Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролитические обратимость

    Если через электрохимическую систему проходит измеримый электрический ток Л оиа перестает быть термодинамически обратимой и в завнсимости от направления тока превращается либо в гальванический элемент (э), либо в электролитическую ванну (в). Полезная работа, произведенная системой в необратимых условиях, всегда меньше, чем в состоянии равновесия. Электрическая энергия, генерируемая гальваническим элементом за счет протекания в ней электрохимической реакции, будет поэтому при отборе тока I меньше, чем в состоянии равновесия (т. е. нри / = 0)  [c.22]


    Электролитическая диссоциация веществ в растворе — процесс обратимый. Применив закон действующих масс к процессу распада соединения КпА , в растворе на ионы К "" и Л"" [c.181]

    Применив к любой обратимой реакции электролитической диссоциации [c.390]

    Когда химическая система выполняет работу над своим окружением в ходе обратимого процесса, уменьшение свободной энергии системы в точности совпадает с той частью работы, которая не является работой типа PV. Например, работа, вьшолняемая гальваническим элементом, является мерой уменьшения свободной энергии этого элемента. И наоборот, если к электродам электролитического элемента, подобного описанному в разд. 1-7, приложено напряжение, то электрическая работа, выполняемая над электролитическим элементом (и измеряемая методами, которые будут рассматриваться в гл. 19), равна приросту свободной энергии химических вешеств внутри него. Когда при пропускании электрического тока через воду происходит ее электролитическая диссоциация, использованная для этого электрическая работа расходуется на увеличение свободной энергии газообразных водорода и кислорода по сравнению со свободной энергией жидкой воды  [c.71]

    По достижении значения обратимого потенциала кислородного электрода (Уо,)обр в водных растворах начинается электролитическое выделение кислорода (кривая TRG на рис. 216). [c.317]

    О неполной диссоциации на ионы многих электролитов в растворе говорит также и возрастание эквивалентной электропроводности с разбавлением. При повышении концентрации, наоборот, эквивалентная электропроводность уменьшается. Поэтому процесс электролитической диссоциации можно считать обратимым. [c.166]

    Как указывалось выше, электролитическая диссоциация — обратимый процесс. Поэтому для диссоциации растворенных веществ на ионы справедливы общие законы равновесия. Так, для процесса [c.177]

    Индикаторные электроды в реакциях осаждения и комплексообразования являются более или менее избирательными. Это объясняется тем, что виды ионов, входящих в состав осадков и комплексов, самые разнообразные, а индикаторный электрод должен быть обратимым хотя бы относительно одного вида. Между тем не всегда можно располагать электродом, обратимым относительно этих видов ионов, из-за большой электролитической упругости растворения ряда металлов либо по другим причинам. [c.31]


    Электролитическая диссоциация является обратимым процес- / сом. Реакцию диссоциации электролита МА в общем виде можно представить уравнением МАз= М -(- A . В соответствии с законом действующих масс выражение для константы равновесия этой реакции имеет вид [c.137]

    Диссоциация молекул на ионы — обратимый процесс и контролируется он вторым законом термодинамики, т. е. его можно рассматривать как разновидность химического равновесия. Поэтому для более полной характеристики электролитической диссоциации введена так называемая константа диссоциации /Сд, которая 204 [c.204]

    Как известно, электролитическая диссоциация веществ в растворах — также процесс обратимый, ведущий к установлению динамического равновесия. Например, для процесса распада соединения [c.227]

    Теоретически электролитическое рафинирование металлов, в частности меди, при бесконечно малых плотностях тока и обратимых значениях потенциалов должно проходить без затраты энергии, так как анодный потенциал равен катодному, остальные же слагаемые при бесконечно малых плотностях тока равны нулю. [c.201]

    Можно ли рассматривать процесс электролитической диссоциации как обратимую реакцию  [c.74]

    Как указано, электролитическая диссоциация слабых электролитов — обратимый процесс, например  [c.55]

    Как уже отмечалось, на практике энергетические затраты при электролизе бывают больше, чем это следует из второго закона Фарадея, в силу неполной обратимости процесса и протекания побочных реакций. Одной из главных причин повышения затрат энергии является поляризация электродов. Если мы станем пропускать через концентрированный раствор в электролитической ванне при платиновых электродах ток с разностью потенциалов на зажимах ванны в 1 В,, то заметим, что сила проходящего тока со временем уменьшается и практически сходит на нет. Согласно закону Ома I = E R + r), где R и г—-соответственно внутреннее и внешнее сопротивление в цепи. Поэтому уменьшение силы тока I может происходить или вследствие увеличения сопротивления или вследствие уменьшения электродвижущей силы Е. [c.267]

    Электролитическая диссоциация представляет собой обратимый процесс, ведущий к установлению равновесия. Поэтому она должна подчиняться закону действия масс. Например, уксусная кислота диссоциирует на ионы по уравнению [c.40]

    Из табл. 8.2 видно, что уравнение процесса электролитической диссоциации сильного электролита записывается с указанием его практической необратимости приводится лишь одна стрелка —>, направленная от молекулярной формы электролита к его ионам. Электролитическая диссоциация электролитов средней силы и слабых записывается с указанием ее обратимости используются две, противоположно направленные, стрелки.  [c.237]

    Иногда к электродам первого рода относят газовые электроды, обратимые относительно катиона или аниона. Такие электроды состоят из инертного металла, находящегося в одновременном контакте с газом и с раствором, содержащим ионы этого газа. Например, в водородном электроде имеется платиновая пластинка, покрытая слоем электролитической платины для обеспечения достаточной площади поверхности и опущенная в раствор, содержащий ионы водорода. К платиновой пластинке подводится газообразный водород, постоянно обтекающий ее поверхность. Водородный электрод называется стандартным (или нормальным), если активность ионов водорода в растворе а > [c.238]

    Теория электролитической диссоциации. Теория электролитической диссоциации создана С. Аррениусом в 1887 г. Основными положениями этой теории являются следующие. При растворении электролитов происходит диссоциация их молекул на электрически заряженные частицы — ионы. При этом устанавливается термодинамическое равновесие между образовавшимися ионами и не-продиссоциировавшими молекулами. Величина заряда иона совпадает с валентностью атома элемента или кислотного остатка, а число положительных зарядов равно числу отрицательных зарядов. Раствор в целом электронейтрален. Растворы электролитов проводят электрический ток (проводники второго рода). Так как диссоциация — процесс обратимый, то его принято обозначать двумя противоположными стрелками  [c.207]

    Растворы слабых электролитов характеризуются, по крайней мере, двумя важными особенностями. Одна из них — приближенное подчинение свойств законам идеального раствора другая — возможность применения к процессу электролитической диссоциации закона действия масс. Причины этих особенностей состоят в том, что процесс диссоциации слабого электролита обратимый (а растворе устанавливается динамическое равновесие между ионами и недиссоциированными молекулами), а степень диссоциации невелика (до 0,05). [c.226]

    Следовательно, электролитической диссоциацией называют распад молекул электролитов на ионы в результате взаимодействия с растворителем. Это обратимый процесс, поскольку параллельно с распадом электролитов на ионы (диссоциацией или ионизацией) протекает процесс соединения ионов (ассоциация). [c.28]


    Электролитическая диссоциация как обратимый процесс. [c.191]

    По степени электролитической диссоциации электролиты делятся на сильные и слабые первые диссоциируют практически полностью в растворах слабых электролитов имеются и молекулы и ионы растворенного вещества. Следовательно, диссоциация слабых электролитов представляет обратимый процесс, в результате которого устанавливается равновесие  [c.114]

    Конструкции водородного электрода весьма разнообразны. Наиболее простая из них приведена на рис. 43. Он состоит из платинированной платиновой пластинки, опущенной в раствор, содержащий ионы водорода, и омываемой весьма чистым (электролитическим) водородом. При этом платиновый электрод приобретает свойства водородного, так как потенциал его обратимо изменяется по отношению к изменению концентрации ионов Н+ в растворе. [c.156]

    Катионы многих солей также относятся к слабым кислотам. Соли в растворе необратимо диссоциируют на катионы и анионы катионы затем могут подвергаться обратимому протолизу, выполняя функцию слабой кислоты. В результате среда раствора становится кислой. Весь процесс изображают уравнениями электролитической диссоциации соли и обратимого протолиза катиона — слабой кислоты, например  [c.126]

    Анионы многих солей также относятся к слабым основаниям, поскольку они сопряжены со слабыми кислотами. После полной электролитической диссоциации соли в водном растворе такие анионы подвергаются обратимому протолизу, выполняя функцию слабого основания. В результате среда раствора становится щелочной. Весь процесс изображают уравнениями электролитической диссоциации соли и обратимого протолиза аниона — слабого основания, например  [c.128]

    Готовят разбавленный раствор ацетата аммония в воде. Составьте уравнения электролитической диссоциации соли, обратимого протолиза ионов и суммарной обратимой реакции. Для послед- [c.232]

    Электролитическая диссоциация для веществ МА, состоящих из полярных ковалентных молекул, является обратимой реакцией  [c.62]

    Альдегид и спирт могут электролитически обратимо восстанавливаться и окисляться только при добавке соответствующих алкоголятов металлов, лучше всего алкоголятов алюминия, играющих роль, ,редокскатализаторов ср. т. I, стр. 386. [c.613]

    Прохождение электрического тока через электрохимическую систему связано ке только с соответствующими химическими превращениями, но и с изменением ее электрических характеристик, прежде всего э.д.с. и электродных потенциалов, ио сравиенпю с их исходными значениями в отсутствие тока. При этом если электрохимическая система является электролизером (электролитической ванной), то напряжение на ней при данной силе тока будет больше обратимой э.д.с. той же системы E (j)>E, и наоборот, если электрохимическая система генерирует ток, т. е. является химическим источником тока — гальваническим элементом или аккумулятором, то его внешнее напряжение будет меньше, чем э.д.с. Еа 1)<Е. [c.287]

    Первое предположение о причинах данного явления сводится к тому, что различие между обратимой э.д.с. и напряжением возникает как результат омических потерь напряжения. В этом случае напряжение, необходимое для проведения какой-либо реакции в электролитической ванне, будет слагаться из обратимой э.д.с. Е (определяемой изменением изобарно-изотермического потенциала) и падения напряжения в электролите и в электродах Еом (зависящего от плотности тока). Такое предположение объясняет причину увеличения напряжения на аание при прохождении через нее тока по сравнению с обратимой э.д.с. той же системы. Точно так же уменьшение напряжения гальванического элемента при отборе от него тока можно отнести за счет того, что часть э.д.с. расходуется на преодоление сопротивления в утри самого элемента. Омические потери напряжения являются, таким образом, одной из причин различия между обратимой э.д.с. и рабочим напряжением. Опыт показывает, однако, чго [c.287]

    В предыдущих главах были рассмотрены равнове ные состояния процессов внутри электролитов с участием ионов (электролитическая диссоциация, гидролиз, сольватация и т. д.) и процессов на электродах (электрохимические реакции и характеризующие их параметры — обратимые электродные потенциалы). Эти состояния не зависят от времени, к ним применимы оба основных закона термодинамики. Поэтому соответствующие закономерности называются термодинамическими, а раздел электрохимии, посвященный им, — термодинамикой электрохимических процессов. Для электродных процессов равнопесие характеризуется отсутствием электрического тока. [c.605]

    Электроды сравнения. При измерении э.д.с. обратимых гальванических элементов необходим полуэлемент, потенциал которого был бы известен, постоянен и не зависел бы от состава изучаемого раствора. Электрод, удовлетворяющий этим требованиям, называют электродом сравнения. Электрод сравнения должен быть прост в изготовлении и сохранять практически постоянный и воспроизводимый потенциал при прохождении небольших токов. Постоянство потенциала электрода сравнення достигается поддержанием в контактирующем внутреннем растворе постоянной концентрации веществ, на которые реагирует электрод. Наиболее распространен хлорсеребряный электрод сравнения Ag, АдС1/КС1), который изготавливают путем электролитического нанесения хлорида серебра на серебряную про- [c.122]

    Однако процессы (1) и (2) обратимы. Поэтому выделившийся на катоде водород может снова переходить в раствор в виде ионов, отдавая электроны платиновому проводнику. Эти электроны по проводу поступают на другой электрод, содержащий кислород, и равновесие (2) смещается влево. Таким образом, при электролизе возникает гальванический элемент, ток которого направлен в сторону, обратную движению тока от внешнего источника. Поэтому ток от внешнего источника будет идти через электролит только в том случае, если приложенное напряжение будет достаточно для определенного химического процесса, а именно для электролитического разложения раствора или для образования ионов из 1к1ате-риала электрода. Необходимое для этой цели напряжение называется напряжением разложения и зависит, прежде всего, от состава раствора. [c.191]

    Катодную поляризационную кривую снимают в ячейке без разделения электродных пространств в гальванодинамическом режиме со скоростью, исключающей заметное изменение исходной площади поверхности вследствие образования губки, на катоде из меди в форме диска, впаянного в стекло или запрессованного в тефлон, в интервале плотностей тока от 5 до 500— 700 А/м . Подготовку поверхности катода перед каждым опытом проводят согласно приложению II, удаляя образовавшуюся губку. Электродом сравнения служит медный электрод в виде погруженной в электролитический ключ проволоки потенциал меди в данных растворах близок к обратимому значению. Поляризационные измерения оканчивают при потенциалах выделения водорода. Изучают влияние скорости развертки в интервале от 2 до 0,3 мА/с на форму кривой и значение пред. Для выбора плотности тока при электролизе используют минимальное значение ред, соответствующее условиям стационарной диффузии. [c.136]

    Пособие, написанное учениками основоположника современной пюретическон электрохимии академика А, Н, Фрумкина, посвящено наложению теоретических основ электродных процессов в растворах органических веществ. Актуальность рассматриваемых проблем С1 язана с широким применением органических соединений в прикладной электрохимии для регулирования свойств электролитических покрытий и ингибирования коррозии, в органическом электросинтезе, в топливных элементах и химических источниках тока, В книге изложены методы изучения адсорбции органических соедпненггй и закономерности обратимой и необратимой адсорбции на электродах, влияние обратимой адсорбции на две стадии электродного процесса — массопереноса и разряда — ионизации, закономерности электрохимических реакций с участием органических соединений. [c.2]

    У1еханизм и причины электролитической диссоциации. В 1887 г. С Аррениус выдвинул гипотезу о том, что электролиты в воде диссоциируют (распадаются) на положительно и отрицательно заряженные частицы — ионы. Увеличение числа частиц в растворе вследствие электролитической диссоциации обусловливает отклонение от законов Рауля и Вант-Гоффа. Изотонический коэффициент показывает, во сколько раз увеличивается общее число частиц в растворе вследствие диссоциации электролита. Согласно Аррениусу диссоциирует лишь часть молекул, причем процесс имеет обратимый характер. Процесс электролитической диссоциации электролита КА на ионы и А , по Аррениусу, имеет вид КАч=ь + А". Как было установлено позднее, это уравнение можно написать лишь для так называемых слабых электролитов. Аррениус исходил из физической теории растворов. Эта теория рассматривала растворы как механическую смесь молекул и ионов растворенного вещества с молекулами растворителя, между которыми нет никаких видов взаимодействия. На основании физической теории трудно объяснить разрыв прочных химических связей диссоциирующих молекул. [c.152]

    Индика1 орные электроды при потенциометрическом титровании по методам осаждения и комплексообразования. Различные осадки и комплексные соединения состоят из самых разнообразных ионов, и потому не существует такого универсального индикаторного электрода, который мог бы быть обратимым относительно всех катионов и анионов. Кроме того, не всегда можно располагать металлическим электродом, обратимым относительно своих ионов, из-за большой электролитической упругости растворения ряда металлов (легко окисляющихся Н -ионами раствора) или такими твердофазными веществами, в состав которых входит хотя бы один из ионоБ, образующих в процессе титрования осадки или комплексные соединения, но в другой степени его окисления или восстановления. Малая селективность индикаторных электродов, казалось бы, сильно ограничивает возможность использования потенциометрического метода в реакциях осаждения и комплексообразования. Однако применение электродов второго рода позволяет заметно расширить область применения потенциометрического титрования. [c.61]

    В свете изложенной теории можно лишь условно говорить об обратимости процесса диссоциации сильных электролитов в водных растворах. Так, гидратированные ионы, образующиеся при диссоциации, например, таких веществ, как НС1, Na I и т. п., ири своем тепловом движении не рекомбинируются в молекулы. Поэтому и в уравнениях диссоциации подобных электролитов знак обратимости ( ) следовало бы заменять знаком односторонней направленности реакции (->-). Отсюда, как следствие, такие понятия, как молекулизация (стр. 191) и степень электролитической диссоциации для растворов сильных электролитов, также становятся условными. [c.220]

    В водных растворах обратимо диссоциируют по уравнению, например, для хлорида аммония NHi l iNHi + СГ (электролитическая диссоциация). При нагревании сублимируют (возгоняются), причем,имеет место обратимый распад у хлорида аммония по уравнению NH4 I NH3 + НС1. Продукты реакции электронейтральные молекулы газообразных аммиака и хлористого водорода. При охлаждении эти молекулы соединяются между собой и вновь дают хлорид аммония. [c.470]

    Опыт показывает, что содержание ионов в воде с течением времени не изменяется. Отсюда следует, что наряду с ионизацией имеет место и обратный процесс — образование из ионов недиссоциирован-ных молекул (моляризация). Подобная же обратная реакция должна происходить и в растворе электролита если ионы при своем беспорядочном движении столкнутся, то из них может образоваться молекула. Таким образом, электролитическая диссоциация есть процесс обратимый-, в каждый данный момент за счет ионизации молекул образуются ионы и за счет столкновений ионов — молекулы. Очевидно, что в результате установится равновесие за единицу времени столько же молекул будет образовываться, сколько распадаться. Например, для Na l это можно выразить схемой  [c.174]


Смотреть страницы где упоминается термин Электролитические обратимость: [c.22]    [c.166]    [c.82]    [c.82]    [c.430]    [c.290]   
Учебник общей химии 1963 (0) -- [ c.129 ]




ПОИСК







© 2025 chem21.info Реклама на сайте