Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентные переменная

    Иод в своих соединениях с металлами и водородом одновалентен, в соединениях с галогенами и кислородом его валентность переменная и может достигать семи. В отличие от других галогенов иод дает с водородом эндотермическое соединение Н1. Н1 хорошо растворяется в воде, образуя очень сильную кислоту (наиболее сильную из галогеноводородных кислот). Иодид водорода очень непрочен даже слабое нагревание вызывает его разложение на иод и водород. [c.197]


    Таким образом, если для данной группы веществ значение коэффициента Л g не должно зависеть от валентности переменного (от соединения к соединению) элемента, то значения коэффициента должны быть пропорциональны валентности этих элементов. Это означает, что на графике AZ = /(АЯ) точки для данной группы веществ должны лечь на ряд параллельных прямых, расположенных в порядке, отвечающем увеличению (или уменьшению) валентности соответствующего элемента. Если переход от одной прямой к другой будет соответствовать изменению валентности на одинаковую величину (например на единицу), то в соответствии с уравнением (IX, 14) линии будут располагаться на равном расстоянии друг от друга. [c.275]

    Для химической характеристики редких металлов очень важно то, что многие из них обладают переменной валентностью. Переменная валентность —чрезвычайно важный фактор в геохимии, химии и технологии металлов вообще и редких, в частности. В. И. Вернадский говорил, что атом каждой валентности должен рассматриваться в своей геохимической истории, как особый химический элемент . [c.16]

    Но с того, момента, как химики убедились в том, что валентность переменна, началось, указывает Менделеев, падение системы, классифицирующей элементы по валентности. [c.268]

    По мере накопления фактов учение Кекуле, в свое время ускорившее подъем и развитие органической химии, уступало место противоположной концепции, Очевидным становился факт, что валентность не является свойством, присущим отдельным атомам. Валентность— переменная величина, зависящая не только от природы самого элемента но и от природы тех элементов, с которыми он вступает в реакцию, а также от химических и физических условий, при которых происходит взаимодействие атомов. [c.33]

    Переменные валентные оболочка [c.105]

    Ванадий обладает переменной валентностью и в условиях высокой температуры легко отдает часть кислорода железу, которое при этом разрушается, образуя окислы. Пятиокись ванадия превращается в четырехокись (с выделением атомарного кислорода, который окисляет железо), но при контакте с избытком кислорода в газовом тракте снова регенерируется в пятиокись. Таким образом, ванадий может играть роль переносчика кислорода — катализатора газовой коррозии. [c.57]

    Следует различать простые и сложные редокси-электроды. В первом случае электродная реакция сводится к перемене валентности ионов без изменения их состава, например  [c.170]


    Характерной особенностью переходных металлов является незавершенность их электронных (1 —оболочек, определяющая их специфические химические (переменная валентность, склонность к комплексообразованию), многие физические (образование кристаллов металлического типа, работа выхода электрона из металла, электропроводимость, магнитные свойства и др.) и каталитические свойства. [c.93]

    Газ Нг быстро сорбируется на металлах переменной валентности и медленнее — на окислах металлов и таких элементах, как углерод (графит) и германий [24]. На окислах сорбция часто приводит к образованию гидроокисей. Поэтому нри нагревании мон ет десорбироваться НгО [25, 26]. Кроме того, в некоторых случаях может происходить обратимая сорбция. В этом случае предполагают, что с ионами поверхности металла образуется соединение типа гидрида. В случае металлов газ Нг быстро сорбируется даже при 78° К с теплотой сорбции, которая может достигать 40 ккал или более. Теплота сорбции медленно надает с заполнением поверхности катализатора вплоть до насыщения, после чего она приближается к нулю [27, 27а] . Значительное количество данных подтверждают точку зрения, что сорбция на металлах является прямой реакцией со стехиометрией 1 1 с ионом металла такая реакция приводит к образованию гидрида [28, 29]  [c.546]

    Эти наблюдения бы.тн использованы для выяснения механизма орто-пара-превращения водорода и обмена Нг—Вг. Обе эти реакции легко проходят на поверхности , N1, Ре, Рг, Рс1 и других металлов переменной валентности. Начальная скорость перехода пара-Н в орто-Н при постоянном давлении, как было показано, пропорциональна парциальному давлению пара- [16, 32, 33]. Такая зависимость может быть, по-видимому, удовлетворительно объяснена, если принять, что при насыщении поверхности водородом идет его одновременная диссоциация, и учесть возможную десорбцию газа с поверхности  [c.547]

    Полимеризация этилена при высоком давлении (100—350 МПа,, или 1000—3500 кгс/см ) протекает при 200—300°С в расплаве в присутствии инициаторов (кислорода, органических перекисей). Полиэтилен низкого давления получают полимеризацией этилена под давлением 0,2—0,5 МПа (2—5 кгс/см ) и температуре 50— 80 °С в присутствии комплексных металлоорганических катализаторов (триэтилалюминия, диэтилалюминийхлорида и триизобутил-алюминия). Полиэтилен среднего давления получают полимеризацией этилена в растворителе при давлении 3,5—4,0 МПа (35— 40 кгс/см ) и температуре 130—170 °С в присутствии окислов металлов переменной валентности, являющихся катализаторами (окислы хрома, молибдена, ванадия). В качестве растворителей применяют бензин, ксилол, циклогексан и др. [c.104]

    Характерными особенностями органических перекисей являются их нестабильность и высокая реакционная способность, которые и обусловливают повышенную опасность работы с ними. Разложение перекисных соединений при нагревании, а также под воздействием ионов металлов переменной валентности, аминов, сернистых и других соединений может происходить как при синтезе, так и при применении. [c.133]

    Концентрированные перекиси бурно разлагаются при смешении с сильными кислотами, под действием солей металлов переменной валентности, аминов, что также может привести к взрыву. Описаны случаи пожаров и сильных взрывов, вызванные кислотным разложением гидроперекиси изопропилбензола. Вследствие недостаточной очистки ацетона от минеральных кислот при отгонке растворителя произошел сильный взрыв. Полагают, что в кубовом остатке при отгонке сконцентрировались перекисные производные ацетона, которые в присутствии кислот взорвались. [c.142]

    Катализаторами, ускоряющими окисление бензинов и дизельных топлив при хранении, могут быть металлические поверхности резервуаров и трубопроводов, а также оксиды и соли, покрывающие эти поверхности. Ускорение окисления вызывается, кроме того, оксидами и солями металлов, которые могут находиться в топливах в виде тонкодисперсной взвеси. Каталитическую активность в основном проявляют металлы переменной валентности— железо, медь, хром, марганец, кобальт [66]. [c.58]

    Как показано выше (раздел 2.1), окисление углеводородов молекулярным кислородом представляет собой цепной процесс с вырожденным разветвлением, поэтому все, что способствует образованию активных радикалов, должно ускорять этот процесс. Из данных Н. М. Эмануэля [102] следует, что при окислении углеводородов особое значение имеет инициирование реакции в ее начальной стадии. Катализаторы — соли металлов переменной валентности, добавленные к исходному окисляемому веществу,— резко сокращают индукционный период, активизируя начальную стадию процесса, после чего реакция продолжает развиваться, даже если удалить катализатор. [c.78]

    В качестве высокотемпературных ингибиторов окисления, способных стабилизировать гомо- и гетерофазные процессы, могут быть применены производные металлов переменной валентности. Металлсодержащие ингибиторы окисления, предложенные для стабилизации горюче-смазочных материалов, можно подразделить на четыре типа [310]. [c.94]


    Коррозия стали в присутствии ванадия связана с его способностью проявлять переменную валентность. Процесс в присутствии Ог может идти по схеме  [c.178]

    Один и тот же центр может выполнять несколько функций, в частности таким свойством обладают анионные центры, участвующие не только в анионном обмене, но в адсорбции и электронном обмене. Работа некоторых катионных центров связана с изменением валентности катиона (например, Си+ч= Си +), и это позволяет им активно участвовать в процессах адсорбции и электронного обмена по окислительно-восстановительному механизму [5]. Наибольшей каталитической активностью обладают соли металлов переменной валентности (кобальта, марганца, железа, никеля, хрома, серебра, меди), действующие по описанному механизму (см. гл. 2). [c.196]

    Применение катализаторов, включающих оксиды металлов переменной валентности, для окислительной конверсии нефтяных остатков является весьма перспективной областью. Использование данных катализаторов характеризуется рядом особенностей и закономерностей, касающихся химизма и механизма превращений углеводородов сырья, физико-химических свойств получаемых продуктов, характера и количества коксовых отложений. Б связи с этим исследование превращений ТНС на катализаторах оксидного типа в процессе ОКК представляет чисто научный интерес, а также может иметь большое практическое значение для нефтепереработки и нефтехимии. [c.5]

    Природа катализаторов, содержащих оксиды металлов переменной валентности [c.6]

    Механизм действия катализаторов, содержащих оксиды металлов переменной валентности, при переработке углеводородного сырья [c.10]

    Как уже говорилось ранее, наибольшее распространение в нефтехимической промышленности катализаторы оксидного типа, содержащие металлы переменной валентности, получили в процессах дегидрирования и деалкилирования легкого углеводородного сырья для получения олефиновых и ароматических углеводородов [3.1, 3.2]. Образование коксо- [c.59]

    Железоокисные катализаторы характеризуются изменением фазового состава в ходе окислительно-восстановительных реакций, что обусловливает некоторые особенности протекания реакций как в основном процессе, так и в ходе регенерации [3.17]. Ранее предполагалось, что на природном железоокисном катализаторе реакции протекают по радикально-цепному механизму [3.4]. Учитывая рассмотренный в первой главе механизм превращений на катализаторах, содержащих оксиды металлов переменной валентности, можно предположить, что наряду с термической частью реакций, протекающих по радикально-цепному механизму, при окислительной каталитической конверсии значительная часть продуктов, в том числе и коксовых отложений, образуется по механизму карбоксилатного комплекса, в отличие от карбоний-ионного механизма реакций в условиях каталитического крекинга на традиционных катализаторах. [c.63]

    Установленные кинетические закономерности селективного окисления элементов коксовых отложений в последовательности Н-С-5 (рис. 3 1) на катализаторах, содержащих оксиды металлов переменной валентности, подтверждаются экспериментальными данными по количеству и составу кок- [c.89]

    Осуществление полимеризации при низких температурах с необходимой скоростью стало возможным только после открытия инициирующей способности окислительно-восстановительных систем. Были созданы окислительно-восстановительные системы, в которых в качестве окислителей применяются преимущественно перекиси и гидроперекиси, а в качестве восстановителей — соединения металлов переменной валентности и различные неорганические и органические соединения. [c.135]

    Высокая реакционная способность полиизопрена требует применения эффективных методов его стабилизации. Систематические исследования показали необходимость обеспечения высокой степени чистоты полиизопрена в отношении содержания в нем примесей металлов переменной валентности (железо, медь, титан), так как соединения этих металлов ускоряют окислительную деструкцию каучука. Другой способ повышения окислительной стойкости полимера —пассивация переходных металлов, остающихся в каучуке, путем перевода их соединений в неактивную форму, не оказывающую каталитического влияния на окисление полимера. [c.221]

    Это, как впервые отметил А. Н. Бах, по-видимому, проливает свет на механизм всех вообще реакций, в которых Н2О2 выступает в роли восстановителя они идут через образование перекисных соединений, настолько неустойчивых, что, образуясь, они сейчас же разлагаются с понижением валентности переменно валентного элемента. [c.231]

    Относительно этого вопроса химики разделились в то время на две группы, одни признавали валентность переменной, другие — постоянной. К последним принадлежал немецкий химик Кекуле, 1. оторый считал, что валентность элемента подобна его атомному весу, т. е. постоянна но так как опыты показывали, что один и тот же элемент может соединяться с несколькими атомами другого, н это противоречит нризнагшю постоянной валентности элементов, Кекуле разделил все соединения на химические (атомные), способные существовать в газообразном состоянии, и на молекулярные, образованные путем соединения молекул. [c.35]

    Далин с сотрудниками [37] подробно изучил и описал влияние параметров реакции аммоноокисления в присутствии катализатора который он называл окислы металлов переменной валентности . Было показано, что при температурах ниже 350 °С синтезируется незначительное количество акрилонитрила. Наилучший результат получается при температуре —450 °С, времени контакта примерна [c.119]

    Ионы металлов переменной валентности как восстанавливающие и окисляющие агенты. Три )ассмотреиных варианта не исчерпывают всех во Можных иутсЙ нротекания окислительно-восстановительных реакций. В роди восстановительных (или окислительных) агентов могут выступать также находящиеся в растворе коны металлов. В этом с.лучае электродный процесс сводится к окислению (или восстановлению) ионов металлов переменной валентности, которые затем восстанавливают (или окисляют) органическое соединение. В качестве при у1сра можно указать на электроокисление суспензии антрацена. При проведении электролиза такой суспензии иочти весь ток на аноде расходуется на выделение кислорода. Если, однако, добавить к ней немного солен церия, хрома или марганца, то на аноде наряду с кислородом появится также антрахинон. Реакция идет, по-видимому, следующим образом ионы металла, наиример церия, окисляются на аноде [c.443]

    Поскольку у лантаноидов валентными в основно.м являются 5d 6s -элeктpoны, их устойчивая степень окисления равна +3. Однако элементы, примыкающие к лантану (4/ ), гадолинию (4/ ) и лютецию (4/ ) имеют переменные степени окисления. Так, для церия (4/ 65 ) наряду со степенью окисления +3 характерна степень окисления +4. Это связано с переходом двух 4/-электронов в Ьй-состояние. По той же причине степень окисления +4 может проявлять и празеодим (4/ ) (хотя она и значительно менее характерна, чем для Се). Европий, имеющий семь 4/-электронов (4/ 6я ), может, напротив, проявлять степень окисления +2. [c.641]

    В химии твердых тел, металлов и растворов, а также в гетерогенном катализе всо большую популярность в последнее время начинает завоевывать концепция Н.С, Курнакова о соединениях постоянного и переменного (стехио— и нестехиометри— ческого) состава, названных им соответственно дальтонидами и бертоллидами. По его представлениям, бертоллиды — это своеобразные химические соединения перемен— ного состава, формой существования которых является не молекула, а фаза, то есть химически связанный огромный агрегат атомов. Классическая теория валентности не применима для соединений бертоллидного типа, поскольку они характеризуются переменной валентностью, изменяющейся непрерывно, а не дискретно, Перечисле — [c.160]

    В таком случае реакции 3 или 3 будут определять скорость процесса и давать закон нервого порядка по адсорбированному спирту. Однако так как реакции дегидрогенизации ускоряются металлическими катализаторами, особенно металлами переменной валентности, то весьма вероятно, что реакции на поверхности могут протекать с участием свободных радикалов, которые образуют не очень сильные связи с атомами металла на поверхности. Если обозначить атомы металла на поверхности через М, то механизм такой реакции можно представить следующим образом  [c.542]

    Растворение металла, идущее одновременно с образованием Нг из ионов Н в растворе, представляет собой случай, в котором анодный и катодный процессы протекают на одном и том же электроде. (Эти процессы называются полиэлектродными.) При этом как диффузия, так и химические процессы могут стать лимитирующими. Ранние работы по растворению амальгам натрия [7-6] в кислотах и основаниях указывают на то, что скорость реакции имеет первый порядок по Н" и приблизительно порядок /2 по концентрации натрия. Для кислых растворов эти факты объяснялись тем, что процесс лимитируется диффузией. Однако, как показали более поздние исследования [77—80], скорость растворения металлов в различных кислотах и растворителях пропорциональна концентрации недиссоциированной формы кислоты и относительные константы скорости в различных кислотах хорошо ложатся на прямую Бренстеда. По-видимому, в этом случае лимитирующей стадией является перенос протона от молекулы недиссоциированной кислоты к поверхности металла , причем реакция подвергается специфическому катализу кислотами. При растворении солей, таких, как Na l, в системах с перемешивающим устройством предполагается, что скорость реакции лимитируется диффузией, причем диффузия происходит через пограничный слой насыщенного раствора соли на поверхности кристаллов соли. Хотя подобная картина, по-видимому, является правильной для простых солей, таких, как галогеииды щелочных металлов, в случае солей металлов переменной валентности картина может быть другой. Так, например, безводный СгС1з очень медленно растворяется в воде, при этом скорость реакции не зависит от перемешивания. Было обнаружено, что небольшое количество Сг " в растворе оказывает огромное влияние на скорость реакции. Вероятно, в этом случае осуществляется перенос заряда между частицами Сг - в растворе и Сг в твердой фазе. Эти системы, по-видимому, заслуживают дальнейшего изучения. [c.557]

    Наряду с жидкими и газообразными окислителями для очистки сточных вод применяются и твердые оксиды и гидроксиды металлов переменной валентности (никеля, кобальта, меди, железа, марганца). Гидроксид никеля высшей валентности легко окисляет тидразингидрат, спирты, альдегиды, алифатические и ароматические амины. Продуктами окисления являются в основном карбонаты, азот и вода. Метод рекомендуется для обезвреживания сточных вод с концентрацией токсичных соединений до 0,5 г/л, что является его недостатком. [c.494]

    Везиров Р. Р., Явгильдин И. Р. и др. Термокаталитическая переработка мазута на катализаторах, содержащих металлы переменной валентности в оксидной форме // Сб тр, УГНТУ Нефть и газ .- Уфа, 1997,- Вып. 2.-С. 12.  [c.33]

    Анализ литературных и собственных экспериментальных данных, приведенный в предыдущих главах, показывает, что в основе превращений, протекающих с тяжелым нефтяным сырьем на катализаторах, содержащих оксиды металлов переменной валентности, к которым относится и железоокисный катализатор, лежит термоокислитсльная конверсия углеводородов сырья по механизму карбоксилатного комплекса. Образование и окисление коксовых отложений, как и других продуктов окислительной каталитической кон-ис]5сии, 11]5( исходит в соответствии с закономерностями, обусловленными особенностями механизма действия катализаторов, содержа1цих оксиды металлов переменной валентности, и особенностями состава и свойств тяжелого нефтяного сырья. Некоторые закономерности накопления и окисления коксовых отложений рассмотрены ранее [3.56-3.59], более подробно этот вопрос рассматривается в следующем разделе. [c.81]

    Водяной пар при высоких темперттурах (порядка тем1гс-ратуры регенерированного катализатора и выше) в присутствии металлов переменной валентности (железо и другие) также не является абсолютно химически инертным. Окисление алкилароматических углеводородов за счет частичного химического разложения водяного пара может приводить к образованию фенолов, хотя и в меньшей степени, чем за счет адсорбированного катализатором кислорода. [c.120]

    Полимеризация в растворе. Как уже отмечалось (стр. 181), промышленные способы получения полнбутадиена в растворе базируются на использовании литийорганических соединений или ионно-координационных систем, содержащих металлы переменной валентности (титан, кобальт и никель). Технологическое оформление этих процессов включает следующие основные стадии 1) очистка мономера и растворителя 2) приготовление шихты (смесь бутадиена с растворителем) 3) полимеризация 4) дезактивация катализатора и введение антиоксиданта 5) отмывка раствора полимера от остатков катализатора 6) выделение полимера из раствора 7) сушка и упаковка каучука. [c.184]


Смотреть страницы где упоминается термин Валентные переменная: [c.78]    [c.5]    [c.9]    [c.44]    [c.58]    [c.96]    [c.136]   
Учебник общей химии 1963 (0) -- [ c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Валентность переменная



© 2025 chem21.info Реклама на сайте