Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пиридин цианидов

    Получение 4-бромпроизводного образование гриньяровского соединения и взаимодействие последнего с двуокисью углерода хлорирование получение литиевого производного и взаимодействие с двуокисью углерода превращение хлор- или бром-производного в нитрил (цианид меди в пиридине) гидролиз. [c.748]

    Этот метод применим не только для соединений, легко превращающихся в кислоты в условиях эксперимента, например цианидов и сложных эфиров [37], но также и для двухосновных кислот, многие из которых легко образуют ангидриды 119, 22—24, 26—28, 34, 37— 39]. Обычно получают высокие выходы, особенно в присутствии пиридина. [c.366]


    Галогенпроизводные пиридина [23], хинолина [241 и изохинолина [25] дают удовлетворительные выходы нитрилов с одним цианидом меди(1) [201. [c.434]

    Нативный раствор после извлечения из него антибиотика обрабатывают адсорбентами костяным углем, кизельгуром, бентонитом или синтетическими ионитами. Затем витамин В12 элюируют из адсорбента различными растворителями водным пиридином, а-пиколином, водным раствором цианида натрия или ацетона с добавлением разбавленной соляной кислоты и др. [c.681]

    Для фотометрических определений цианидов применяют 3 %-ный раствор димедона в 30 7о-ном растворе пиридина. [c.138]

    К таким работам относятся а)растворение металлов и руд в азотной кислоте с выделением оксидов азота б) обработка солянокислых растворов хлоратом калия с выделением хлора в) выпаривание и обработка плавиковой кислотой и ее солями, связанные с выделением фтора г) действие кислоты на технический цинк, обычно содержащий мышьяк, сопровождающееся выделением мышьяковистого водорода д) подкисление растворов, содержащих цианиды е) подкисление растворов, содержащих тиоцианаты (роданиды) ж) сильное подкисление растворов, содержащих ферроцианиды калия (натрия) з) подкисление растворов сульфидов и) подкисление растворов, содержащих соли брома к) выпаривание сероводородных растворов л) осаждение сульфидов металлов сероводородом м) очистка и заправка аппаратов для получения сероводорода н) прокаливание осадков, содержащих ртуть и мышьяк о) отгонка хлористого хромила п) разливка аммиака, брома, пиридина и других едких жидкостей. [c.371]

    О получении, кристаллической структуре и свойствах комплексов рения с фосфинами с.м. также [719, 727, 758, 760, 794, 1129 и др.]. Появилось много публикаций, посвященных получению и свойствам смешанных комплексных соединений рения(П), (III), (IV) и (V), содержащих различные фосфины, карбонилы, пиридин и цианиды [923, 1337, 1341—1343, 1347, 1367]. [c.48]

    Сульфогруппа в пиридин-З-сульфокислоте при действии гидроксид-и цианид-ионов способна к нуклеофильному замещению. Аналогичное явление наблюдается и для атомов галогена в положениях 2, 4 и 6. [c.588]

    Реакции нуклеофильного замещения галогенид-ионами, цианид-ионом, углеродными нуклеофилами, такими, как енамины, ацетат-ионом (при реакции с уксусным ангидридом) с сопутствующей потерей атома кислорода протекают гладко для всех трех диазинов [79], хотя положение нуклеофильной атаки не всегда будут таким, как следовало бы ожидать по аналогии с реакциями нуклеофильного замещения в N-оксидах пиридина. Некоторые примеры таких реакций приведены ниже [13]  [c.271]


    Отфильтрованная сточная фенольная вода коксохимического производства, содержащая 300—500 мг/л фенола. 1870 мг/л связанного аммиака, 200 мг/л рода-нидов, цианиды, сульфиды, хлориды, ароматические углеводороды (крезол, гидрохинон, пиридин, резорцин, пиколин, индол). [c.143]

    Этот комплекс получают взаимодействием спирта, треххлористого фосфора и галогенида одновалептнон меди. Ра. ложение комплекса осуществляют термообработкой в вакууме или химическим путем (используя цинковую пыль, сульфид натрия, пиридин, цианиды).  [c.318]

    В полярографическом анализе для переведения определяемых катионов в комплексные соединения пользуются различными веществами. Из неорганических лигандов чаще всего применяют водный раствор аммиака или пиридин (часто в смеси с их хлоридами), гидроксиды щелочных металлов, роданиды, иодиды, цианиды. Применяют и многие органические вещества винную и лимонную кислоты, этиленди-амин, триэтаноламин, этилендиаминтетрауксусную кислоту и ее соли (ЭДТА) и др. [c.505]

    Никель и кобальт обладают близкими химическими свойствами и восстанавливаются почти при одном и том же потенциале. Для определения никеля в присутствии кобальта, например в продуктах кобальтового производства, удобно полярографировать оба элемента в растворе аммиака и хлорида аммония или пиридина и его хлорида. Кобальт связывается этими веществами сильнее никеля, и на поля-рограмме получается отдельная волна никеля. Влияние меди при определении цинка легко устранить, прибавляя раствор цианида калия. Цианидный комплекс меди настолько устойчив, что не дает полярографической волны. Для раздельного определения железа и меди применяют раствор ЭДТА. [c.506]

    Тартраты, цианиды, солянокислый гидроксиламин Производные диантипирил-метана. NH, S N pH 5.6. KS N, пиридин [c.480]

    Для преодоления, насколько возможно, этих затруднений применяют цианид одновалентной меди в безводном растворителе, например пиридине, эфире или бензоле. Для предотвращения алкого-лиза используют такие растворители, как ацетон [15], ацетонитрил 116] и фенилацетонитрил [17]. Ацилнитрилы (R O N) также лучше всего получать из галогенангидридов с помощью цианида меди [18]. [c.433]

    Превращение ароматических галогенидов в нитрилы лучше проводить с цианидом меди. Эгот реагент применяют с пиридином, хинолином, диметилформамидом [19] и N-метилпирролидоном [20] в качестве растворителей или без растворителя при 250—260 " С (реакция Розенмунда Брауна). Индукционный период реакции по последнему методу можно сократить добавлением небольшого количества нитрила каталитическое действие проявляют и следы сульфата меди [21]. Из этих методов наиболее предпочтительно использование в качестве растворителей диметилформамида и N-метилпирро-лидона. Применение первого изучено довольно подробно на примере ряда арилхлоридов или арилбромидов выходы составляют 75— 100%. Методика разложения комплекса нитрила с галогенидом меди(1) была в некоторой степени усовершенствована путем применения хлорида железа(П1) или этилендиамина. N-Метилпирролидон [201, хороший растворитель для цианида меди(1), позволяет проводить реакцию за короткое время. Для ограниченного числа галогенидов, главным образом бромидов, выходы колеблются от 82 до 92%. [c.433]

    Общепринятым методом синтеза карбоновых кислот является окисление [1] первичных спиртов или альдегидов (К—СН2ОН или К—СНО К—СО2Н). Однако прямое окисление первичных спиртов хромовой кислотой зачастую дает плохие выходы [2], так как из образующегося в качестве промежуточного соединения альдегида и не-прореагировавщего спирта может получиться полуацеталь, который очень быстро окисляется в эфир [3]. Прямое окисление пероксидом никеля осуществляется без подобных осложнений. Однако при окислении алифатических спиртов наблюдается падение выхода при умень-щении их растворимости в воде. Следовательно, во многих случаях более предпочтительно окисление хлорохроматом пиридиния в альдегиды, а затем перманганатом калия в присутствии катализатора межфазного переноса (ср. Р-462) или оксидом хрома (VI)-в кислоты. Аллиловые спирты очень легко окисляются оксидом серебра (П) в присутствии цианид-ионов в а,р-ненасыщенные карбоновые кислоты [4]. С хорошими выходами осуществляется озонолиз циклических ацеталей в эфиры карбоновых кислот [5] (ср. 0-4а-б). [c.140]

    Навеску образца помещают в кварцевую колбу, охлаждаемую до 0° С, и в течение 15 мин пропускают аргон со скоростью 70 мл/мин. В качестве сосуда для сбора цианида используют мерную колбу вместимостью 25 мл, которую также помещают в охладительную смесь. В эту колбу наливают 5—7 мл воды и добавляют 2 капли 1 М раствора NaOH. В колбу с натрием вводят 10 мл воды со скоростью 1 капля в 20—30 с, а затем около 6 мл 25%-ной H2SO4. Затем колбу нагревают и отгоняют половину ее содержимого. В мерную колбу добавляют 5 мл фосфатного буферного раствора с pH 5,5 1 мл 1%-ного раствора хлорамина Т, а затем 3 мл раствора реагента (к 3 г барбитуровой кислоты добавляют 15 мл пиридина, 3 мл конц. НС1 и разбавляют водой до 0 мл). Измеряют оптическую плотность раствора при 580 нм. [c.191]


    Флотация меди (смесь ксантогенатов и аэрофлота, известь, цианид, сода, тяжелый пиридин, квебрахо, сосновое масло, ОПСБ,- диксантоген, цинковый купорос, сера, смесь сульфита натрия и железного купороса, НгЗО , минереки, меркаптобензотиа-зол, вторичный бутиловый ксантогенат) [c.113]

    Замещенные пиримидиновые нуклеозиды получены также химической модификацией других нуклеозидов. Например, триметил-силиловый эфир 2 -дезокси-5-иодуридина превращен в 2 -дезокси-5-цианоуридин действием цианида меди в сухом пиридине [191]. [c.122]

    Хинолины по своим химическим свойствам аналогичны пиридинам. При действии алкилгалогенидов, ацилгалогенидов или диалкилсульфа-тов они образуют соответствующие четвертичные соли. Хлорид М-бен-зоилхинолиния реагирует с цианидом калия, образуя так называемое соединение Райссерта (1905 г.), которое при кислотном гидролизе расщепляется на хинальдиновую (хинолин-2-карбоновую) кислоту и бензальдегид  [c.591]

    Химические свойства изохинолинов похожи на свойства хинолинов. Соли Ы-бензоилизохинолиния дают соединения Райссерта, при этом нуклеофильная атака цианид-ионом протекает в положение 1. Надкис-лоты окисляют изохинолины с образованием Ы-оксидов. При нитровании и сульфировании замещение протекает главным образом в положение 5, а при бромировании и меркурировании в положение 4. Реакция Чичибабина (см. выше) дает 1-аминоизохинолин. Окисление изохинолина перманганатом калия ведет к смеси фталевой и цинхомероновой (пиридин-3,4-дикарбоновой) кислот. [c.592]

    Клатраты могут образовывать широкий класс соединений. Так, например, ряд газов и низкокипящих жидкостей образует с водой клатраты, которые обычно называются гидратами газов и гидратами жидкостей . Способность к гидрато-образоваиию используется, в частности, для опреснения морской воды при помощи различных водонерастворимых холодильных агентов (пропана, фреонов н др.), образующих с водой кристаллические комплексы при значительно более высоких температурах, чем при вымораживании. Разлагая эти комплексы нагреванием, получают пресную воду и регенерированный хладоагент. Известны также металлоорганические соединения, образующие клатраты, которые могут быть использованы для разделения ароматических смесей. С помощью тетра-(4-метил-пиридин)-тио-цианида никеля можно извлекать п-ксилол из смеси его изомеров. [c.724]

    Дипропиленгликоль полностью смешивается с этиловыми, дихлордиэтиловым и бензиловым эфирами, фенолом, о-крезолом, амил-цианидом, касторовым, сосновым, талловым маслами, он также смешивается с диэтилформамидом, пиридином, 2-метил-5-этилпири-дином [23, р. 9 27, р. 59]. [c.194]

    Катионы больших периодов периодической системы Д. И. Менделеева, такие, как Zn " , Со , Ni , проявляют способность к образованию комплексных аммиаков [Zn(NH3)J , [Со(КНз)б] + и [№(КНз)б] . Большое значение имеет образование комплексных цианидов, тиоцианатов, ртутьтиоцианатов при обнаружении катионов Fe , Ре , Zn , Со . Широко используют для анализа реакции образования комплексов с органическим основанием пиридином, диметилглиоксимом, а-нит-розо-Р-нафтолом, ализарином, дитизоном, арсеназо. [c.149]

    Полярографированне двухвалентного кобальта изучалось в растворах различных веществ соляной [147] и азотной кислот, хлорида калия [177, 505, 1231], хлорида кальция [970], хлорида бария [1199], сульфата калия [1394], роданида калия [177, 993], оксалата аммония [148, 149], гидроокиси аммония в смеси с хлоридом аммония [149, 506, 970, 1204, 1448], фторида калия [69], цианида калия [849, 1258], пиридина в смеси с солянокислым пиридином [177, 263, 318, 319, 993] или с мочевиной [399], этилендиамина [635, 636, 969], MOHO-, ди- и триэтаноламина [1372—1374], винной, лимонной, салициловой и других оксикислот и их солен [148, 150, 231, 507, 1039], глицина [941], диметилглиоксима [294], ряда органических красителей [608]. [c.164]

    Изучалось полярографическое поведение трехвалентного кобальта в форме аммиаката [62, 968, 970, 971, 1060, 1465, 1494], комплексов с этилендиамином [636, 840. 969], глицином и аланином [840], цианидом калия [671, 849], комплексоном [1123, 1342], комплексоном в присутствии пиридина и хлоргндрата пиридина [1060, 1216, 1342], лимонной кислотой [1216], сульфосалицилатом натрия [1214], оксалатом [935, 939]. [c.166]

    Специальный растворитель. Иьюыеи (1, 2] рекомендует М. в качестве растворителя при иолученин нитрилов реакцией арилгалогенида с цианидом меди(1). Вместо первоначально использовавшегося пиридина (т. кип. И57 был предложен (31 более подходящий ДМФА (т. кип. 153 ), но М. еще более удобен благодаря более высокой температуре кипения. Например, при синтезе Ьцианнаф-талина из 1-хлорнафталина [21 для выделения нитрила охлажденную [c.292]

    Превращение хлорангидридов в соответственные цианиды кислот (нитрилы а-кетонокислот) происходит при нагревании с цианистым серебром в запаянной трубке. Продукт, получающийся по этомз способу, с мало удовлетворительйым выходом, выделяют фракционированной перегонкой Более удобный способ основан на взаимодействии хлорангидрида кислоты с безводной синильной кислотой в присутствии пиридина [c.299]

    Отмечена флуоресценция сульфида кадмия, осажденного в микропробирке в присутствии цианида открываемый минимум 0,02 мкг СА мл, как при реакции с пиридином [393, стр. 236]. Предложено определение С(18 в присутствии меди и по вызываемому им тушению свечения флуоресцеина на фильтровальной бумаге при соотношении Си С(1 = 100 1 чувствительность обнаружения последнего соответствует рО около 5,2 (С = 6 мкг мл) [392, стр. 195]. На бумажных хроматограммах кадмий можно открывать по люминесценции в присутствии других катионов смесью 8-оксихи-нолина, кверцетина и салицилаламина [106] или 8-оксихинолина с койевой кислотой (открываемый минимум — 0,05 мкг) [45, стр. 148] используют также хроматографирование на бумаге, пропитанной одним 8-оксихинолином [149]. Из других люминесцентных реакций описано открытие от 0,01 мкг d в кристаллофосфорах на основе ТЬОг при их облучении конденсированной искрой между вольфрамовыми электродами [45, стр. 138]. Вольфрамат кадмия дает ярко-желтую, а его нитрат фиолетово-синюю флуоресценцию [539]. [c.47]

    Поскольку ион N-бензоилоксихинолиния реагирует с цианидами в реакции Генце, он должен реагировать с другими нуклеофильными реагентами. Реакции можно представить аналогичными схемами. Найдено, что замещенные пиридины получаются с высоким выходом для производных хинолина данные отсутствуют. Общая реакция может быть представлена следующим образом  [c.173]

    ПpoдoлжитeJlЬнo ть и интенсивность света, получаемого при окислении фталгидразидов, изменяется в зависимости от особенностей применяемого окислителя или комбинации окислителей. Например, свет, появляющийся при окислении 5-аминофталгидразида красной кровяной солью, является слабым и непродолжительным, при окислении перекисью водорода—слабым и продолжительным, а при окислении смесью этих двух окислителей—ярким и кратковременным [831. Хемилюминееценция наблюдается при применении многих окислителей более всего она заметна при окислении перекисью водорода в присутствии ускорителя. Наиболее часто применяемыми ускорителями являются ионы железа, меди, марганца и других многовалентных металлов, а также их комплексы. По-видимому, ускоритель окисляет фталгидразид (или его перекись) и в свою очередь окисляется перекисью водорода. Восстановители—сернистый натрий, гидрохинон или цианиды—действуют как ингибиторы. Ацетон, пиридин или фенол также препятствуют появлению хемилюминесценции. [c.190]


Смотреть страницы где упоминается термин Пиридин цианидов: [c.65]    [c.113]    [c.326]    [c.711]    [c.764]    [c.100]    [c.434]    [c.444]    [c.532]    [c.29]    [c.100]    [c.224]    [c.621]    [c.1497]    [c.40]    [c.39]    [c.670]    [c.88]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.849 , c.850 ]




ПОИСК





Смотрите так же термины и статьи:

Цианиды



© 2024 chem21.info Реклама на сайте