Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Формали метанола

    Формальдегид получают окислением метанола. В процессе, разработанном I. О., катализатором служат кристаллы серебра размером от 0,15 до 1,25 мм. Поток пара проходит через слой катализатора толщиной около 10 мм, при температуре 600 °С и избыточном давлении 0,35—0,70 ат. В других процессах используется серебряный катализатор в форме сетки. В одной промышленной установке была применена медная сетка. Используя в качестве катализатора железо, промотированное окисью молибдена, можно проводить процесс при более низких температурах (350—450 °С). [c.332]


    Согласно другой методике, галогениды четвертичного аммония растворяют в метаноле в присутствии кислоты, анион которой необходимо ввести в соль взамен галогенид-иона. Для концентрирования соли в работе [1017] предлагается удалять исходный анион в форме метилгалогенида, хотя широкую применимость этого метода еще следует доказать. Другие авторы вводят в реакцию исходную аммониевую соль с эфиратом трехфтористого бора, в результате чего образуется тетрафторборат. Этот анион легко обменивается на другие анионы [1018]. [c.84]

    Окисление. Катализаторы окисления поочередно адсорбируют кислород и выделяют его в активной форме. Первичные окислы металлов служат акцепторами не только при окислении элементарным кислородом, но и в присутствии хромовой, марганцовой и хлорноватистой кислот, а также перекиси водорода. Примерами катализаторов различных процессов являются окись серебра (для получения окиси этилена из этилена) серебро или медь (для получения формальдегида из метанола) соединения щелочных металлов, марганца или алюминия (для окисления жидких углеводородов) окислы ванадия и молибдена (для получения фталевого ангидрида из нафталина) раствор нафтената марганца (для получения жирных кислот из высокомолекулярных углеводородов). Чаще всего окисление происходит при повышенных температурах. [c.330]

    Товарный продукт выпускается обычно в виде 37% -ного водного раствора (формалин), в котором формальдегид содержится в форме гидрата НСНО-НаО и низкомолекулярных полимеров — полиоксиметиленгликолей. Для предотвращения более глубокой полимеризации формальдегида и выпадения осадка, который может отлагаться в аппаратуре, в формалин добавляется 6—15% объема метанола. [c.294]

    К аппаратам высокого давления относит аппаратуру, работающую под давлением свыше 10 МПа. Эти аппараты применяют в производствах синтетического аммиака, мочевины, метанола, полиэтилена, высших спиртов, в некоторых процессах гидрирования и др. Наиболее распространены в данных производствах рабочие давления порядка 30—60 МПа. Проектирование и изготовление аппаратов высокого давления—дело весьма ответственное, так как они работают с ядовитыми или взрывоопасными веществами и наряду с опасностью, которую представляет собой высокое давление, появляются трудности работы с ядовитыми и взрывоопасными продуктами. Высокое давление предопределяет форму аппаратов аппараты изготовляют малых диаметров, чтобы уменьшить толщину стенки и периметр уплотнения, технологический объем [c.124]


    Широко распространившееся несколько лет назад мнение о метаноле, как о форме транспортировки природного газа через океан, а следовательно, и как о возможном сырье для получения ЗПГ в дальнейшем, вероятно, утратит свое значение. Однако вполне возможно, что усовершенствование технологии производства метанола снизит его себестоимость, а всевозрастающая дальность морских перевозок, высокие (и постоянно растущие) стоимости судов-метановозов и затраты на перевозку ЗПГ приведут к тому, что баланс экономики этих двух направлений в будущем сместится в другую сторону. [c.225]

    Растворитель. ... ацето- вода дпметил- дпметил- метанол этанол нитрил сульфо- форма- [c.258]

    Выходы метилированных продуктов состава Се и выше на цеолитах типа X более высокие, чем на цеолитах тина V В случае пыхОдов на превращенный спирт преимущество на стороне цеолитов типа V Повышение температуры приводит к снижению выходов замещенных ароматических углеводородов на превращенный метанол при одновременном увеличении потерь спирта в результате реакций разложения (табл. 3). Характерно, что на литиевой и натриевой формах цеолитов дегидрирование метанола сопровождается появлением заметных количеств метана и углеводородов — С . Начиная с калиевой формы, метанообразование уменьшается и реакции глубокого превращения водорода и оксидов углерода становятся доминирующими. [c.322]

    Каждая из указанных выше структурных формул может быть сведена к сжатой молекулярной формуле, которая указывает, сколько атомов каждого элемента имеется в молекуле, но совсем или почти совсем не дает сведений о том, как эти атомы соединены между собой. Молекулярная формула водорода Н , воды Н2О, сероводорода НзЗ, аммиака КНз, метана СН4, метанола (метилового спирта) СН3ОН или СН О, а октана СаН18. Формула октана может быть также записана в такой форме  [c.23]

    Очень удобную для применения в качестве катализатора форму сухого R4N+F получают следующим образом выпаривают водный раствор соли в присутствии трехкратного избытка силикагеля, затем добавляют метанол и снова упаривают, после этого остаток высушивают при 100 °С. Полученный продукт негигроскопичен и сохраняет свою высокую каталитическую активность даже после долгого пребывания на воздухе [1019]. [c.84]

    Изменение химического состава катализатора под влиянием среды весьма часто не приводит к образованию новой фазы, но заметно сказывается на каталитической активности. В окисных полупроводниковых катализаторах это связано с обогащением или обеднением окисла кислородом по сравнению со стехиометрическим составом. Такого типа явления наблюдались, например, в реакции разложения метанола на окиси цинка [101 ] и в реакции окисления водорода на окиси никеля [102]. Для кислотно-основных катализаторов такого типа влияние среды на катализатор связано со степенью гидратации, а следовательно, с величиной функции кислотности катализатора. Действительно, при реакциях гидратации-дегидрата-ции всегда существует равновесие гидратированных и дегидратированных форм катализатора  [c.49]

    Опасность аварии в процессе окислительного дегидрирования метанола обус.ловлена также возможностью образования формаль-дегидо-воздушных смесей. Пределы воспламенения формальдегида с воздухом составляют нижний 7% (об.), верхний 73% (об.). Формальдегид склонен к полимеризации, что вызывает опасность забивки аппаратуры полимерами. Поэтому для предотвращения аварии следует принимать меры, исключающие образование форм-альдегидо-воздушных смесей. [c.326]

    Сырьем для производства газов, необходимых для синтеза метанола, могут служить все виды углеродсодержащего топлива. В зависимости от формы, в которой встречается это топливо, [c.220]

    Принципиальная технологическая схема ионообменной очистки сточных вод от аминов представлена на рис. 6.9. Сточная вода принимается в сборник I, куда дозируется из мерников 2 соляная кислота для понижения pH до 4—4,5. Подкисленная вода насосом 18 подается на фильтр 4, где отделяется от выпавших при подкислении взвесей. Фильтрат принимается в бак 5 и со скоростью около 2 м /(м -ч) поступает в блок последовательно включенных колонн с катионитом 6, 7, 8. Для регенерации колонн из мерника 10 аммиачно-метанольный раствор насосом 16 подается в регенерируемые колонны снизу вверх. Из колонны регенерационный раствор выпускается в приемник 14, откуда насосом 13 подается в ректификационную колонну 11 для отгонки метанола и аммиака. Из кубового остатка этой колонны выделяют сырые амины, которые направляются на регенерацию. После регенерации катионита аммиачно-метанольным раствором его переводят в водородную форму 10%-ным раствором соляной кислоты, поступающим из мерника Общий объем водных растворов, необходимых для регенерации, составляет 28— 30% от объема очищенной воды. [c.348]

    Получение термодинамических характеристик химических процессов. Изучение температурных зависимостей спектров ДОВ и КД химических соединений, имеющих различные конформации, может дать ряд термодинамических характеристик равновесного существования различных форм. На рис 25 приведены спектры ДОВ рас-творов ДНК в растворителе метанол вода=7 3 в довольно широком интервале температур. Если теперь построить зависимость величины угла [c.46]


    На рис. 14 пунктиром нанесена рас-читанная кривая зависимости тока окисления от pH при постоянном фг, при условии, что механизм электроокисления остается один и тот же, а лишь изменяется количество диссоциированной и недиссоциированной форм метанола. Значение константы окисления недиссоциированного метанола определялось из скорости окисления при pH рКдиос, а константы окисления метилат-ионов — из величины тока окисления при pH = рКдисс (так как измерения при pH рКдисо произвести невозможно). [c.216]

    Смесь 10 г соединения II и 75 г треххлористого бора перемешивают на магнитной мешалке при —60 °С в сухой колбе, снабженной ловушкой, которую замораживают охлаждающей смесью. Ловушка должна быть закрыта трубкой с осушителем. Реакционную массу выдерживают 2 ч при —60 °С, прибавляют еще 25 г треххлористого бора и дают смеси нагреться до температуры кипения треххлористого бора, после чего поддерживают слабое кипение смеси еще 5 ч, а затем раствор оставляют на 12 ч при 25°С. Следы треххлористого бора удаляют в вакууме водоструйного насоса. Остаток упаривают с метанолом (4X100 мл) и получают твердый зеленовато-коричневый продукт, который почти полностью обесцвечивается при обработке хлороформом. Продукт суспендируют в 20 мл охлажденного до О С хлороформа, отфильтровывают и промывают на фильтре небольшим количеством хлороформа. По данным ТСХ (см. гл. 6), на силикагеле О в системе растворителей хлоро-, форм —метанол (80 20 по объему) тозилат 111 не содержит примеси исходного метилового эфира (III 0,45 1 ь-2-0-метил-1-0-тозил-х ро-инозит Яр 0,7). После перекристаллизации из смеси метанол — хлороформ выход тозилата III 5,1 г (80%)- В результате еще одной перекристаллизации из метанола III имеет т. пл. 172-174°С, [а]Ь —38 (с 1,825 в хлороформе). [c.307]

    Выстилают внутреннюю поверхность резервуара для ТСХ фильтровальной бумагой (Whatman 3 ММ), чтобы поддерживать равновесие фаз, и заливают его смесью хлоро-форм/метанол ) в соотношении 95 5 ) на глубину 0,5 см. Для проведения хроматографии погружают пластинку в резервуар, прислонив ее к стенке, причем конец пластинки, на который нанесены образцы, должен находиться в элюенте. Закрывают резервуар крышкой и ждут, пока фронт растворителя не достигнет верха пластинки (20—30 мин). [c.335]

    Угли можно регенерировать различными методами. Прн ре-генератгшном методе применяют экстракцию ПАВ органическими растворителями, обычно низкокипящими метанолом и другими инэкомолекулярными спиртами, ацетоном, дноксаном, хлороформом, четыреххлористым углеродом и др. Поглощенные ПАВ извлекают из сорбента переводом их молекул в диссоциированную форму, изменяя pH раствора. Ионы катионоактивных ПЛВ могут быть вымыты растворами кислот (напрнмер, серной), анионоактиоиых — растворами щелочей. Активный уголь, насыщенный алкилбензолсульфонатом, также можно полностью отрегенерировать разбавленной серной кислотой. Ионы ПАВ могут быть вымыты нз пор углей горячей водой. [c.217]

    Работая с поточной системой при болео высоких отношениях метана к кислороду, Ньюитт и Сцего [45] смогли получить значительно лучшие выходы метанола — порядка 50% от прореагировавшего метана (табл. 4) Бумер и Нальдрат [8] и Бумер и Томас [9] также исследовали окисление метана нри давлениях до 180 ат в сосудах, заполненных насадкой из никеля, меди, цинка или сплава монель различной формы. При окислении от 3 до 5% углеводорода за проход они получали выходы метанола до 60% от прореагировавшего углеводорода но все ж сомнительно, [c.325]

    За счет реакции диспропорциоиирования толуола общий выход ксилолов при 475 °С более высокий, чем при 425 °С (особенно на СаКаХ и MgNaX), хотя, КУК уже отмечалось, повышение температуры приводит к снижению выхода ксилолов — продуктов метилирования толуола метанолом (см. табл. 1). При обеих температурах переход от магниевой к стронциевой форме сопровождаете уменьшением содерж ания Л4-ксилола и увеличением содержания о-ксилола. [c.325]

    Прп переходе от калиевой формы к рубидиевой, т. е. с увеличением радиуса ионообмеиного катиона, активность катализатора повышается приблизительно в полтора-два раза. При этом возрастает целевая конверсия метанола и уменьшается его распад па газообразные продукты. Следует отметить, что газообразные продукты, образовавшиеся в процессе конденсации ксилолов и метанола, состоят из П,, СО, СОд и (СНз), 0 и их компонентный состав существенно не изменяется от условий проведения опытов. [c.328]

    Впервые изучегш реакция конденсации а-метил-, 5-л етилпафталинов и метанола на калиевой и рубидиевой формах цеолита тииа X и показано, что па этих катализаторах селективно метилируется боковая ц(ль с образованием [c.328]

    Ири переходе к рубидиевой форме цеолита, т. е. о увеличением радиуса обменного катиона, активность и селективность катализатора возрастают. Так, па KNaX (при 425 °С, объемной скорости ч и до.[ярном соотношении метанол углеводород, равном 20) степень нревраше[ ия а-метилнафталина составляет 48,3, а на RbNaX в этих же условиях — 94 %. В продуктах реакции увеличивается содержание а-винилнафтадипа и селективность процесса на углеводород достигает 94—97 %. Возрастает также целевая конверсия [c.330]

    При перемешивании бензальдегида с 0,13 моля тетрабутил-аммонийцианида в воде при комнатной температуре проходит бензоиновая конденсация с выходом 70% [435]. Проведение реакции в ТГФ или ацетонитриле при комнатной температуре требует присутствия только 0,02 моля четвертичного аммониевого цианида [413]. В этом состоит сущ,ественное отличие от общепринятой методики (кипячение в этаноле или метаноле), в которой применяется 0,2—0,4 моля цианида щелочного металла на 1 моль бензальдегида. Очень гигроскопичные тетраалкиламмониевые цианиды приготовляют из бромидов в абсолютном метаноле путем ионного обмена на колонке со смолой IRA-400 ( N-форма) [436]. Если использовать водный раствор K N и аликват 336 [437], то образуются лишь следы бензоина, вероятно, потому, что хлорид и цианид имеют близкие константы экстракции. Бензоиновая конденсация осуществляется также в присутствии 18-крауна-б или дибензо-18-крауна-6 в качестве катализаторов при 25—60°С либо в системе водный цианид калия/ароматический альдегид без растворителя, либо в системе твердый K N/альдегид, растворенный в бензоле или ацетонитриле [437]. [c.228]

    В (Качестве примера рассмотрим системы ацетон—хлоро-форм—мета(нол я ацетон—хлороформ—мзопрапнловый эфяр. В оиствме ацетон—хлороформ— метанол (имеются два положительных азеотропа ацетон—метанол (т. кип. 54,6° 86,5% ацетона) и хлороформ—метанол (т. кип. 53,5° 87,5% хлороформа) и отрицательный азеотроп ацетон—хлороформ. Температурь кипения чистых компоиентов и азеотропов обозначены на треугольнике концентраций, изображенном на рис. 46. [c.127]

    Цель расчета по модели - определение влияния цйклическог зменения входных параметров на выход целевого продукта. Исследования проводились в следующих направлениях 1) выбор канала для нанесения возмущений 2) выбор фор кШ возмущающих воздействий 3) влияние изменения концентрации диоксида углерода в газовом потоке на входе в реактор а) на температурный режим потока б) на температуру в слое катализатора в) на качество образующегося метанола (с точки зрения образования примесей и увеличения концентрации воды). Выбор канала для нанесения возмущений выполнен с учетом возможности изменения параметров в промьппленных условиях. Для интенсификации процесса выбран расход диоксида углерода, который приводит к изменению концентрации Oj во входном потоке. Расчет технологических режимов выполнялся для случаев синусоидальной, прямоугольной и трапециевидной форм возмущающих воздействий. Анализ полученной информации показал целесообразность использования симметричных прямоугольных волн д.чя увеличения выхода метанола по сравнению с традащионным стацнон шы.ч режимом. При этом изучалось влияние периода возмущающих воздействий и их амплитуды. Установлено, что прирост производительности по метанолу в большей степени зависит от периода цикла, чем от амплитуды. Расчеты показали, что рабочий диапазон изменения температуры и расхода СО2 при реализации циклических режимов совпадает с диапазоном, определенным стационарными условия 1и проведения процесса. [c.65]

    Каталнзатор выпускается в восстановленной форме. При пуске загруженного катализатором реактора нагрев до рабочей температуры проводится со скоростью 10—15 С/ч. Параметры процесса синтеза метанола температура — 320—390 С давление — 24,5—39 МПа объемная скорость подачи сырья — 20 ООО— 40 000 ч 1. Степень превращения окиси углерода за один проход равна 15—30%. Ядами являются сернистые соединения, вызывающие обратимое отравление катализатора. Катализатор не регенерируется. [c.418]

    По завершении реакции в полученную смесь, чтобы вывести из нее катализатор добавляют метанол. Оставшийся катализатор отделяют от полимера экстракцией соляной кислотой или смесью метанола и соляной кислоты. Полимер про-мьгоают водой, высушивают и после добавления антиокислителя формуют в виде цилиндрических гранул. [c.116]


Смотреть страницы где упоминается термин Формали метанола: [c.127]    [c.127]    [c.91]    [c.34]    [c.91]    [c.148]    [c.158]    [c.164]    [c.90]    [c.323]    [c.329]    [c.199]    [c.41]    [c.584]    [c.306]    [c.307]    [c.22]    [c.259]    [c.9]   
Производство изопрена (1973) -- [ c.33 ]




ПОИСК







© 2024 chem21.info Реклама на сайте