Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время спин-решеточной

    Время спин-решеточной релаксации измерялось с помощью последовательности радиочастотных импульсов 90°— г — 180°—X 1—90°—т—180° и 90°—т—90°. Для измерения спин-спиновой релаксации использовалась последовательность 90°— X—180°. [c.103]

    НИИ и время спин-решеточной релаксации Т , в то время как у неграфитирующихся веществ эти параметры изменяются непрерывно. Выше 450 С начинается интенсивное образование ароматических структур и рост молекулярной массы [2-83]. Менее упорядоченный, плохо графитирующийся углерод образуется при быстром увеличении концентрации ПМЦ. [c.90]


    Чаще всего при исследовании строения, структуры и молекулярного движения полимеров, находящихся в твердо.. агрегатном состоянии, применяются методы ядерного магнитного резонанса двух видов импульсный и щироких линий. С помощью первого метода определяются времена спин-решеточной и спин-спиновой релаксации, а второй позволяет получать значения ширины резонансной линии и ее второго момента. По проявляющимся на температурных зависимостях этих величин аномалиям можно судить об изменении подвижности отдельных атомных групп и более крупных фрагментов полимерных цепей, а следовательно, и об особенностях строения полимеров. [c.231]

    Для сужения сигналов ЭПР на практике часто приходится прибегать к сильному охлаждению образцов жидким азотом или даже гелием, или водородом, что прежде всего позволяет увеличить время спин-решеточной релаксации. Это особенно бывает необходимо при изучении солей переходных металлов и редкоземельных элементов. Для снижения эффектов, вызываемых спин-спиновой релаксацией и обменными процессами, прибегают также к разбавлению образцов диамагнитными веществами и изоляции парамагнитных центров друг от друга в матрицах и при замораживании растворов. [c.66]

    Однако спектры парамагнитных комплексов редкоземельных элементов, у которых /-оболочка заполнена не более чем наполовину (4/ ) и спин-орбитальное взаимодействие мало, бывают обычно очень четкими и информативными, например, для Gd(III). Для других элементов наблюдение спектров ЭПР требует гелиевых температур. Если возбужденные электронные состояния лежат близко к основному состоянию, то время спин-решеточной релаксации Т мало, и линии уширяются, т. е. для наблюдения спектров требуется понижать температуру. [c.72]

    При отсутствии обмена протонами между А—Н и В—Н линии ПМР отстоят для них на 250 Гц. При комнатной температуре происходит обмен, и линии отстоят на 25 Гц. Концентрации частиц одинаковы (0,2 моль/л), а время спин-решеточной релаксации велико. Рассчитайте время жизни протона у А—Н и найдите константу скорости обмена. [c.86]

    Спин-решеточная релаксация. Поглотив энергию и перейдя на высший зеемановский уровень, частица через некоторое время Г, — время спин-решеточной релаксации— отдает эту энергию окружающим частицам — решетке , и переходит на низший уровень. Время [c.298]


    Спин-решеточная релаксация. Поглотив энергию и перейдя на высший зеемановский уровень, частица через некоторое время Т- — время спин-решеточной релаксации — отдает эту энергию окружающим частицам — решетке , и переходит на низший уровень. Время определяет установление в системе равновесия между частицами на высшем и низшем зеемановском уровнях п = о (1—При наложении магнитного поля с высокой скоростью разность заселенности зеемановских уровней изменяется с конечной скоростью. [c.350]

    Уширение, обусловленное спин-решеточной релаксацией, возникает в результате взаимодействия парамагнитных ионов с термическими колебаниями решетки. Если время спин-решеточной релаксации велико, уширение незначительно — удается наблюдать спектры ЭПР при комнатной температуре. При малом времени спин-решеточной релаксации спектры можно наблюдать только при низких температурах, при которых время релаксации увеличивается, что приводит к сужению линий. Хорошо разрешенные спектры ЭПР многих солей переходных металлов можно получить лишь при температурах жидкого азота, водорода или гелия. [c.290]

    Время спин-решеточной релаксации в ЯМР может изменяться от 10 до 10 сек и зависит от температуры образца, концентрации магнитных ядер и вязкости среды. При больших Т тепловое равновесие может быть нарушено при достаточно большой мощности электромагнитного излучения. Интенсивность сигнала при этом уменьшается, наступает явление насыщения. [c.117]

    Так как при обмене осуществляется сильное спин-спиновое взаимодействие, резко уменьшается и время спин-решеточной релаксации. [c.23]

    Величина Дт определяется Т( и тз. где Т1 — время спин-решеточной релаксации (любого процесса, в результате которого избыток энергии спиновой системы передается молекулам или твердому телу, превращаясь в тепловую энергию колебания ядер). С ростом температуры взаимодействие, т. е. вероятность передачи энергии, растет, а т уменьшается тз — время спин-спиновой релаксации, т. е. время процесса перераспределения энергии в спиновой системе. Это взаимодействие увеличивает скорость передачи энергии спиновой системой решетке. Оно практически не зависит от температуры, но зависит от расстояния между спинами. На это взаимодействие можно влиять, изменяя концентрацию парамагнитных центров. [c.718]

    Наконец, помимо химических сдвигов и констант спин-спинового взаимодействия ( С, С С, Н С,Х при Х = зр, и т. д.) все возрастающее значение приобретает третий параметр ЯМР — время спин-решеточной релаксации Г]. Импульсные методики с фурье-преобразованием облегчают измерение Ti и делают его проведение почти рутинным. Такой эксперимент с использованием методики инверсии — восстановления (разд. 4.1 гл. VII) показан на рис. X. 9. [c.390]

    Радиоспектроскопия располагает возможностью прямого измерения времени релаксации возбужденного состояния спиновой системы. Так как переход ядерного спина в энергетически более выгодное состояние осуществляется при помощи двух различных механизмов, то соответственно различают время спин-решеточной (Г1) и спин-спиновой (Гг) релаксации Аппа- [c.435]

    Ширина ядерно-резонансной спектральной линии определяется средним временем жизни ядер в возможных энергетических состояниях. Время жизни таких состояний зависит от интенсивности взаимодействия магнитных моментов ядер с решеткой (T i — время спин-решеточной релаксации) и между собой (Гг — время спин-спиновой релаксации). [c.146]

    Релаксацию магнитных состояний ядра характеризуют двумя временами. Время продольной релаксации, или время спин-решеточной релаксации 1, определяет скорость релаксации суммарного магнитного вектора ядер в направлении магнитного поля спектрометра (Но). Время поперечной, или спин-спиновой релаксации Т , характеризует релаксацию в плоскости, перпендикулярной направлению Но. При определенных условиях два времени релаксации могут быть измерены независимо. В общем случае Для твердых [c.345]

    Процесс передачи ядром части энергии своему окружению посредством безызлучательного перехода называется спин-решеточной релаксацией. При действии на полимер внешнего магнитного поля ориентация спинов определяется поляризацией магнитных моментов ядер, тогда как тепловое движение атомов очень слабо влияет на порядок в расположении спинов. Если приложить магнитное поле к полимерной среде, а затем убрать его, то начинается спад магнитной поляризации ядер, обусловленный их тепловым движением. Явление спин-решеточной релаксации представляет собой спонтанный спад магнитной поляризации в отсутствие внешнего поля, обусловленный тепловым движением. Время спин-решеточной релаксации Т1 - это время, в течение которого разность между действительной заселенностью какого-либо уровня и его равновесным значением уменьшается в е раз. Спин-решеточная релаксация наблюдается наиболее отчетливо, когда частота тепловых колебаний сравнима с частотой ЯМР. Если измерения проводят на фиксированной частоте в достаточно широком интервале температур, то оказывается, что время спин-решеточной релаксации проходит через минимум, который для каждого релаксационного процесса в полимере наблюдается при определенной температуре. [c.254]


    Спин-решеточная релаксация наблюдается наиболее отчетливо, когда частота тепловых колебаний сравнима с частотой ЯМР. В стеклообразном состоянии время спин-решеточной релаксации 72 не зависит от температуры. В высокоэластическом состоянии Тг линейно возрастает с повышением температуры, и тем сильнее, чем выше молекулярная подвижность. Если измерения проводят на фиксированной частоте в достаточно широком интервале температур, то оказывается, что время спин-решеточной релаксации проходит через минимум, который для каждого релаксационного процесса наблюдается при впол- [c.383]

    Метод ЯМР релаксации. Введение наполнителей мало влияет на время спин-решеточной релаксации Ть Более чувствительным является процесс спин-спиновой релаксации в связи с тем, что этот процесс сильно зависит от медленных конформационных движений эластомера. В резонансной модификации метода ЯМР параметром, наи- [c.477]

    Решив это дифференциальное уравнение, нетрудно удостовериться в том, что намагниченность системы Мг, отвечающая температуре Тз экспоненциально стремится к равновесному значению Мо, отвечающему температуре решетки Т, со скоростью 2ш=1/7 ,, где Г, — время спин-решеточной релаксации. [c.252]

    М = Мо ехр (— /Тур), где постоянная времени — время спин-решеточной релаксации в ВСК. [c.257]

    Ширина линий в спектре ЭПР определяется, как и в ЯМР, спин-спиновой и спин-решеточной релаксацией. Время спин-спи-новой релаксации T a характеризует скорость установления равновесия между магнитными моментами всех парамагнитных частиц (между спинами электронов), время спин-решеточной релаксации Т —скорость восстановления равновесия между системой спинов и тепловыми колебаниями решетки. Т2 практически не зависит от температуры и определяется концентрацией спинов, Ti быстро возрастает с понижением температуры. Очевидно, что и Г, и Гг определяются подвижностью частиц с ненулевыми спинами и окружающих молекул. [c.343]

    В основу нового физико-химического метода анализа положено измерение скоростей установления термодинамического равновесия в системе, находящейся в постоянном магнитном поле, после воздействия на нее волн радиочастотного диапазона [359— 361]. Для целей анализа могут быть использованы как скорости спин-спиновой (t a), так и спин-решеточной (у ) релаксации. По своему характеру этот метод близок к кинетическому [561[. Роль своеобразного катализатора, ускоряющего процесс магнитной релаксации ядер, играют локальные магнитные поля, создаваемые парамагнитными частицами. Хром(1Н), находящийся в эффективном s-состоянии, является парамагнитным для него время релаксации протонов определяется скоростью броуновского движения [360]. Кроме того, показано, что в растворах солей r(III) время спин-решеточной релаксации (Т ) много больше времени спин-спиновой релаксации (T i T j). Постулируется, что это условие является признаком ковалентности связи в случае растворов солей трехвалентного хрома оно обусловлено большой стабильностью аквокомплексов [Сг(Н20)в] +. [c.69]

    И формой линии неизвестного вещества б) число спинов близко числу спинов неизвестного образца в) физическая форма и диэлектрические потери аналогичны соответствующим характеристикам неизвестного образца г) число спинов, ширина линий и -фактор должны сохраняться неизменными (стабильность во времени и по температуре) д) время спин-решеточной релаксации (Ti) должно быть коротким, чтобы избежать легкого насыщения сигнала. [c.358]

    Тесла, единица напряженности магнитного поля время спин-решеточной или продольной релаксации время спин-спиновой или поперечной релаксации эффективное время поперечной релаксации время спинового эха между 90°-ным импульсом и спиновым эхо [c.11]

    Время установления теплового равновесия между спиновой системой и окружающей средой, которую даже в жидкостях принято называть решеткой, определяется как время спин-решеточной релаксации. Эта величина описывает процесс установления равновесия, т.е. приближение 2-компоненты намагниченности М , к равновесному значению Мд, которое устанавливается в спиновой системе спустя длительный период времени. Равновесная намагниченность устанавливается параллельно внешнему магнитному полю Вд, поэтому спин-решеточную релаксацию называют также продольной релаксацией. [c.18]

    Ядро со спином / взаимодействует с неспаренным электроном посредством либо дипольного, либо контактного взаимодействия Ферми. В силу того, что магнитный момент электронов много больше ядерного магнитного момента, электрон-ядерное взаимодействие является доминирующим для ядерной спиновой релаксации. Временная зависимость релаксации в данном случае определяется тем, что для спинов электронов время спин-решеточной релаксации намного меньше всех других времен, т.е. соответствующее время [c.40]

    Основной эффект, который вносит поверхность, заключается в уменьщенпп подвижности адсорбированных молекул. Результатом этого является экспериментально наблюдаемое уменьще-пие времени релаксации у поверхности по сравнению со свободной жидкостью. Установлено экспериментально и теоретически, что релаксационные характеристики Г, пТ. изменяются в породах пропорционально размерам пор пли общей величине удельной поверхности, которая и определяет адсорбционные с1 -И"1ства, Жидкости в порах реальных иород-коллекторов представляют собой сложную спиновую систему, состоящую из двух-трех подсистем, возникающих вследствие влияния поверхности коллектора. В этом случае релаксационная кривая представляет сложную экспоненту, которая мож т быть разложена на две-три [4]. Каждая из таких составляющих характеризует процентное содержание выделенной спин-системы и время ее сиин-решеточной релаксации. Простейшая модель жидкости в порах — двухфазная. Компонента с более коротким временем релаксации отвечает связанной жидкости, а компонента с более длинным — свободной. В трехкомпонентной модели поровое пространство коллектора делится на три группы с различной удельной поверхностью, причем молекулы жидкости, находящиеся в порах разных групп, характеризуются различной степенью подвижности. Основные трудности в этой модели возникают при разложении кривой спада амплитуды сигнала на три экспоненты, которые преодолеваются путем применения программ нелинейного регрессионного анализа. Кроме того, в этой модели появляется новый параметр — критическое время спин-решеточной релаксации. Жидкость в порах, характеризуемых временем релаксации, меньше критического, является связанной. [c.102]

    Annapai ypa позволяет измерять время спин-сппновой релаксации T a в диапазоне от 10 до нескольких секунд, время спин-решеточной релаксации Ту от Ю" до десятков секунд. Точность измерения времени релаксации не хуже +10%. [c.103]

    Для изучения кинетики гидратации СзА, Сз5, - jS, aO A. Брехунец и В. Манк использовали метод ПМР. Спектры снимали на спектрометре РЯ 2301 в магнитном поле с Яо = 6000 Э при температурах от комнатной до —120°С. Время спин-решеточной (Ti) и спин-спиновой (Т2) релаксаций изучали на установке спинового эха. [c.70]

    Время спин-решеточной релаксации зависит от многих факторов температуры, вязкости среды и др. Время тем короче, чем выше концентрация магнитных ядер в образце. Присутствие парамагнитных ионов и свободных радикалов сильно сокращает величину Т , поскольку неспаренные электроны отличаются большим магнитным моментом, в сотни раз превосходящим магнитные моменты атомных ядер. Большинство твердых тел и вязких жидкостей имеет большое время спин-решеточной релаксации, порядка нескольких часов. У жидкостей и газов значение гораздо меньше — всего несколько секунд. Время спин-решеточной релаксации определяет ширину линий в спектрах ЯМР (она обратнопропорциональна Г ), а также то, насколько далека система ядерных спинов от состояния насыщения, т. е. максимально допустимую амплитуду вращающегося магнитного поля (мощность радиочастотного генератора ЯМР-спектрометра). [c.24]

    При измерениях значения Ло необходимо учесть и то, что эта величина соответствует равновесному значению вектора намагниченности в магнитном поле. Поэтому до измерений Ло необходимо выждать время порядка 10ть в течение которого образец не должен подвергаться воздействию радиочастотных импульсов. По этой же причине временной интервал между парами 90-градусных импульсов должен быть не менее (7- 10)ti. На начальных стадиях полимеризации время спин-решеточной релаксации составляет несколько секунд, и для измерения ti целесообразнее использовать [c.227]

    Количественной характеристикой эффективности спин-решеточной релаксащ1и служит время спин-решеточной релаксации Т — время, за которое разница заселенностей уровней АЛ =(Л —(Л —Л +)рав уменьшится в результате процесса спин-решеточной релаксации в е раз. На величину спин-решеточного взаимодействия можно влиять, изменяя температуру образца. С ростом температуры величина взаимодействия растет, а уменьшается. [c.96]

    Густосшитые полимеры-обычно находятся в стеклообразном состоянии, т.к. увеличение концентрации узлов сетки приводит к повышению времени отклика полимера ча любое возмущающее воздействие, т. е. к замедлению процессов релаксации в С.н. Существует большое число корреляц. ур-ний, связывающих т-ру стеклования (Т ) с концентрацией узлов сетки. Наиб, простой является линейная зависимость + Кп , где Г -т-ра стеклования несшитого полимера, а -константа, зависящая от природы и функциональности узла С. п. Динамич. св-ва С. п. сильно зависят от концентрации узлов. Так, время спин-решеточной релаксации при высоких т-рах оказывается тем ниже, чем выше что отражает степень анизотропии движения цепей сетки. При т-рах ниже динамич. св-ва С. п. (в частности, динамич. модуль упругости) практически не зависят от их топологич. структуры. [c.336]

    Для непрерывного наблюдения поглощения энергии условия резонанса недостаточно, т.к. при воздействии электромагн. излучения произойдет выравнивание заселенностей подуровней (эффект насыщения). Для поддержания больцманов-ского распределения заселенностей подуровней необходимы релаксационные процессы. Релаксационные переходы электронов из возбужденного состояния в основное реализуются при обмене энергией с окружающей средой (решеткой), к-рый осуществляется при индуцированных решеткой переходах между электронными подаровнями и определяется как спин-решеточная релаксация. Избыток энергии перераспределяется и между самими электронами - происходит спин-спиновая релаксация. Времена спин-решеточной релаксации Г] и спин-спиновой релаксации Т2 являются количеств, мерой скорости возврата спиновой системы в исходное состояние после воздействия электромагн. излучения. Зафиксированное регистрирующим устройством поглощение электао-магн. энергии спиновой системой и представляет собой спектр ЭПР. [c.448]

    В дополнение к отмеченным выше факторам важное значение имеют и времена спин-решеточной релаксации. Для ядер Н и 8р они достаточно коротки (несколько секунд или меньше), поэтому легко избежать насыщения резонансных сигналов. А для ядра углерода-13 времена релаксации часто значительно больше, поскольку это ядро находится в глубине молекулы, и передача энергии в окружающую среду происходит менее эффективно. Поэтому условие насыщения (см. уравнение 11.6) является здесь более критичным. Но как мы покажем в разд. 2 этой главы, несмотря на эти неблагоприятные моменты, удалось разработать такие экспериметальные методы, которые превратили спектроскопию ЯМР в мощный и разносторонний метод, дающий химику важную информацию. [c.373]

    В результате химической реакции это соотношение нарушается, а восстанавливается оно путем перехода триплетной пары в синглетную (Т - -переход). Такие интеркомбинационные переходы (5 Т и 7 -> 5) запрещены правилами отбора, но происходят по ряду причин. Во-первых, в силу спин-решеточного взаимодействия путем обмена энергий между несущей спин частицей и окружающими ее молекулами растворителя (решетки). Время спин-решеточной релаксации (продольной Т и поперечной 72) достаточно велико (Ю -Ю с) и много больше времени существования радикальной пары (10 -10 с). Поэтому в низковязких жидкостях этот механизм перехода неэффективен. Во-вторых, 5-7-переход происходит в том случае, когда различаются частоты ларморовской прецессии спиновых моментов радикальной пары вокруг направления магнитного поля (Де-механизм). В этом случае индуцируется 3 7о-переход. Частота перехода равна разности частот ларморовской прецессии и прямо пропорциональна Ag = g - gl и напряженности поля Щ. Частота 5 -> 7о-перехода 10 рад/с достигается при Ag = 10 и Яо 10 А/м. В-третьих, причиной 5 -л 7-перехода является сверхтонкое взаимодействие спина электрона с ядерными спинами (СТВ-механизм). В отсутствие магнитного поля электронный и ядерный спины радикала прецессируют вокруг результатирующей суммарного спина. В ходе движения электронный и ядерный спины совершают взаимный переворот, в результате чего конфигурация пары 7+ переходит в -состояние. Скорость перехода зависит от констант СТВ. Для СТВ-механизма характерны времена перехода Ю -Ю с, т. е. соизмеримые с временем жизни радикальных пар. Таким образом, Б отсутствие магнитного поля СТВ-механизм является наиболее эффективным для 7 -переходов в радикальных парах. [c.197]

    J/Ti = 1/Тцо) + УТцион), где Ti(o) - время спин-решеточной релаксации в отсутствие парамагнитных центров 1/T(i oh) - вклад растворенного кислорода. Например, значение Ti при полимеризации метилметакрилата в присутствии атмосферного кислорода при комнатной температуре равно 2,1 с, а после вакуумирования составляет 7,2 с. [c.267]


Смотреть страницы где упоминается термин Время спин-решеточной: [c.213]    [c.28]    [c.38]    [c.8]    [c.251]    [c.228]    [c.358]    [c.83]    [c.259]    [c.337]    [c.292]   
ЭПР Свободных радикалов в радиационной химии (1972) -- [ c.17 , c.98 ]




ПОИСК





Смотрите так же термины и статьи:

Спин-эхо

Спины



© 2025 chem21.info Реклама на сайте