Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциалы золота и серебра

    Значения стандартных потенциалов металлических электродов в водных растворах приведены в табл. 20, которая является одновременно и рядом напряжения. Стандартные электродные потенциалы металлов указывают на меру восстановительной способности атомов металла и меру окислительной способности ионов металла. Чем более отрицательное значение имеет потенциал металла, тем более сильными восстановительными способностями обладает этот металл. Например, литий, имеющий наиболее отрицательный стандартный потенциал, относится к наиболее сильным восстановителям. И наоборот, чем более положителен потенциал металлического электрода, тем более сильными окислительными способностями обладают его ионы. Из табл. 20 видно, что к наиболее сильным окислителям принадлежат ионы золота, платины, палладия, серебра и ртути. [c.192]


    Электролизом растворов солей получают медь, цинк, кадмий, никель, кобальт, марганец и другие металлы. В этих процессах используют нерастворимые аноды. На катоде происходит разряд ионов металла из растворов, которые получают при физической и химической обработке руд. Метод электролиза используют для рафинирования (очистки) металлов меди, золота, серебра, свинца, олова и др. При рафинировании анодом служит очищаемый металл. На аноде растворяются основной металл и примеси, потенциал которых отрицательнее потенциала основного металла. Примеси, имеющие более положительный потенциал, выпадают из анода в виде шлама. [c.212]

    Такие реакции возможны потому, что ионы [Э(СЫ)а Г отличаются устойчивостью. В присутствии ионов N в растворе окислительный потенциал золота и серебра сильно снижается, и становится возможным окисление этих металлов кислородом воздуха. Из указанных комплексных соединений золото (серебро) выделяют электролизом или действием цинка. Медь получают из природных сульфидных руд после их предварительного обогащения (флотация) и окисления. Для электротехнических целей сырую медь подвергают электролитическому рафинированию (гл. Vni, 7). [c.356]

    Золото встречается преимущественно в свободном состоянии (электродный потенциал золота °==1,68 В), тогда как серебро редко ( =80 В), а медь — исключительно редко ( =0,34 В). [c.412]

    В качестве металлов для покрытия обычно применяют металлы, образующие на своей поверхности защитные пленки. Как уже говорилось, к таким металлам относятся хром, никель, цинк, кадмий, алюминий, олово и некоторые другие. Значительно реже применяются металлы, имеющие высокий электродный потенциал— серебро, золото. Существуют различные способы нанесения металлических покрытий наибольшие преимущества имеют методы гальванотехники (см. 103). [c.559]

    Отношение к воде. Так как электродный потенциал меди, серебра и золота положителен, т. е. в ряду напряжений они расположены справа от водорода, то с чистой водой реакции не произойдет. [c.151]

    Большое перенапряжение водорода на ртути позволяет работать в широком диапазоне потенциалов и выделять большое число металлов, образующих амальгамы. Схема ячейки для электролиза на ртутном катоде приведена на рис. 29. Без регулирования потенциала рабочего электрода в 0,1 н. серной кислоте осаждаются железо, медь, никель, кобальт, цинк, германий, серебро, кадмий, индий, олово, хром, молибден, свинец, висмут, селен, теллур, ртуть, золото, платина, иридий, родий и палладий. Плохо осаждаются марганец, рутений, мышьяк и сурьма. Полностью остаются в рас- [c.59]


    В природе, как правило, встречаются в чистом виде только благородные металлы (платина, золото, серебро и т. д.), а остальные — в виде соединений с неметаллами (минералы, руды). Причина этого — большая химическая активность (сродство) металлов по отношению к кислороду и другим неметаллическим элементам (сере, хлору, фосфору и т. д.). Свидетельством этого является то, что изобарно-изотермический потенциал у окислов, сульфидов, сульфатов, хлоридов металлов меньше, чем у элементов металла и неметалла, взятых в отдельности. Например, при образовании РегОз из отдельных элементов свободная энергия (в ккал/моль) уменьшается на 177, АЬОз — на 377, 2пО — на 76. [c.10]

    Чувствительным элементом в методе ПКМ является тонкий кварцевый кристалл, вырезанный под определенным углом к основным кристаллографическим осям и обладающий пьезоэлектрическими свойствами [156]. Наиболее широко применяются АТ- и ВТ-срезы. При наложении внешнего электрического потенциала в данных кварцевых пластинках возникают сдвиговые колебания кристаллической решетки. Принципиальная схема пьезокварцевого резонатора приведена на рис. 6.11. В качестве электродов применяют напыленные пленки золота, серебра, алюминия, титана и других металлов. При подключении кристалла в электрический колебательный контур в кристалле возникает резонанс при условии, что электрические и механические колебания происходят с частотой, близкой к фундаментальной (базовой) частоте кристалла. Базовая частота кристалла зависит от толщины, химической структуры, формы пластины кварца, а также от его массы. В простейшем случае (вакуум) уравнение, связывающее изменение частоты колебаний кристалла А/, с изменением массы, прикрепленной к кристаллу Ат, выглядит следующим образом [157[  [c.323]

    Электролиз — процесс, обратный процессу в гальваническом элементе с металлическим электродом. Минимальное напряжение для электролиза раствора соли определяется по таблице электродных потенциалов. Для осуществления процесса электролиза на электроды следует подать напряжение, несколько большее, чем э. д. с. гальванического элемента. При разряде катионов на катоде в первую очередь будут разряжаться те ионы, у которых. .. (наименьшее, наибольшее) положительное и. .. отрицательное значение потенциала. В растворе находятся катионы (С=1 г-ион/л) натрия, калия, алюминия, золота, серебра, меди, железа, кадмия. На электролизер подано напряжение 3 в. Какова теоретически последовательность осаждения металлов (См. табл. 3.4) [c.126]

    Подвергаемое рафинированию золото содержит часто значительное количество серебра [до 20% (масс.)], платиноиды [до 50% (масс.)], медь, свинец и некоторые другие примеси. Электродные потенциалы примесей более отрицательны, чем потенциал золота. Потенциалы металлов, содержащихся в золотом аноде в растворе НС1 приведены ниже  [c.272]

    Золото во многих растворах имеет положительное значение потенциала, но в цианистых электролитах потенциал золота (отрицательный) становится больше, чем у серебра. [c.207]

    На рис. 17 видно также, что при снятии полярограммы ртути (II) [или смеси ртути (II) и железа (1И)] в направлении увеличения положительной поляризации электрода на вольт-амперной кривой появляется анодный пик, после чего сила тока падает до нуля. Этот пик отражает процесс окисления ртути, которая выделилась на электроде во время его поляризации при потенциалах более отрицательных, чем +0,7 в (НВЭ). Совершенно аналогичная картина наблюдается в случае полярографирования золота, серебра, меди и других катионов, восстановление которых сопровождается выделением осадка металла на платиновом электроде, с той лишь разницей, что положение анодных пиков относительно оси абсцисс будет различным чем более электроположителен выделившийся металл, тем при более положительном потенциале происходит его окисление. Потенциал, соответствующий анодному пику того или иного металла, не является постоянной, величиной и зависит от целого ряда факторов, в первую очередь от состава фона, от скорости снятия поляризационной кривой и от количества металла, выделившегося на поверхности индикаторного электрода. От последних двух факторов зависит также глубина пика, а именно чем больше скорость наложения потенциала и чем больше выделилось металла на электроде, тем больше анодный ток. Если соблюдаются одни и те же условия снятия вольт-амперных кривых, то глубина пика оказывается прямо пропорциональной концентрации ионов металла в растворе, а также времени предварительного его осаждения на электроде. Эта закономерность положена в основу полярографических определений с предварительным накоплением вещества на твердом индикаторном электроде 125-127 [c.61]

    При этом все примеси, имеющие электродный потенциал более положительный, чем потенциал меди (величина ф° в уравнении Нернста), выпадают в виде осадка (шлама) на дно электролитической ванны. Среди примесей в меди нередко содержатся золото, серебро, платина, селен, теллур, представляющие большую ценность как драгоценные металлы и полупроводники. Таким образом, извлечение их из шлама в значительной степени компенсирует затраты электроэнергии на рафинирование меди. На отрицательном электроде (катоде), приготовленном из листа тщательно очищенной меди, происходит разряд катио--нов Сп + [c.32]


    Но в некоторых случаях может оказаться, что при работе элемента типа (а) металл не окисляется, а происходит восстановление его ионов за счет окисления молекулярного водорода. Такие процессы имеют место, например, для золота, серебра, ртути. Здесь положительна работа восстановления металла за счет газа водорода, работа же окисления металла отрицательна. Следовательно, собственный потенциал его будет при этом положительным относительно стандартного водородного электрода. Подобное же соотношение справедливо для галогенов, а также во многих других случаях. [c.248]

    Катодное восстановление тех или ины ионов происходит при определенном значении катодного потенциала, обусловливаемого величиной нормальных окислительно-восстановительных потенциалов и условиями проведения электроанализа. Поэтому ионы металлов, стоящих в ряду напряжений ниже меди (ионы золота, серебра, ртути и др.), а также роданистоводородная и соляная кислоты, соединения мышьяка, сурьмы, олова, молибдена, селена, теллура и окислители мешают этому определению. [c.427]

    К благородным металлам относятся золото, серебро и металлы платиновой группы (платина, иридий, родий и др.). Эти металлы имеют положительный потенциал. [c.155]

    Для осаждения элементарных металлов из растворов их солей с помощью сильно восстанавливающих титрованных растворов (например, при титровании меди, висмута, золота, серебра и т. д. сульфатом хрома (2) в качестве индикаторного электрода служит также и платиновая проволока ее потенциал одинаков с потенциалом осаждаемого металла, так как она соприкасается с последним. [c.493]

    На электроположительных металлах, равновесные потенциалы которых положительнее потенциала кислородного электрода (область ///, рис. 1.1), термодинамически невозможно протекание реакции восстановления кислорода. Такие мета ллы термодинамически устойчивы в воде, и если в растворе присутствуют их ионы, на электроде устанавливается равновесный потенциал. В отсутствие одноименных ионов устанавливается потенциал, обусловленный адсорбцией компонентов раствора на металле. Последний может установиться и на металлах, потенциалы которых расположены в области //, если из растворов удалить кислород, например, предварительной продувкой водородом, азотом или инертными газами (гелий или аргон). В качестве примера термодинамически устойчивых металлов в водных растворах можно привести серебро и золото, на которых невозможно протекание реакции восстановления кислорода. В присутствии одноименных ионов в растворе на них устанавливается равновесный потенциал. Однако, если, например, в раствор солей серебра или просто в воду ввести сильный комплексообразователь (ионы цианида), равновесный потенциал системы серебро — комплексные ионы серебра сдвинется в отрицательную сторону и станет возможным протекание реакции восстановления кислорода и переход ионов серебра в виде комплексов в раствор. [c.10]

    В качестве материалов для генераторных электродов могут быть использованы платина, золото, серебро, ртуть, амальгамы, графит и иногда вольфрам, медь, свинец, хром и пр. Наиболее часто применяются платина и ртуть платина более пригодна для анодных процессов, а для катодных процессов — в тех случаях, когда электропревращение вещества протекает при более положительных значениях потенциала электрода, чем выделение водорода (из-за малого перенапряжения водорода иа платине). На ртутном электроде можно осуществить почти все катодные процессы благодаря большому перенапряжению водорода на нем. Однако из-за легкости анодного растворения ртути проведение электролиза при несколько более положительных значениях потенциала, чем потенциал НВЭ, недопустимо. Таким образом, эти два электрода дополняют друг друга. [c.208]

    Такого рода влияние на фотографические свойства должна оказывать золотая сенсибилизация, т. е. замещение серебра в центре на атомы золота, поскольку серебро имеет электронное сродство = 1,1 эе и ионизационный потенциал VJ = 7,54 эв, тогда как золото соответственно 2,4 эв и 9,25 эв. Самый процесс замещения легко осуществим экспериментально, так как нормальный потенциал золота значительно более отрицательный, чем потенциал серебра, следовательно, ионы золота будут окислять серебро и превращать серебряные центры в золотые или смешанные. [c.239]

    Зависимость эрозии катода платины, палладия, родия, иридия, рутения, золота, серебра и меди от величины ионизационного потенциала (по оси абсцисс — линейный масштаб, по оси ординат — логарифмический) [c.25]

    Золото и серебро, а также металлы платиновой группы, потенциалы которых более положительны, чем потенциал меди, почти полностью выпадают в шлам. [c.123]

    Итак, метод измерения емкости двойного слоя позволяет определить потенциал нулевого заряда, зависимость заряда электрода от его потенциала, с точностью до константы рассчитать серию а, -кривых и определить поверхностную концентрацию специфически адсорбированных ионов и органических молекул. Разработка и экспериментальная проверка метода измерения емкости проводились на ртутном электроде (А. И. Фрумкин и сотрудники, Д. Грэм). В дальнейшем этот метод был широко использован для изучения двойного электрического слоя на электродах из висмута, свинца, галлия, индия, сурьмы, олова, таллия, цинка, серебра, меди, золота и некоторых других металлов. [c.158]

    С Другой стороны, известна инертность золота и серебра по отно- шению к кислороду. Она объясняется приращением, а не убылью изобарного потенциала в реакциях  [c.111]

    Вообще говоря, электродный потенциал, повидимому, не очень сильно зависит от материала электрода. Так, например, потенциалы осаждения ThB (свинца) на золоте, серебре и меди совпадают [35, 6]. Однако иногда наблюдались и различия, в частности с электродами из тантала и платины [7, 21], но эти исключения, возможно, вызваны вторичными явлениями образованием препятствующего осаждению слоя окиси на поверхности тантала или образованием сплава с платиной, который, наоборот, способствует осаждению. Это значит, что сцепление осаждающихся атс ов с различными поверхностями одинаково сильно. Обзор попыток объяснения этого загадочного результата был сделан Хайсинским [33, 35], который сам стоит на той точке зрения, что для наиболее активных центров на поверхности электрода, т. е. тех центров, которые определяют электродный потенциал, работа выхода (т. е. энергия, требуемая для того, чтобы извлечь из поверхности необходимый для нейтрализации иона электрон) может равняться свободной энергии адсорбции адсорбированного на электроде нейтрального атома с обратным знаком. Эта гипотеза основана на некоторых результатах [49], относящихся к адсорбции паров цезия на вольфраме. [c.32]

    Вследствие ничтожно малой константы нестойкости его (Кн = = 5-10 " ) равновесный потенциал золота в цианистом растворе смещен в Сторону отрицательных значений намного больше, чем у серебра, что исключает возможность контактного вытесиенич золота медью п другими металлами. [c.221]

    Вследст1В1ие высокого электроположительного стандартного потенциала золота и большой склонности его к пассивированию покрытия золотом не создают электрохимической защиты от коррозии не только железа, меди и ее сплавов, но и серебра. [c.184]

    Сплав золото — серебро. Из цианистых электролитов серебро осаждается при ббльших положительных потенциалах, чем золото. Отсюда следует, что для получения сплавов, богатых золотом, в электролите должно содержаться значительно больше золота, чем серебра. На рис. 117 представлены катодные поляризационные кривые серебра, золота и сплава Аи - А из цианистых электролитов. При повышении к содержание золота в сплаве быстро возрастает, а затем стабилизируется. Добавка трилона Б способствует сдвигу катодной поляризации в область отрицательных значений потенциалов, а повышение температуры и уменьшение концентрации свободного цианида в электролите — увеличению значений потенциала сплавообразования. При перемешивании электролита значительно повышается предельный ток и увеличивается содержание серебра в сплаве. [c.200]

    Покрытия сплавом золото — серебро — медь нашли широкое применение в радиоэлектронике. Равновесный потенциал сплавообразования (рис. 119) имеет большее положительное значение, чем потенциалы восстановления золота и меди, и большее отрицательное, чем серебро из электролита, не содержащего свободного цианида. Первый предельный ток обусловлен восстановлением серебра и золота, а второй — восстановлением в сплав меди (при к > 0,2 А/дм ). При повышении концентрации свободного цианида [c.201]

    Ртуть обладает высокими потенциалами ионизации. Например, ее первый потенциал ионизации равен 10,43 в. Он гораздо выше ионизационных потенциалов висмута (7,287 в), олова (7,342 в), свинца (7,415 в), меди (7,724 в), цинка (9,391 в) и др. Ионизационный потенциал ртути выше также ионизационного потенциала золота и элементов платиновой группы, и в этом отношении ртуть оказывается более благородной , чем золото (9,22 в), серебро (7,574 в), платина (9,0 в) и другие металлы. Высокое значение ионизационного потенциала ртути определяет ее способность легко восстанавливаться из различных соединений до металлического состояния, и поэтому она часто встречается в природе в виде самородной ртути. Если бы, по мнению А. А. Саукова ртуть, наряду с процессами ее образования из разных соединений, не испарялась, то весьма вероятно, что она встречалась бы в природе гораздо чаще, чем самородное золото и серебро. [c.24]

    Влияние магнитного поля на коррозию. Форестье и Ори установили, что действие железных солей на золото, серебро и ртуть сильно ускоряется магнитным полем. Сборги и Борд-жиа установили, что сильное магнитное поле противодействует наступлению пассивности железного анода, изменяя плотность тока или потенциал, при которых возникает пассивное состояние. [c.404]

    У Au разность энергий для 5d "6s и 5d 6s6p конфигурации составляет 504,38 кДж/моль для аналогичной электронной конфигурации атома Ag 4d 5s и Ad bsbp она равна 704,6 — на 200,22 кДж/моль больше, чем для Au. Второй ионизационный потенциал (/j) для Au также меньше, чем для Ag (см. табл. 25,1). Поэтому у атома Au в химических процессах в обычных мягких условиях могут принимать участие d-электроны. При сравнительно небольшом возбуждении электрон переходит на р-орбиталь (п+1)-слря. Золото проявляет в данном случае степень окисления +3. У серебра в одинаковых с золотом условиях взаимодействие протекает с участием только s-электрона, степень окисления Ag +1-Более высокие степени окисления возможны и для Ag, но для их реализации необходимо осуществление реакций в жестких условиях, обеспечивающих возбуждение d-электронов и их переход в / -состояние (образование ii sp-конфигураций). [c.412]

    Положительное значение ДОмв говорит о том, что в стандартных условиях серебро и золото окислить невозможно. Итак, взаимодействие веществ при заданных температуре и давлении возможно, если изменение изобарного потенциала в реакции отрицательно. [c.111]


Смотреть страницы где упоминается термин Потенциалы золота и серебра: [c.178]    [c.206]    [c.180]    [c.148]    [c.102]    [c.195]    [c.194]   
Коррозия и защита от коррозии (1966) -- [ c.494 ]




ПОИСК





Смотрите так же термины и статьи:

Золото из серебра



© 2025 chem21.info Реклама на сайте