с.) широко используют во многих физико-химических исследованиях. Так, по Э.Д.С. гальванического элемента можно определить изменение энергии Гиббса, происходящее в результате реакции, протекающей в элементе, а также соответствующие изменения энтропии и энтальпии. Метод э. д. с. также широко применяют при исследовании свойств растворов электролитов, например, при определении коэффициентов активности, констант протолитической диссоциации, pH водных и неводных растворов, в потенциометрическом и полярографическом анализе и т. п. [c.478]

    Благодаря полярности молекул и достаточно высокой диэлектрической проницаемости жидкий аммиак является хорошим неводным растворителем. Жидкий аммиак положил начало химии неводных растворов. Результаты исследования поведения веществ в жидком аммиаке дали возможность построить обобщенную теорию кислот и оснований, открыли перед химией новые пути проведения реакций синтеза ранее неизвестных веществ и т. д. В жидком аммиаке хорошо растворяются щелочные и щелочно-земельные металлы, сера, фосфор, иод, многие соли и кислоты. Вещества с функциональными полярными группами в жидком аммиаке подверга-]отся электролитической диссоциации. Однако собственная ионизация аммиака 2ЫНа(ж) ЫН - -ЫН2 ничтожно мала и ионное произведение [NHi] lNH.r]= 10 - при —50 °С. [c.249]


Смотреть страницы где упоминается термин Неводные растворы реакции: [c.42]    [c.666]    [c.128]    [c.408]    [c.250]    [c.102]   
Теоретическая неорганическая химия Издание 3 (1976) -- [ c.507 ]




ПОИСК





Смотрите так же термины и статьи:

Замещения реакции неводных раствора

Ионные реакции в неводных растворах (В. Гутман)

КИНЕТИКА РЕАКЦИЙ В НЕВОДНЫХ РАСТВОРАХ , Общие вопросы влияния среды на скорость реакций

Кинетика реакций в неводных растворах

Кольбе реакция а неводных растворах

Окислительно-восстановительные реакци в неводных растворах

Растворы неводные

Реакции в растворах

Реакции кислотно-основные в неводных раствора

Реакции синтеза в неводных растворах

Солюбилизация и катализ реакций полярных веществ в неводных растворах ПАВ. Китахара А., Кон-но

Электрохимические реакции в неводных растворах



© 2025 chem21.info Реклама на сайте