Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронные орбитали гибридизованные

    Перед тем как перейти к дальнейшему обсуждению гибридизации, дополним объяснение описанием различия между валентным состоянием и стационарным состоянием вр . Чтобы возбудить атом углерода и перевести его из стационарного состояния зр в валентное состояние, проводят две операции 1) з- и три р-орби-тали гибридизуют с тем, чтобы образовать четыре зр -гибрида, каждый из которых заселен одним электроном 2) производят преимущественную ориентацию спинов этих электронов, обусловленную взаимодействием спинов между собой или их движением по орбиталям, предоставляя им совершенно свободно, случайно и легко соединяться в пары со спинами электронов других атомов. Оба эти процесса требуют вклада энергии, причем в этом случае общая энергия составляет 65 ккал/г-атом. Отметим вновь, что валентное состояние вообще неидентично стационарному состоянию атома и идея о возбуждении валентного состояния представляет собой только мысленную конструкцию, которая полезна при рассмотрении вопроса об образовании связи. [c.94]


    Типы связей, пространственное строение. Атомы углерода в 1,3-диенах находятся в состоянии 8р -гибридиза-ции. Молекула 1,3-бутадиена плоская. Считают, что в результате перекрывания облаков негибридизованных р-электронов образуется четырехэлектронная молекулярная орбиталь. При этом двойные связи удлиняются, а одинарная связь укорачивается. Длины двойной и одинарной связи в 1,3-бутадиене соответственно равны 0,134 и 0,148 нм (по сравнению с 0,133 и 0,154 нм в алке-нах и алканах). [c.260]

    Состояние так называемой гибридизации электронных орбиталей атома, например sp - или sp -гибридиза-ция, гибридизация sp d и т. д. [c.32]

    Устойчивое валентное состояние соответствует sp -гибридиза-ции валентных орбиталей. Гибридные состояния sp и sp неустойчивы. Следовательно, в химических соединениях валентные электроны атома кремния находятся в состоянии 3s 3p . Такое состоя- [c.5]

    Тройная связь С С (или СНС) является сочетанием одной ст-связи и двух тг-связей. Например, при образовании молекулы ацетилена в каждом из атомов углерода в гибридизации участвует одна 5-орбиталь и только одна р-орбиталь (зр-гибридизация) в результате образуются два ер-гибридных электронных облака, участвующих в образовании двух ст-связей. Облака двух р-электронов каждого атома С не гибридизуются и участвуют в образовании двух тг-связей. Таким образом, в ацетилене всего три ст-связи (одна С-С и две С-Н), направленные вдоль одной прямой, и две тг-связи, ориентированные в двух взаимно перпендикулярных плоскостях (рис. 29.8). [c.555]

    Согласно теории гибридизации в частице АВ те валентные орбитали центрального атома А, которые участвуют в образовании а-связей А—В или содержат неподеленные пары электронов (для радикалов— неспаренные электроны), не сохраняют своей индивидуальности (т. е. не являются чистыми пз-, пр- или -АО). Они гибридизуются (изменяют свою симметрию) и получают точное направление в пространстве, причем их взаимная направленность максимально симметрична (для данного числа АО) относительно центра атома А. При этом перекрывание гибридных орбиталей центрального атома с АО партнеров по а-связям усиливается, прочность химической связи возрастает и частица получает оптимальную для нее устойчивость. [c.162]

    Атомы кислорода и азота в состоянии хр -гибридизации должны были бы иметь валентные углы 90°, однако, как уже говорилось в разд. 1.3, в молекулах воды и аммиака, а также и в других соединениях кислорода и азота валентные углы намного больше и скорее ближе по величине к углам тетраэдра, т. е. к 109°28, а не к 90° (табл. 1.5). Эти факты привели к предположению, что в указанных соединениях кислород и азот образуют хр -связи, т. е. вместо перекрывания двух (или трех) р-орбиталей с 15-орбиталью водорода гибридизуются 25-и 2р-орбитали, давая четыре р -орбитали из них только две (или три) используются для связи с водородом, а остальные заняты неподеленной парой электронов. Такое описание [c.37]


    Бензол имеет циклическое строение. Все атсшь углерода в молекуле бензола имеют гибридизацию т, с. одна -орбиталь и две р-орбитали внешнего электронного уровня гибридизуются, давая три гибридные вр -с итали, располагающиеся в одной плоскости под углом 120° и образующие ст-связи с соседними атомами углерода и с водородом. Таким образом, молекула бензола является плоской. Негибридизованные р-орбитали располагаются перпендикулярно этой плоскости и попарно перекрываются, образуя единое кольцевое шести электронное облако, обладающее высокой устойчивостью и называемое ароматической электронной системой. Все связи между атомами углерода в молекуле бензола одинаковы. Структурную формулу бензола принято изображать следующим образом  [c.146]

    Природа кратных углерод-углеродных связей несколько иная. Так, в молекуле этилена при образованиадй ойной ковалентной связи С = С в каждом из атомов углерода в гибридизации участвует одна -орбиталь и только две р-орбитали (зр -гибридизация) одна из р-орбиталей каждого атома С не гибридизуется. В результате образуются три зр -гибридных электронных облака, которые участвуют в образовании трех ст-связей. Всего в молекуле этилена пять сг-связей [c.554]

    Рис 161 Электронная структура и гибридиза ция атомных орбиталей углерода в алканах [c.244]

    Особенность строения фенил-катиона заключается в том, что его вакантная орбиталь 5р -гибридизована, ориентирована в плоскости бензольного кольца и не может поэтому находиться в сопряжении с его я-электрон-ной системой. [c.413]

    Характеристика элемента. Атом углерода имеет 6 электронов ls 2s 2p . Последние два электрона располагаются на отдельных р-орбиталях и являются неспаренными. В принципе, эта пара могла бы занимать одну орбиталь, но в таком случае сильно возрастает межэлектронное отталкивание. По этой причине один из них занимает 2рх-, а другой либо 2ру, либо 2рг-орбиталь. Электронная конфигурация з 25 2рх 2ру 2р2°. Различие энергии 5- и р-подуровней внешнего слоя невелико, поэтому атом довольно легко переходит в возбужденное состояние, при котором один из двух электронов с 25-орбитали переходит на свободную 2р. Возникает валентное состояние, имеющее конфигурацию 1з 2з 2рх 2ру 2р2 Именно такое состояние атома углерода характерно для решетки алмаза. Тетраэдрическое пространственное расположение, одинаковая длина я энергия связей объясняются возникновением четырех равнозначных функций д в результате взаимного наложения 5- и р -функций. Это явление, как известно, называют 5рз-гибридизацией, а возникающие функции — рЗ-гибридными (рис. 62, а). Если принять прочность связи, возникающей в результате объединения з-элект-ронных пар, за единицу, то прочность р-связи оказывается равной уз, а 5р -гибридной связи 2. Таким образом, образование четырех 5рЗ-связей обеспечивает атому углерода более устойчивое состояние, чем три р — р- и одна 5 — -связи. Помимо р -гибридиза-ции у атома углерода наблюдается также зр - и р-гибридизация (рис. 62,6, в). В первом случае возникает взаимное наложение [c.212]

    Одна 8-орбиталь гибридизуется с двумя р-орбиталями, образуя три 5р2-гибридные орбитали, расположенные в одной плоскости под углом 120° друг относительно друга. При помошд1 этих гибридных орбиталей осуществляются а-связи между атомами углерода, лежащими в одной плоскости и образующими плоскую ячеистую структуру. Оставшиеся негибридизованными р-орбитали, несущие по одному электрону, взаимодействуют между собой с образованием ароматической системы, осуществляют относительно непрочное связывание между слоями. Структура графита похожа на бензол. [c.157]

    Приведенные примеры дают основание утверждать, что одинарная связь всегда является чистой или гибридной а связью. Двойная же связь состоит из одной о- и одной л-связей. Последняя всегда образуется из чистых негибридных электронных орбиталей. Наконец, тройная связь слагается из одной а- и двух л-связей, расположенных перпендикулярно друг относительно друга. По химическому строению на молекулу азота весьма похож ацетилен С2Н2. В возбужденном атоме углерода происходит р-гибридиза-ция  [c.112]

    Таким образом, число гибридных орбиталей всегда равно суммарному числу исходных орбиталей. Кроме того, при возникновении гибридных орбиталей необходимо соблюдение следующих условий Г) хорошее перекрывание гибридизу-емых электронных орбиталей 2) небольшая разница в энергиях атомных орбита-лей, участвующих в гибридизации. Например, Х -орбитали не могут гибридизо-ваться с 2 норбиталями, так как у них различные значения главного квантового числа, а потому их энергии сильно различаются. Гибридизация всегда сопровождается изменением формы электронного облака. При этом гибридное электронное облако асимметрично имеет большую вытянутость по одну сторону от ядра, чем по другую. Поэтому химические связи, образованные с участием гибридных орбиталей, обладают большей прочностью, чем связи за счет чистых негибридных электронных облаков. Гибридизация одной 5-орбита,ди и одной р-орбитали приводит к возникновению двух гибридных облаков, расположенных под углом 180° (рис. 36). Это так называемая р-гибридизация, в результате которой гибридные облака располагаются по прямой. Отсюда легко объяснить прямолинейность молекулы ВеС12 в- и р-орбитали атома бериллия подвергаются в -гибриди-зации и образуют две гибридные связи с двумя атомами хлора (рис. 37). У каждого атома хлора имеется по одному неспаренному р-электрону, которые и являются валентными. [c.80]


    Как уже отмечалось, в олефинах и их производных ненасыщенные углероды находятся во втором валентном состоянии. В отличие от первого валентного состояния, характерного для предельных соединений ( тетраэдрический углерод с четырьмя эквивалентными валентностями, направленными под углом 109° 28 друг к другу, — ар -гибридизация электронных орбиталей), во втором валентном состоянии у углерода гиб-ридизованы только одна 5- и две р-орбитали ( р -гибридизация), образуя три одинаковые орбитали. Соответствующие им а-связи (простые связи) направлены друг к другу под углом 120° и лежат в одной плоскости. Третья р-орбиталь углерода не гибридизована. [c.260]

    При таком расспаривании, как видно из схемы, один электрон оказывается на s-, а второй на р-орбитали. У хлора валентный электрон находится на р-орбитали. Если у бериллия валентные электроны будут различными, то в молекуле ВеСЬ одна связь ВеС1 будет (р — р)ст-связью, а вторая (s—р) ст-связью. Очевидно, что связи должны быть неравноценными. Однако опыт показывает, что обе связи ВеС1 в молекуле ВеСЬ одинаковы. Это может быть лишь в том случае, если оба валентных электрона у атома бериллия идентичны, т. е. имеют одинаковую энергию. Следовательно, в процессе расспаривания электронов энергии их выравниваются, s- и р-орбитали смешиваются — происходит так называемая гибридизация атомных орбиталей. Гибридизация, кроме выравнивания энергий электронов, всегда означает еще и изменение формы электронных облаков. В самом деле, сферическая s-орбиталь смешивается (гибридизуется) с гантелевидной р-орбиталью, вследствие чего образуются две новые гибридные орбитали с одинаковой энергией. Такие орбитали характеризуются грушевидной конфигурацией электронного облака  [c.91]

    Наряду с а-связью может образоваться и я-связь, если на орбитали атома металла, которая может перекрываться с вакантной орбиталью донорного атома, находятся соответствующие с(-элек-троны. Эта связь изменяет распределение заряда как у атома металла, так и у лиганда, усиливая а-связь. Чем больше электронные облака перекрывают друг друга, тем более прочной является образующаяся ковалентная связь. Было показано, что для удовлетворения этого критерия необходимо, чтобы исходные атомные орбитали были гибридизованы, образуя новую систему эквивалентных орбиталей, принимающих участие в связи и имеющих определенное направление в пространстве. [c.250]

    Алкины. При 5/)-гибридизации из четырех валентных электронов атома углерода два (sp) гибридизованы, два -электрона не гибри-дизованы. Между атомами углерода образуется тройная связь (а + + 2л). Одна (т-связь возникает при перекрывании гибридизованных (по одной от каждого атома углерода) s/7-орбиталей, две я-связи — при перекрывании двух пар взаимно перпендикулярных негибридизован-ных р-орбиталей от каждого атома углерода (рис. 88). Ненасыщенные углеводороды с тройной связью называют алкинами. К ним относят [c.258]

    Необходимость удаления либо промотирования электронов, либо отвлечения их с других связей представляет собой своеобразный барьер, и совокупность гибридизирующихся орбиталей строится зачастую таким образом, чтобы его не преодолевать. Так, в молекулах этилена и ацетилена каждый атом С отдает на образование л-связей одну (в С2Н4) или две (в С2Н2) р-орбитали оставшиеся орбитали гибридизуются, приводя к зр - и р-конфигу-рациям соответственно. [c.64]

    Имеется много доказательств, вытекающих главным образом из рассмотрения констант спин-спинового взаимодействия в ЯМР-спектрах, что связи в циклопропанах отличаются от связей в соответствующих соединениях, не имеющих углового напряжения [204]. В обычном атоме углерода гибридизуются одна 5- и три р-орбитали, давая почти эквивалентные зр -орби-тали (разд. 1.11), каждая из которых на 25% имеет 5-харак-тер. Но в циклопропановом атоме углерода четыре гибридные орбитали далеко не эквивалентны. Две орбитали, направленные к внешним связям, имеют больший х-характер, чем обычная 5р -орбиталь, тогда как две орбитали, образующие связи внутри цикла, имеют меньший 5-характер и больший р-характер, что делает их похожими на обычные р-орбитали, для которых характерны валентные углы 90, а не 109,5°. Поскольку угловое напряжение за счет уменьшения углов в циклопропанах соответствует разности в величине характеристичного угла и реального угла в 60°, этот дополнительный характер частично снимает напряжение. Внешние орбитали на 33 %, имеют 5-харак-тер, т. е., по существу, являются р -орбиталями внутренние орбитали только на 17 % имеют 5-характер, так что их можно назвать зр -орбиталями [205]. Таким образом, каладая углерод-углеродная связь в циклопропане образована перекрыванием двух 5р -орбиталей. Расчеты по методу молекулярных орбита-лей показывают, что такие связи не являются целиком сг-свя-зями. В обычных С—С-связях 5р -орбитали перекрываются таким образом, что прямая, соединяющая ядра, становится осью симметрии электронного облака. Но в циклопропане электронная плотность смещена в сторону от кольца. Направление орбитального перекрывания показано на рис. 4.5 [20] угол 0 для циклопропана составляет 2Г. Аналогичное явление наблюдается и для циклобутана, но в меньшей степени здесь угол 0 равен 7° [206]. Связи в циклопропане называют изогнутыми, или банановыми -, по своему характеру они являются промежуточными между о- и я-связями, поэтому циклопропаны в некоторых отношениях ведут себя подобно соединениям с двойной связью [207]. Данные УФ-спектров [208] и некоторые другие данные свидетельствуют о том, что циклопропановое кольцо участвует в сопряжении с соседней двойной связью, причем в кон- [c.188]

    Как видно из уравнений (7.63), в методе ППП имеется три основных параметра. Величины представляют энергии электронов на атомных 1р,-, 3/ -орбиталях. Значения для лр -гибридизо-ванных атомов, поставляющих в л-систему один или два электрона, представлены в табл. 7.15. Там же даны значения величин сродства к электрону для атомов в соответствующих валентных состояниях, необходимые для определения по соотношению (7.64). [c.241]

    Иначе происходит образование двойных и тройных связей в ненасыщенных соединениях. В этилене, например, каждый углеродный атом образует связи с тремя партнерами, на что расходуются электроны 5-атомной и двух р-атомных орбиталей (5р -гибридиза-ция). Получающиеся три а-связи располагаются в одной плоскости под углом в 120° (рис. 1). Остающиеся у углеродных атомов негибридизированные р-электроны, орбитали которых располагаются перпендикулярно плоскости о-связей, перекрываются друг с другом, образуя л-связь. Так как перекрывание орбиталей здесь не такое глубокое, то п-связь значительно лабильнее и легче поляризуется и разрывается, чем о-связь. [c.17]

    Для определения типа гибридизации надо знать число гибридизующихся орбиталей центрального атома. Его можно найти вычитанием из общего числа валентных АО числа одноэлектронных, образующих л-связи. В схемах электронных конфигураций они отсчитываются справа налево, так как л-связи образуют, прежде всего, й-, а затем р-АО. Все оставшиеся валентные орбитали участвуют в гибридизации. [c.118]

    Если рядом с карбоксильной группой находится атом углерода, несущий двойную связь, сила кислоты возрастает. Так, акриловая кислота СН2—СНСООН имеет р/Са 4,25 (для ее насыщенного аналога— пропионовой кислоты р/Са 4,88). Это связано с тем, что у ненасыщенного а-атома углерода, имеющего 5р -гибридизацию, электроны оттянуты несколько ближе к ядру, чем у насыщенного углеродного атома, имеющего 5р -гибриди-зацию, из-за относительно большего вклада 5-орбиталей в электронную структуру 5р -гибрида. В результате хр -гибридизо-ванные атомы углерода обладают несколько пониженной способностью отдавать электроны по сравнению с 5р -гибридизо-ванными насыщенными атомами углерода. Именно поэтому акриловая кислота, уступающая по силе муравьиной, все же несколько сильнее пропионовой. Этот эффект выражен еще сильнее в случае тройной связи, углеродные атомы которой характеризуются 5р-гибридизацией. Так, значение р/Са для про-пиоловой кислоты НС ССООН равно 1,84. [c.76]

    Двухатомные оксиды. Существуют два оксида, являющиеся двухатомными молекулами,— это оксиды углерода и азота (табл. 4.1). Оксид углерода стабилен, и его физические свойства подобны свойствам Na. Эти соединения близки не только по молекулярной массе и по длинам связей, но можно считать, что они подобны и по типу связи. Поляризация С0+ противоположна ожидаемой из величин электроотрицательностей. Это можно объяснить, если считать, что несвязывающая орбиталь углерода sp-гибридизована и вытянута, однако несвязы-вяющая орбиталь кислорода почти сферическая и находится вблизи атома О. Предполагают, что я-связь в этом случае такая же, как у Na, и разрыхляющая я -орбиталь оказывается вакантной. Оксид углерода координируется атомами металлов с образованием карбонилов металлов, содержащих связь М—СО, и полагают, что при этом стабилизация происходит за счет перехода пары электронов с <т-молекулярной орбитали -оксида углерода и обратного перехода d-электронов с атома или иона металла на я -разрыхляющую орбиталь оксида углерода. [c.150]

    В карбонат-ионе, имеющем форму плоского треугольника, атом С находится в зр -гибридизованном состоянии, а орбиталь Рг образует я-орбиталь. С другой стороны, три эквивалентных атома О также 8р -гибридизованы, а их орбитали р представляют собой п-орбитали (в ряде приближенных методов полагают, что атом О зр-гибридизоваи, но при этом не возникает различий участвующих в связи орбиталей). Атомы С и О в валентных состояниях образуют показанные на рис. 4.1 молекулярные орбитали, и а-орбитали расщепляются на трехкратно вырожденные связывающую и разрыхляющую орбитали. Однократное связывание атомов за сче я-орбита-лей приводит к образованию четырех молекулярных орбиталей, две из которых вырожденны. 24 атомных валентных электрона заселяют орбитали, начиная с нижней, и одна молекулярная я-орбиталь и разрыхляющая а-орбиталь оказываются вакант ными (карбонат-ион диамагнитен, и все электроны спарены). [c.158]

    Основность пиридина значительно меньше основности алифатических аминов. Это связано с тем, что неподеленная пара электронов атома азота занимает р -гибридную орбиталь. Атом азота в пиридине более электроотрицателен, чем р -гибридизо-ванный атом азота в обычных аминах и, следовательно, прочнее удерживает свою электронную пару. [c.292]

    Из данных по энергии стабилизации (21 ккал моль ) [2] и измерению длин связей С—С и С—N (длины связей, имеют промежуточные значения между длинами обычных простой и двойной связей [3]) следует наличие циклического сопряжения в молекуле пиридина. Пять атомов углерода и атом азота составляют плоскую гексагональную структуру, причем все атомы тригонально зр ) гибридизованы и 6/ -я-электроны образуют стабильную делокали-зованную молекулярную орбиталь (I). При этом остающаяся 2/ -орбиталь атома азота перпендикулярна этой молекулярной орбитали, и, следовательно, электронная пара способна к образованию дополнительной связи. Действительно, пиридин обладает слабоосновными свойствами (р/(а = 5,2), что играет значительную роль в его химическом поведении. [c.198]

    В сказанном легко убедиться на примере наиболее важной из таких молекул, именно молекулы бензола СеНв. Бензол является прототипом всех ароматических соединений. Большое число данных, полученных с помощью рентгеновских лучей и изучения колебательного спектра, указывает, что в молекуле бензола атомы углерода находятся в вершинах правильного плоского шестиугольника. Шесть атомов водорода лежат в той же плоскости в радиальных направлениях от атомов углерода, так что все валентные углы равны 120°. Это, очевидно, означает, что атомы углерода тригонально гибридизованы. Направления гибридных орбиталей должны быть выбраны так, как показано на рис. 9.1. Сильное перекрывание орбиталей соседних атомов приводит к образованию локализованных ст-связей С—С и С—Н. Эти связи могут быть описаны в терминах МО или ВС их существенные черты передаются любым из этих методов. Простой подсчет числа электронов показывает, что в бензоле имеется еще шесть электронов они занимают шесть негибридизованных орбиталей формы гантелей, по одной на каждый атом углерода. Если считать плоскость молекулы плоскостью (х, у), то эти электроны занимают АО 2р , направленные параллельно между собой, как показано на рис. 9.2,а. Именно здесь и возникают трудности. В самом деле, если мы будем пытаться выбрать какую-либо одну наиболее подходящую схему спаривания орбиталей, необходимого для локализации связей, то обнаружим, что нет ни одной схемы, которая обладала бы пре имуществами по сравнению с другими. [c.254]

    Теоретические работы привели к заключению, что в случае метилена СНг имеет место линейное триплетное состояние, поскольку в синглетном состоянии атомы должны быть расположены под углом. В триплетном состоянии на каждой из двух / -орбиталей углерода должно располагаться по одному электрону уо-орбиталь должна гибридизоваться с 5-орбиталью, что приве-. ло бы к двум линейным гибридным 5р-орбиталям. Длина связи С—Н в этом случае должна составлять 1,03 А (10,3-10" нм). В синглетном состоянии вакантная орбиталь должна иметь р-характер. Свободная пара электронов может размоцаться на я-орбитали две связывающие орбитали должны быть [c.212]

    В последнее время кроме а-связи в теории валентных связей допускают возможность образования и л-связи при наличии у атома металла подходящих -орбиталей, перекрывающихся с л-орбиталь ю лиганда. Этот вид связи, если он носит л-датив-ный характер (М — Ь) , должен изменить распределение заряда у атома металла и лиганда таким образом, что а-связь усилится. Если же имеет место (Ь М) -связывание, обычно не рассматривавшееся в ранней теории валентной связи, а-связь может ослабиться, но в целом прочность связи должна возрастать. Чем больше электронные облака перекрывают друг друга, тем более прочной является образующаяся ковалентная связь. Было показано, что для удовлетворения этого критерия необходимо, чтобы исходные атомные орбитали были гибридизованы, образуя новую систему эквивалентных орбиталей, принимающих участие в связи и имеющих определенное направление в пространстве. [c.401]

    Решение проблемы метильных мостиков лежит в признании многоцентровой связи, как в случае боранов (гл. 10). Например, предполагается, что в [А1 (СНз)з1., каждый атом алюминия гибридизу-ется, в некотором смысле приближаясь, хотя и не точно, к тетраэдрической зр -гибридизации. Затем он иснользуетдве такие орбитали и два своих электрона и образует две нормальные двухцентровые связи с концевыми метильными группами. В таком случае фрагменты А (СНд)2 имеют две гибридные орбитали и один электрон, способный к образованию дальнейшей связи. Мостиковые метильные группы являются обычными метильными группами и поэтому имеют пустую приблизительно 5р- -гибридную орбиталь и один электрон для связи. Эти фрагменты затем сочетаются почти тем же способом, как 2ВН2 и 2Н- в ВоНв. Орбиталь метила и одна орбиталь от каждого атома алюминия перекрываются и образуют трехцентровую орбиталь связи, которую затем заселяют два электрона. На рис. [c.150]

    Повышенная прочность а-связей в квадратных комплексах. В октаэдрических и в квадратных комплексах орбиталь а точнее МО, имеющая преимущественно характер орбитали является сильно разрыхляющей по отношению к четырем лигандам, расположенным в плоскости ху. В квадратных комплексах эта орбиталь остается незаполненной это увеличивает прочность (т-связей и повышает устойчивость четырехкоординационного соединения, несмотря на некоторую затрату энергии, необходимую для спаривания электронов при переходе от конфигурации к конфигурации Кроме того, поскольку г -орбиталь не принимает участия в образовании связей с лигандами, она может быть гибридизована с з-орбиталью, что улучшает условия для образования четырех а-связей. При этом пара несвязывающих электронов занимает гибридную орбиталь, расположенную в основном выше и ниже плоскости комплекса. [c.106]


Смотреть страницы где упоминается термин Электронные орбитали гибридизованные: [c.27]    [c.17]    [c.562]    [c.233]    [c.139]    [c.206]    [c.106]    [c.35]    [c.89]    [c.60]   
Органическая химия (1972) -- [ c.23 , c.86 ]

Органическая химия (1972) -- [ c.23 , c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Электронные орбитали



© 2025 chem21.info Реклама на сайте