Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рутений каталитическими методами

    Каталитический метод определения рутения [c.141]

    Опытный аналитик после полного отделения рутения может с успехом применять каталитический метод. Авторы метода рекомендуют его только для определения количеств, не доступных ни одному из спектрофотометрических методов. Обычно его применяют как для анализа материалов, содержащих менее 1 мкг мл рутения, так и для анализа более богатых проб при ограниченной величине навески. [c.144]


    Каталитические свойства Ru(III), (IV) обнаружены в реакции окисления гидразина церием(1У). Видимо, эта реакция также может быть использована для определения рутения кинетическим методом [46]. [c.313]

    Соединения рутения обладают каталитическими свойствами в реакции окисления иодид-иона броматом [50], используемой для определения осмия по каталитическому действию его соединений. Так как каталитические свойства соединений осмия и рутения в этой реакции проявляются только при определенной и различной кислотности растворов, эта реакция, вероятно, может быть использована для определения осмия и рутения кинетическим методом в случае их совместного присутствия в растворе. [c.313]

    Коричный спирт высокого парфюмерного качества может быть получен омылением стиракса, а основной промыщленный метод получения состоит в восстановлении коричного альдегида изопропиловым, бензиловым и другими спиртами в присутствии соответствующих алкоголятов алюминия. Разработаны также методы каталитического восстановления коричного альдегида в присутствии соединений родия, рутения и осмия [121]. [c.113]

    ВЗЯТЫ рутений, родий, осмий, иридий и рений, т. е. элементы, существенно отличающиеся от серебра по свойствам и электронному строению атомов (см. табл.). Вполне правомерно было ожидать, что специфика свойств систем из платиноидов и рения отразится на качественном изменении характера каталитической активности [11]. Такое предположение (см. рис. 1—9) оправдалось. Активность при катализе перекиси водорода рассчитывали по уравнению первого порядка (К, мин ). Графический метод расчета давал практически совпадающие результаты. [c.63]

    Для изучения адсорбционных, каталитических и электролитических свойств металлов и их сплавов успешно применяются электрохимические методы, даюш ие возможность сопоставить электродные процессы, локализованные на границе электрод — раствор, с адсорбционными и каталитическими (тот же электрод — адсорбент — катализатор). В ряде случаев каталитическая активность электролитически смешанных осадков много выше активности их отдельных компонентов. В литературе имеются сведения о значительной каталитической активности электролитически смешанных осадков платины и рутения с небольшим процентным содержанием рутения в различных каталитических и электрохимических процессах [1—5]. [c.234]

    Одним из наиболее эффективных методов обезвреживания нитрозных газов является каталитическое их восстановление до безвредного элементарного азота. Катализаторами служат платина, палладий, рутений, а также более дешевые, но менее эффективные — никель, хром, медь. В качестве восстановителей применяют метан, водород, окись углерода, природный и нефтяной газы и др. Реакция восстановления происходит по следующим схемам при применении метана [c.88]


    Разработан метод определения рутения (IV) по его каталитическому действию на реакцию окисления иодида калия перекисью водорода [3, 4]. Амперометрического титрования как такового нет, измеряют ток восстановления выделяющегося иода (так же, как при каталитическом определении осмия, см. выше). Потенциал платинового индикаторного электрода +0,3 В (Нас. КЭ), фон — ацетатный буферный раствор, pH = 5,4. Определяемые концентрации рутения —5-10 — 4-10-2 моль/л. Минимальная концентрация рутения, определяемая этим методом, на два порядка ниже, чем при спектрофотометрической регистрации. [c.243]

    Осмий и рутений в восьми- и четырехвалентном состоянин в сильной степени катализируют реакцию между мышьяком (III) и солями церия (IV) в кислых растворах сама по себе эта реакция протекает крайне медленно но она катализируется иодом, и в литературе описан фотометрический метод определения иода, основанный на измерении скорости восстановления церия (IV) избытком арсенита Можно надеяться, что такой же метод применим и для определения осмия Каталитический эффект осмия даже более сильный, чем иода он заметен уже при нескольких тысячных долях микрограмма осмия в 5 мл раствора. Хлориды уменьшают каталитическую способность осмия, и поэтому количество их в растворе надо контролировать. [c.375]

    Это нужно иметь в виду особенно при анализе образцов неизвестного или сложного состава. Теоретически можно предположить, что если наклон прямой концентрация — обратная величина времени совпадает (в пределах ошибок анализа) с наклоном прямой, полученной для чистых растворов рутения, то каталитический эффект вызывается только рутением. Это предположение подтвердилось при отделении рутения от других металлов с помощью достаточно эффективных методов. Кроме того, реакция, катализируемая осмием, имеет другой угол наклона прямой концентрация — обратная величина времени, как это следует из рис. 1. [c.143]

    Как и в случае рутения, наиболее чувствительные спектрофотометрические методы определения основаны на каталитических реакциях, протекающих в присутствии осмия. [c.171]

    Соединения осмия и рутения близки по своим каталитическим свойствам, поэтому иногда эти соединения катализируют одну и ту же индикаторную реакцию. Так, для онределения рутения предложена реакция окисления хлорида Sn(II) роданидом Fe(HI), которая, как указывалось ранее, катализируется также соединениями Os(VHI). Метод позволяет определять 1,7-10 мкг мл Ru в 25 мл раствора [45]. [c.313]

    Для количественного определения рутения используются его каталитические свойства в гомогенных реакциях окисления церием(1У). Уже указывалось, что Ru и Os(VII) при совместном присутствии можно определить кинетическим методом с использованием реакции окисления арсенита церием(1У) [30]. В этой реакции достигается чувствительность определения 2-10- мкг мл рутения нри относительной ошибке до 3%. Время определения не более 15 мин. Авторы сравнивают полученные результаты с данными активационного определения рутения (чувствительность активационного метода 10 мкг мл и время анализа 3 дня). [c.313]

    При исследовании каталитических свойств соединений иридия в реакциях окисления Hg(I) и дифениламина церием (IV) [И, 47] было найдено, что соединения Ru(III), (IV) также катализируют эту реакцию. Разработанные с использованием этих реакций методики позволяют определить до 5-10 мкг мл рутения в 10 мл раствора с ошибкой 10% [48]. Различие в кинетике реакции окисления дифениламина церием(1У), катализируемой соединениями иридия и соединениями рутения, позволило разработать метод определения рутения в присутствии 10-кратного избытка соединений иридия. Для повышения каталитической активности соединений рутения и, следовательно, для повышения чувствительности определения рутения в реакции окисления Hg(I) церием(1У) в качестве активатора можно использовать, а дипиридил [49]. [c.313]

    Сурасити нашел, что осмий весьма удовлетворительно отделяется от рутения при кипячении 0,5 М раствора серной кислоты после обработки небольшим количеством перекиси водорода. В тех случаях, когда отношение Os/Ru неблагоприятно (т. е. ЮОу Os и 0,1 у Ru) при полной отгонке осмия, по-видимому, будут иметь место некоторые потери рутения. При определении рутения каталитическим методом (см. стр. 707) вследствие происходящей, вероятно, компенсации ошибок хорошие результаты получаются даже при отношении Os/Ru = 1000. Более подробное изучение этого метода, по-видимому, позволит улучшить его. Указания см. на стр. 710. [c.701]

    Главные трудности, возникающие при аналитическом применении этого экстракционного метода, заключаются в окислении рутения до 8-валентного состояния и извлечение его из четыреххлористого углерода вводную фазу. В разд. ПГ данной главы описан метод экстракционного выделения рутения, изученный Сурасити, с указаниями на определение рутения каталитическим методом. Этот автор нашел, что окись серебра(П) является очень хорошим окислителем для окисления рутения(III или IV) до pyтeния(VIII) в сернокислой или азотнокислой средах. Персульфат мало пригоден для окисления рутения в присутствии железа(П1). Рутений можно количественно извлечь из четыреххлористого углерода, встряхивая его с водным раствором сернистой кислоты. Извлечение идет медленно, и для экстрагирования субмикроколичеств рутения в условиях, приведенных на стр. 710, требуется в течение 2 час встряхивать раствор. Раствор окиси мышьяка(П1) не пригоден для реэкстракции, если рутений затем определяется каталитическим методом [c.702]


    Возможность неверного толкования результатов следует учитывать в тех случаях, когда каталитический метод применяют для анализа руд благородных металлов. Это относится в меньшей степени и к чувствительнььм спектрофотометрическим методам, основанным на измерении поглошения в ультрафиолетовой области. В последнем случае, однако, некоторая уверенность в правильности определения приобретается благодаря знанию предельных возможностей используемой химической реакции. С другой стороны, получение угла наклона прямой скорость — концентрация, отличного от угла наклона, характерного для рутения, не исключает присутствия рутения, а лишь указывает на необходимость более тщательной его очистки. [c.144]

    Второй каталитический метод (методика 137) предложен Шиокавой [601] для определения 0,7—6 мкг мл рутения. Этот метод основан на способности рутения катализировать протекающую в сернокислой среде реакцию восстановления хлората калия иодидом калия. Шиокава измерял время, необходимое для образования иода в количестве, достаточном для появления окраски в стандартном растворе конго красного. Последний устойчив в течение двух часов. По сравнению с другими колориметрическими методами этот каталитический метод не имеет почти никаких преимуществ. Построение стандартных кривых затруднительно, и многие элементы, включая и осмий, мешают определению. Для успешного применения этого метода требуется предварительное отделение рутения. [c.167]

    Основная или, быть может, единственная причина применения каталитического метода заключается в увеличении чувствительности. Такой метод, вероятно, не может быть применен без первоначального разделения компонентов, потому что нейтральные соли будут влиять на скорость. В настоящее время три элемента — рсмий, рутений, иод — могут быть успешно определены каталитическим методом благодаря большой чувствительности и доступности эффективных методов выделения. [c.106]

    Н. Васюнина, С. Чепыго и Г. Барышева [60, 61 ] разработали метод получения Б-сорбита из непищевого растительного сырья (хлопковый линт, сульфитная целлюлоза) путем гидролитического гидрирования последних. Процесс представляет собой совмещение двух каталитических реакций — гидролиза полисахаридов с образованием моноз и гидрирования последних в многоатомные спирты. Гидролитическое гидрирование протекает в присутствии двух катализаторов гидролизующего катализатора — фосфорной кислоты (0,7%) и гидрирующего катализатора — рутения на угле или силикагеле (0,5%) при температуре 170—180° С и давлении 80—90 кгс см . Этот метод является весьма перспективным, но в связи с дороговизной катализаторов требует тщательной технологической отработки. [c.245]

    В производстве широко используют химическое нанесение металлических покрытий на изделия. Процесс химического металлирования является каталитическим или автокаталитическим, а катализатором является поверхность изделия. Раствор, используемый для металлизации, содержит соединение наносимого металла и восстановитель. Поскольку катализатором является поверхность изделия, выделение металла и происходит именно на ней, а не в объеме раствора. В автокатали-тических процессах катализатором является металл, наносимый на поверхность. В настоящее время разработаны методы химического покрытия металлических изделий никелем, кобальтом, железом, палладием, платиной, медью, золотом, серебром, родием, рутением и некоторыми сплавами на основе этих металлов. В качестве восстановителей используют гипофосфит и боргидрид натрия, формальдегид, гидразин. Естественно, что химическим никелированием можно наносить защитное покрытие не на любой металл. Чаще всего ему подвергают изделия из меди. [c.144]

    Таким образом, для каталитического восстановления пиридиииевых солей и их конденсированных производных, содержащих гидроксиалкильные заместители при атоме азота, могут быть использованы различные катализаторы - оксид и диоксид платины, палладий на угле, никель скелетный, никель модифицированный рутением. В реакцию с одинаковым успехом вводились различные соли хлориды [40], бромиды [41], иодиды, тозилаты, перхлораты [42], тетрафторбораты [44]. Этот метод позволяет осуществить стереонаправленный синтез М-гидрокси-алкилпипиридинов, недоступных через каталитическое алканоламинирования [c.72]

    Окисление углеводов. Канадские химики [3] описали улучшенную методику окисления производных углеводов с помощью Р. ч. Реагент получают in situ при обработке каталитического количества двуокиси рутения перйодатом калия (этот реагент менее растворим, чем перйодат натрия, и поэтому дальнейшее окисление до лактонов сводится к минимуму) в водном хлороформе с добавлением карбоната калия для контроля pH. В пятп изученных реакциях окисления выходы составляли 83—95%. Метод был с успехом использован для окисления соединения (I) в (2) с выходом 84% [4]. [c.219]

    Сопоставление каталитической активности материалов пе имеет смысла без измерения удельных поверхностей. Это совершенно отчетливо показано Ванпайсом [43] при проверке метанирую-щей активности переходных металлов. Ранее полученные данные соответствовали следующему ряду по мере снижения активности рутений>иридий>родий>никель>кобальт>осмий > >платина>железо>палладий [44]. В противоположность этому Ваннайс, основываясь на данных об элементарной металлической поверхности, обнаружил другой ряд рутений>железо> >никель>кобальт>родий>палладий > платина > иридий. Наиболее существенная разница найдена для железа, которое предшествующие исследователи считали плохим катализатором метанирования. Таким образом, реальная трудность состоит в создании и стабилизации высокоразвитой поверхности железных катализаторов [45], и существует необходимость разработки соответствующих методов. [c.46]

    Углубление понимания реакций, происходящих на поверхности раздела жидкость — твердое тело во время адсорбции, должно привести к разработке методов приготовлёиия высокодисперсных никеля, кобальта, железа, меди, серебра, золота и рутения. Такие улучшенные методы дадут существенный импульс в изготовлении полиметаллических кластеров. Данная работа может быть применена для синтеза на основе оксида углерода и водорода и процессов общей очистки и переработки жидких продуктов гидрогенизации каменного угля. Метод закрепления металлоорганических комплексов может найти применение в двух областях синтезы на основе оксида углерода и водорода (особенно метанирование и синтез метанола) и, возможно, каталитическая конверсия оксида углерода. Эта надежда базируется на предположении, что будут синтезированы металлоорганические комплексы, активные в реакции оксида углерода с водородом, и что такие комплексы будут стойкими к сернистым соединениям. [c.60]

    Второй областью, которая представляет интерес для долгосрочного исследования, является использование катализаторов, которые обладают летучестью в условиях газификации. На использование водяного пара как возможного растворяющего и редиспергирующего агента для щелочных катализаторов было указано в разделе 18.2.2. Последнее исследование, проведенное с коксовыми остатками углей [24], показало, что рутений, который захватывает летучий оксид, сохраняет его каталитическую активность намного дольше, чем другие переходные металлы. Такая летучесть могла бы быть использована для удаления катализатора из золы и для сохранения его в реагирующем слое угля, если бы не высокая стоимость рутения и чувствительность его к отравлению серой. Поиск подходящих летучих катализаторов или методов повышения летучести веществ представляется перспективным. [c.253]

    В мягких же условиях рений на керамических носителях обладает низкой активностью [271]. Так, циклогексен при 150° С практически не присоединяет водород, а при 250° С гидрирование идет уже с заметной скоростью. Бензол на том же катализаторе до 150° С не гидрируется, а при 200° С вместо гидрирования начинается частичное его разложение. Из нитробензола при 250° С образуются значительные количества анилина, а при 266° С начинается сильное разложение нитробензола и, как предполагают авторы, окисление им рения в высшие окислы. В работе [272] импульсным хроматографическим методом при 100—235° С была изучена каталитическая активность рения, технеция, рутения, платины и палладия, нанесенных на 5102 и на - -А120,, в реакции гидрирования бензола. Технеций и рений проявляли активность в указанном процессе, хотя скорость на них была ниже, чем на металлах платиновой группы Ки > > Тс Рс1 > Ке. Катализаторы, в которых носителем была 7-А12О3, оказались менее активными, чем металлы, нанесенные на 5102-Мелко раздробленный рений ведет реакцию гидрирования этилена при 150° С со степенью превращения до 80% [273], в то время как Ке на 8105,, полученный восстановлением перрената калия, в той же реакции обладает весьма нестабильной активностью [274]. [c.94]

    Осциллографичеаким методом можно определить от 1 10 до 1 10 М рутения на фоне хлорной или 1 М соляной кислот по высоте пика в анодной части осциллограммы, приписываемого каталитическому восстановлению вюдорода [323]. [c.198]

    Кинетические методы анализа, иснользующие для количественного определения элементов каталитические свойства их соединений, разработаны главным образом для осмия и рутения. Они преимущественно основаны на способности металло в ускорять ряд окислительно-восстановительных реакций и, в большинстве случаев на использовании спектрофотометричеокого метода для определения изменения концентрации одного из реагирующих веществ ИЛИ продуктов реакции во времени. Например, используют способность рутения ускорять реакцию взаимодействия Се (IV) и As (III) [412]. Осмий является катализатором окио.ления различных органических соединений перекисью водорода, хлоратом калия и др. [413-—417]. Другие платановые металлы и золото также ускоряют ряд реакций, однако большинство этих реакций использовано для качественного апределения металлов—катализаторов и лишь немногие — для количественного апределения следов металлов (палладий, иридий, золото) [418—420], [c.206]

    Каталитическое гидрирование моноксида углерода над катализаторами на основе Сг—2п или Си служит основным путем получения метанола, а гидрирование альдегидов и сложных эфиров лежит в основе многих других промышленных процессов (см. табл. 4.1.1). В лабораторной практике восстановление простых альдегидов и кетонов проходит гладко и эффективно, однако его применение в значительной степени ограничено обычно гораздо большей легкостью гидрирования кратных алкеновых и алкиновых связей, необходимостью исключить гидрогенолиз бензильных производных и переменной стереоселективностью восстановления алициклических кетонов. Типичные примеры гетерогенного восстановления представлены уравнениями (40) — (42), тогда как в уравнении (43) приведен исключительный случай, когда карбониль--ная группа селективно восстанавливается в присутствии двойной связи. Ни один из методов гомогенного гидрирования, основанных главным образом на органофосфннродержащих комплексах родия, иридия или рутения, до сих пор не нашел устойчивого применения главное приложение его находится, очевидно, в области асимметрического гидрирования (см. разд. 4.1.1.3). [c.37]

    В работе [146] импульсным хроматографическим методом были определены удельные каталитические активности технеция, рения, рутения, платины, и палладия, нанесенных на силикагель и у-А120д (1% металла) в отношении реакции взаимодействия бензола с водородом в диапазоне температур 100—235° С. Поверхность нанесенных металлов измеряли методом селективной хемосорбции водорода при 20°, а также по размытию линий рентгеновского спектра. Чтобы определить число атомов водорода, поглощаемых одним атомом катализатора, предварительно измеряли адсорбцию на металлических порошках рутения, платины и рения с известной поверхностью. [c.341]

    Рутений(1П) образует со многими -дикетонами прочные летучие хелаты. В частности, пригодны для использования в газовой хроматографии комплексы рутения с ТФА [24, 192, 251 [ п с ГФА [235]. Гексафторацетилацетонат рутения(Ш) удавалось определять с помощью ЭЗД в нанограммовых количествах [235 [. Прескот и Рисби [251 [ разработали хромато-масс-спектрометри-ческий метод определения рутения, осажденного в виде пылевых частиц на фторопластовых фильтрах. Метод предназначен для анализа выхлопных газов автомобилей, снабженных устройством для каталитического дожигания продуктов сгорания топлива. [c.108]

    С веществами С молекулярным весом 300 комплексы РЗЭ с фульвокислотами выходят во фракциях с веществами с молекулярным весом более 1000. Для каталитически активных микрокомпонентов в гомогенно-каталитических реакциях, например ионов Ru(IV), при изучении комплексообразования с фульвокислотами и другими веществами использовали кинетический и хемилюми-несцентный методы. В первом случае соотношение закомплексованных и незакомплексованных форм элемента-катализатора находят по изменению индукционного периода реашщи при постоянной концентрации катализатора и варьируемом количестве комплексообразующих веществ во втором случае мерой комплексообразования было уменьшение максимальной интенсивности свечения хемилюминесцентной реакции, катализируемой рутением, в присутствии растворенных органических веществ вод [53, 54]. [c.104]

    Из известных для рутения методов определения наиболее чувствителен каталитический, предложенный Сурасити и Сенде-лом [578]. Он рекомендуется для определения 0,001—0,1 мкг1мл рутения. Л етод основан на нахождении количественного отношения между содержанием в растворе рутения и временем, необходимым для ускорения окисления мышьяка (111) церием (IV). Время определяется как период, необходимый для достижения определенной величины светопоглощения. [c.141]

    Методики [ 08, 578, 579] предусматривают удаление каталитически активных примесей иода н осмия. Предложенное в методике экстракционное отделение осми я эффективно в определенных условиях, но очевидно, что ни один из известных методов не пригоден для отделения рутения от всех примесей, способных катализировать реакцию между церием(IV) и мышьяком(1П). [c.143]

    Для определения иодид-иона было предложено применять реакцию 2Се + -f As +- 2 e3+ As +, катализируемую в кислых растворах следовыми количествами иодидов (и в меньшей степени— следами хлоридов, бромидов и осмия) [27]. Каталитическое действие рутения и осмия на эту же реакцию рекомендовали использовать в качестве метода определения субмикрограммовых количеств этих элементов [28]. Катализаторами реакций, протекающих с участием пар ионов металлов, часто служат ионы Си + и Ag+. Так, реакция V(III) -f Fe(III)-i-V(IV) +Fe(II) катализируется u(II), a процесс TI (I) + 2 e(IV) Tl (III) + 2 e(III) катализируется Ag(I). В этих реакциях катализ осуществляется. [c.103]

    Следует отметить, что соединения платины, палладия и родия и в меньшей степени соединения иридия, рутения и осмия катализируют многие гомогенные реакции в органической химии реакции гидрогенезации оле-финов, полимеризации и др. [4]. В основе этого каталитического действия лежит образование промежуточных гидридных соединений, которое характерно для соединений платины, палладия и родия и менее характерно для соединений иридия, рутения и осмия. Возможно, поиск индикаторных реакций для кинетических методов определения платины, палладия и родия имеет смысл вести именно в направлении реакций с переносом атома водорода и образованием гидридных комплексных соединений платиновых металлов. [c.310]


Смотреть страницы где упоминается термин Рутений каталитическими методами: [c.163]    [c.206]    [c.243]    [c.700]    [c.209]    [c.519]    [c.300]    [c.171]    [c.311]   
Аналитическая химия благородных металлов Часть 2 (1969) -- [ c.2 , c.141 , c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитические методы определения рутения

Рутений

Рутений определение спектрофотометрическое каталитическими методами

Рутений рутений



© 2025 chem21.info Реклама на сайте