Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колонны абсорбционные в производстве

    Срок службы абсорбционной колонны в производстве перхлор-виниловой смолы 2 года [c.386]

    Керамика. ...... 50—100 Стоек Авт. Срок службы абсорбционной колонны в производстве перхлор-виниловой смолы 2 года [c.387]

    А—приготовление угольной пасты Б—жидкофазная гидрогенизация В—предварительное гидрирование Г—бензинирование или расщепление Д—стабилизация Е—получение этана Ж—получение пропана 3—осушка газа И—получение бутана К—абсорбционная очистка газа (удаление аммиака) Л—производство газового бензина М—газоочистка (удаление СО и Н З) И—алкацидная очистка, молотковая дробилка 2—вращающаяся сушилка 3—бункер для сухого (4% НаО) угля с катализатором 4 —бак для затирочного масла 5—ластовый насос высокого давления 6—регенератор (теплообменник) / сепаратор Л—газоподогреватель 9—реактор 10—уровнемер 11—горячий сепаратор 12—центрифуга 3—печь полукоксования шлама 14—емкости для дросселирования 15—холодильник 16—продуктовый сепаратор 17—водоотделитель 18—циркуляционный насос 19—масляный абсорбер 20—детандер 21—алкацидный абсорбер 22—реактор с окисью железа (280°) для удаления сероокиси углерода 23—сборник среднего масла 24—дистилляционная колонна 25—водный абсорбер 26—бак для среднего масла 27—электрический подогреватель сборник бензина 29—емкости для среднего масла Б  [c.35]


    Из диаграммы распределения удельных весов отказов отдельных единиц оборудования производства в общем числе отказов технологической схемы (рис. 9.2) видно, что большой процент отказов приходится на долю газотурбинной установки ГТТ-3, контактного аппарата, холодильника-конденсатора и абсорбционной колонны. [c.237]

    Отходящие газы производств азотной кислоты после абсорбционных колонн содержат от 0,05 до 0,27о (об.) оксидов азота, которые по санитарным требованиям без дополнительной очистки запрещается выбрасывать в атмосферу. [c.217]

    Контактное отделение сернокислотного производства Абсорбционная колонна Ректификационная колонна [c.108]

    Схема производства хладона-11 и хладона-12 с получением побочного хлори стого водорода представлена на рис. 12.24. Одностадийный процесс совместного хлорирования и фторирования метана безводным фтористым водородом и сум хлором ведут в реакторе 1 с псевдоожиженным слоем катализатора при 370- 450 °С и давлении 392—588 кПа. В колонне 2 выделяют непрореагировавшие про дукты и направляют на рецикл в реактор 1. Дистилляционная колонна 3 служи для извлечения хлористого водорода. Затем смесь хлорфторметанов в серии абсорбционных колонн 4—6 промывают, сушат каустиком и серной кислотой, [c.427]

    При неудовлетворительной организации режима работы абсорбционно-отпарной колонны содержание целевых углеводородов (пропана и др.) в сухом газе АОК увеличивается, что приводит к уменьшению производства ШФУ, поскольку больше целевых углеводородов попадает в топливный сухой газ. [c.227]

    Кроме рассмотренных гомогенных процессов окисления возможно гетерогенное протекание реакции с участием гетерогенных твердых катализаторов. Так, заполнение объема кварцевой ватой ускоряет реакцию, а покрытие стенок парафином замедляет ее. В производстве азотной кислоты окисление N0 в NO2 протекает по гомогенному закону, хотя процесс и развивается в абсорбционной колонне. Катализатором окисления может быть силикагель, на поверхности которого адсорбируются реагирующие газы. [c.57]

    Охлажденный нитрозный газ поступает в нитрозный нагнетатель 20, сжимается до 1,1 МПа и последовательно охлаждается в подогревателе питательной воды 22 и холодильнике-конденсаторе 23, а затем поступает в абсорбционную колонну 24. Последняя орошается конденсатом водяного пара и конденсатом сокового пара из производства аммиачной селитры. [c.75]


    Насадочные колонны — наиболее распространенные реакторы для абсорбционно-десорбционных процессов, их широко применяют в производстве серной кислоты, азотной кислоты, при переработке коксового газа, в ряде процессов органического синтеза и т. п. Реакторы трубчатого типа рассмотрены в гл. V (см. рис. 66 и 67). [c.168]

    Как было указано выше, при работе абсорбционной установки под средним и высоким давлениями наряду с пропаном и высшими углеводородами абсорбентом поглощается также значительное количество метана и этана. Это усложняет схему десорбции. Из-за большого давления насыщенных паров продуктов верха колонны (рис. 7.13) затрудняется их конденсация, так как требуются низкие температуры. В емкости орошения Е-1 продукты находятся в двух фазах. Жидкая фракция в основном состоит из смеси целевых компонентов, она направляется на газофракционирующую установку. Газовая фракция состоит практически из всех компонентов исходного газа. Выделение из этой смеси целевых компонентов является одним из путей повышения эффективности абсорбционной установки. Для этой цели остаточный газ из емкости Е-1 можно повторно перерабатывать в отдельной колонне, либо произвести рециркуляцию этого потока в основной абсорбер К-1. Экономическая целесообразность применения той или иной схемы определяется конкретными условиями производства, в первую очередь составом и количеством газовых потоков и давлением процесса. [c.214]

    После конденсатора 6 сконденсированная часть продуктов реакции с температурой 50—70°С возвращается на орошение дегазационной колонны 5 Газообразные водород и аммиак из конденсатора 6 через циклон 7 поступают в холодильник 8, где охлаждаются до 25—30 °С и далее в абсорбционную колонну 9, предназначенную для абсорбции аммиака водой. Промежуточные холодильники 10 и циркуляционный холодильник 11 служат для отвода тепла из колонны Получаемая при этом аммиачная вода используется на других стадиях производства капролактама. [c.100]

    Одна из сложностей заключается в отсутствии обобщенных закономерностей для расчета кинетических коэффициентов процесса ректификации. В наибольшей степени это относится к колоннам диаметром более 800 мм с насадками и тарелками, широко применяемым в химических производствах. Большинство рекомендаций сводится к использованию для расчета ректификационных колонн кинетических зависимостей, полученных при исследовании абсорбционных процессов (в приведенных в данной главе примерах в основном использованы эти рекомендации). [c.226]

    Твердый шлам обрабатывают отработавшим травильным раствором выделяется HjS и образуется раствор сульфата закиси железа. Сероводород перерабатывают на серную кислоту или серу, а раствор возвращают на верх абсорбционной колонны (обычно после доведения до требуемого pH). Нерастворимое комплексное соединение (железистосинеродистый аммоний) и гидрат закиси железа, полученные на предыдущих стадиях, возвращают в доменный процесс. Важными преимуществами метода являются одновременное удаление аммиака, HjS и H N за одну операцию и использование обычно сбрасываемого в канализацию отработавшего травильного раствора для производства товарных продуктов. Недостатки процесса — его сложность и агрессивность травильных растворов, требующая применения специальных коррозионностойких конструкционных материалов. [c.235]

    В крупнотоннажных производствах хлор сушат в керамических колоннах, заполненных насадкой, которая сверху орошается серной кислотой (рис. 21). Хлор подается в нижнюю часть колонны. Высушенный хлор проходит брызгоуловитель и направляется в хлоратор. Серная кислота циркулирует в системе абсорбционная колонна — сборник — циркуляционный насос. По мере разбавления серную кислоту выкачивают из сборника на регенерацию, а сборник заполняют концентрированной кислотой. [c.81]

Рис. 99. Схема производства соды по аммиачному способу I — напорный бак рассола 2 — барботажная абсорбционная колонна 3— барботажная карбонизационная (осадительная) колонна 4 — нижняя охлаждаемая часть колонны 5 — барабанный вакуум-фильтр 6 — печь кальцинации бикарбоната натрия (сушилка) 7 — транспортер 8 — промыватель газа сушилок 9 — компрессор 10 — барботажная дистилляционная колонна 11 — шахтная известково - обжигательная печь 12 — промыватель газа печей 13 — гаситель из-, вести 14 — насос Рис. 99. <a href="/info/148933">Схема производства соды</a> по <a href="/info/866191">аммиачному способу</a> I — напорный бак рассола 2 — <a href="/info/987352">барботажная абсорбционная колонна</a> 3— <a href="/info/814667">барботажная карбонизационная</a> (осадительная) колонна 4 — нижняя охлаждаемая <a href="/info/13579">часть колонны</a> 5 — <a href="/info/64420">барабанный вакуум-фильтр</a> 6 — <a href="/info/1718395">печь кальцинации бикарбоната</a> натрия (сушилка) 7 — транспортер 8 — <a href="/info/110153">промыватель газа</a> сушилок 9 — компрессор 10 — барботажная <a href="/info/325697">дистилляционная колонна</a> 11 — <a href="/info/1801700">шахтная известково</a> - <a href="/info/312278">обжигательная печь</a> 12 — <a href="/info/110153">промыватель газа</a> печей 13 — гаситель из-, вести 14 — насос

    На установке инертного газа одного из нефтеперерабатывающих заводов во время остановочного ремонта производили замену селикагеля в неотглу-шенных абсорбционных колоннах. При производстве работ в одной из колонн произошла утечка газа через закрытую задвижку из другой колонны, что привело к групповому несчастному случаю. [c.210]

    Абсорбционная колонна в производстве соды предназначена для поглощения аммиака и двуокиси углерода из парогазового потока водным раствором хлорида натрия выделяющаяся теплота отводится. из зоны межфазного контакта охлаждающей водой. Новый абсорбер оснащен контактными устройствами, которые состоят из вертикально установленных пар пластин, образующих попеременно открытые каналы для парогазожидкостного потока и закрытые каналы для охлаждающей воды каналы для парогазожидкостного потока заканчиваются наклонными пластинами, направляющими жидкость в переливы. Эти контактные устройства могут работать как в про-тивоточном, так и в восходящем прямоточном режиме движения контактирующих фаз при сохранении противотока фаз в целом по колонне. Схемы материальных потоков в абсорбционной колонне показаны на рис. 1. [c.75]

    Основные аппараты — абсорбционные, карбонизационные и дпстилляционные колонны — процесса производства соды аммиачным методом работают по принципу барботажа и однотипны по своей конструкции, так как в них осуществляются однотипные хемосорбционные (или десорбцион-ные) процессы. [c.208]

    В содовом производстве для проведения всех абсорбционных и десорбционных процессов используется однотипная аппаратура — колонны с многоколпачковыми тарелками, работающие при барботажном режиме, который должен обеспечить высокое развитие поверхности фаз между жидкостью и газом. Однако эта аппаратура недостаточно эффективна и поэтому, чтобы обеспечить требуемое время контакта между жидкостью и газом, барботажные колонны содового производства должны быть многоэтажными и громоздкими. [c.33]

    Ручная выдувка применяется в мелкосерийном н единичном производстве для получения сложных элементов аннаратов тен-лообменников, ректификационных колонн, абсорбционных аппаратов, различных емкостей и других подобных конструкций. [c.90]

    Рассмотрим многостадийный процесс, схема которого изображена на рис. 1-48. С примерами этих процессов можно встретиться прп анализе работы исадиабатической ректификационной колонны, технологического участка химического производства, последовательности абсорбционных аппаратов и т. д. Каждая стадия такого процесса имеет по два входа и выхода, которые связаны между собой системой соотношений, описывающих процессы, происходящие на стадии  [c.303]

    Элементы ХТС по сравнению с элементами автоматизированных и радиоэлектронных систем имеют значительно более высокую интенсивность отказов. Так, интенсивность отказов элементов радиоэлектронных систем очень мала она колеблется в пределах 10 — 10 ч [6, 181], т. е. в интервале времени продолжительностью 10 ч происходит от 1 до 10 отказов электронного эле.мента. Интенсивность отказов (внеплановых ремонтов) эле.ментов ХТС значительно выше. Например, некоторые из элементов ХТС крупнотоннажного производства слабой азотной кислоты характеризуются следующими птенсив-ностями отказов [102] 4,58-10 ч , или (в среднем один отказ за 2180 ч)—газотурбинная установка ГТТ-3, 4,54 10 ч (1 отказ за 2200 ч) —комбинированный аппарат подготовки аммиака, 5,09-10- ч (I отказ за 1960 ч)—контактный аппарат и 5,0-10 ч (1 отказ за 2000 ч)—абсорбционная колонна. [c.145]

    Пример [25]. Требуется разработать формальную адаптивную мо-дел1, абсорбционного отделения в производстве слабой азотной кислоты в статическом режиме. Основным технологическим аппаратом отделения является тарельчатая абсорбционная колонна, где происходит абсорбция окислов азота. [c.98]

    Для протекания газожидкостной реакции необходим контакт газа и жидкости. В большинстве случаев реакция протекает в жидкой фазе, в которую должен вводиться реагирующий компонент газовой смеси поэтому газожидкостные реакции всегда сопровождаются межфазным массообменом. В некоторых случаях одни стадии процесса протекают в жидкой фазе, другие — в газовой, например в производстве азотной кислоты. В абсорбционно-окислительной колонне происходит следующая цепочка процессов абаорбция диоксида азота жидкостью, реакция диоксида азота с водой с образованием азотной и азотистой кислот, разложение азотистой кислоты с образованием моноксида азота, десорбция моцоксида азота в газовую фазу, окисление моноксида азота в диоксид. Здесь окисление моноксида азота происходит в газовой фазе, остальные реакции — в жидкой необходимые стадии процесса также абсорбция и десорбция. Все эти процессы проводят одновременно в одном аппарате. [c.269]

    К прочим сферам применения относятся установка производства серной кислоты (абсорбционные колонны), при этом выбор туманоуловителей осуществляется на основе следующих принципов [122] для установок прямого сжигания серы и обжига или плавления руды без производства олеума — высокоскоростной (Бринк) уловитель для установок любого типа с байпасной системой и производством олеума — высокоэффективный (свечный, типа Бринк). Установка включает производство 50з с подогревом конверторными газами, а также регенерацию отработанной кислоты. [c.378]

    При мощности производства 2.5 000 т1год 91 %-ного изопропилового сиирта ежесуточно в первую абсорбционную колонну вводят 130 000 (5400 м /час) газа, содержащего 20% пропилена. Использование олефина составляет при этом 92%. Вытекающая из первой колонны реакционная масса, в которой на 1 моль Н2804 приходится 1 моль поглощенного пропи- [c.465]

    На рис. 10.5 изображена схема ЭТА производства слабой азотной кислоты под давлением 0,716 МПа. Жидкий аммиак поступает в испаритель аммиака 4, где он испаряется за счет теплоты охлаждения воды (при этом получается побочный продукт — охлажденная вода). Образующийся газообразный аммиак далее поступает в перефеватель 6 и оттуда в смеситель 7. Атмосферный воздух через аппарат очистки 1 поступает в турбокомпрессор 2а, где он сжимается до давления 0,716 МПа, после чего поступает в подофеватель воздуха 5 и далее в смеситель 7 Здесь происходит смещение газообразного аммиака воздухом, после чего ам-миачно-воздущная смесь, пройдя паронитовый фильтр 8, поступает в реактор окисления аммиака 9. Теплота образования нит-розных газов используется в котле-утилизаторе КУН-22/13 J0 для выработки водяного пара. Из котла-утилизатора нитрозные газы, пройдя окислитель 11, последовательно охлаждаются в воз-духоподофевателе 5 и водяном холодильнике 12, после чего поступают в абсорбционную колонну 13. Из низа колонны отводится готовая продукция — слабая азотная кислота, а сверху — хвостовые газы. Последние, пройдя сепаратор 14 и реактор каталитической очистки 3 (являющийся одновременно камерой сгорания газовой турбины), поступают в газовую турбину 26. Расширяясь в ней от давления 0,7 МПа до атмосферного, хвостовые газы передают свою энергию избыточного давления сжимаемому в турбокомпрессоре 2а воздуху. Офаботавшие в турбине хвостовые газы посту пают на утилизацию своей физической теплоты в котел-утилизатор КУГ-66 15, после чего выбрасываются в атмосферу. [c.256]

    Широкая фракция углеводородов Сз+высшие (ШФУ) конденсируется в воздущном (или водяном) холодильнике 7 н пЪступает в рефлюксную емкость 9, из которой часть ШФУ подают в качестве орощения на верхнюю тарелку десорбера 3, а избыток направляют на газофракционирующую установку для производства индивидуальных углеводородов или соответствующих фракций сжиженных газов. Тепло в нижнюю часть десорбера 3 подводят замечет циркуляции абсорбента, стекающего с нижней тарелки десорбера, через подогреватель 10. Регенерированный абсорбент выводят с низа десорбера 3, охлаждают в рекуперативных теплообменниках 4 и 5 и в холодильниках 6 и 8, после чего подают в абсорбер 1 и абсорбционно-отпарную колонну 2. [c.204]

    Так, известен опыт установки на фундамент в собранном виде абсорбционных колонн высотой 46 ООО мм, диаметром 3000 мм, весом 66 т. Трудоемкость монтажа при этом была снижена в 3 раза относительно метода по узловой сборки. Установлено, что около 70% всех вертикальных аппаратов в газонефтехимической промышленности можно доставить на монтажные плош адки как габаритные, а следовательно, и установить в собранном виде. Использование водного и специализированного автомобильного транспорта для перевозки собранных аппаратов, увеличение габаритов и реконструкция железных дорог расширяют номенклатуру, размеры и объем производства аппаратов (диаметром 3000—5000 мм и более), полностью изготовляемых на аппаратостроительных заводах [156, 157]. [c.398]

    По второму и третьему няпрян.пению наибольший опыт накоплен в производстве азотной кислоты. Вместе с тем отмечается большая капиталоемкость этих мероприятий. Так, указывается, что сокращение выбросов окислов азота с 0,25% до 0,05% удваивает объем абсорбционных колонн, а каталитическое разложение N0 повышает себестоимость азотной кислоты на 10—12%. [c.66]

    Вода. Используется в производстве азотной кислоты для орошения абсорбционной колонны, для выработки пара при утилизации тепла в котлах-утилизаторах, для охлаждения реакционных аппаратов. Для абсорбции оксидов азота используют чаще всего паровой конденсат и химически очищенную воду. В некоторых схемах разрешено применение конденсата сокового пара (КСП) аммиаиной селитры. В любом случае вода, используемая для орошения колонн, не должна содёржать свободного аммиака и твердых взвесей, содержание хлорид-иона должно быть ие более 2 мг/л, масла — не более 1 мг/л, ЫН4ЫОз —не более 0,5 г/л (особое разрешение). Химически очищенная вода для котлов-утилизаторов должна соответствовать требов а-ниим ГОСТ 20995—75 и ОСТ-108.034.02—79. [c.12]

    Очистке подлежат и газовые выбросы производств фенолоальдегидных смол. При получении слоисть х пластиков на стадии пропитки и сушки только с одной пропиточной машины отводится 4—5 тыс. м /ч воздуха, загрязненного парами фенола (1,5 г/м )-Поэтому рекомендуется проводить абсорбционную очистку газовых выбросов в колоннах с псевдоожиженной шаровой насадкой, орошаемой водной щелочью. [c.183]

    Выделяемые из газа аммиак и кислые компоненты могут перерабатываться на различные продукты, так как основная установка очистки газа совмещена с установкой Клауса производства элементарной серы, установкой получения серной кислоты или установкой сульфит-сульфатного процесса [12]. Под названием хемо-трен [20] описан интересный процесс химического разделения кислых газов и аммиака. При этом процессе, используемом в сочетании с однократным избирательным извлечением сероводорода, пары, выходящие из аммиачной отгонной колонны и содержащие КНд, Ндб, СО и НСК, вначале коптактпруются в колонне с механическим распыливанием со слабокислотным раствором при 40° С. Аммпак количественно абсорбируется, а не содержащие аммиака кислые газы перерабатываются далее для получения целевых продуктов. Аммиак выделяют из раствора, нагревая его до 130° С во второй колонне, снабженной кипятильником. Охлажденный раствор снова возвращается в абсорбер. На рис. 4.7 показана схема такого нроцесса с совмещением абсорбционной и отпарной секций в одном аппарате. В качестве кислых абсорбентов применяют фенол, ксиленолы и аминокис- [c.76]

    Высокая теплопроводность графитовых материалов делает их непревзойденными для изготовления теплообменной аппаратуры, работающей в высокоагрессивных средах. В производстве хлористого водорода применяют холодильни-1СИ из игурита, которые служат по семь лет и более. На ряде химических заводов работают абсорбционные колонны, изготовленные из бакелитированного графита и заполненные фторопластовыми кольцами. В Германии на этой стадии производства применяют аппараты из пропитанного графита — игурита, выполненные в виде многокамерных абсорберов для получения соляной кислоты, работающие по принципу прямотока и противотока. [c.256]


Смотреть страницы где упоминается термин Колонны абсорбционные в производстве: [c.76]    [c.216]    [c.466]    [c.61]    [c.317]    [c.160]    [c.436]    [c.331]    [c.413]    [c.703]    [c.38]   
Коррозия и защита химической аппаратуры Том 7 (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбционная колонна

Колонны в производстве



© 2025 chem21.info Реклама на сайте