Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нернста типов

    Электроды этого типа обратимы как относительно катиона (например, Ag+), так и относительно аниона (С1"). Здесь можно регулировать концентрацию С1" и только таким образом влиять на концентрацию Ag , а следовательно, и на электродный потенциал, используя уравнение Нернста. Таким образом, эти электроды практически являются электродами второго рода. [c.550]


    Дл концентрационных цепей уравнение Нернста (при условии отсутствия диффузионного потенциала) для электродов типа [c.203]

    К рассмотренным ранее равновесиям такого типа, как растворимость газов (закон Генри — Дальтона), растворимость труднорастворимых твердых веществ и закон распределения Нернста (разд. 23.3.6—23.3.8), мы уже не будем больше возвращаться. [c.283]

    Поскольку скорость электрохимической реакции определяется количеством частиц О и Н, принимающих или отдающих электроны в единицу времени, то в кинетические уравнения типа (46.9) должны входить не активности веществ О и Р, а их концентрации. Чтобы кинетические уравнения, содержащие концентрации со и с , не противоречили термодинамическому уравнению Нернста (46.5), необходимо принять (Л. И. Кришталик) [c.236]

    Уравнение аналогичного типа, в которое, однако, вместо активности входила концентрация ионов металла в растворе, было впервые получено В. Нернстом. Уравнение (VI. 13) — это частный случай уравнения Нернста для отдельного гальвани-потенциала. Таким образом, в условиях электрохимического равновесия на границе электрод — раствор типа (В) работа перенесения иона М + из металла в раствор или обратно равна нулю. Величина гальвани-потенциала Арф зависит от концентрации потенциалопределяющих ионов М + и также может быть сведена к нулю. Однако невозможность измерить гальвани-потен-циал не позволяет установить, при какой именно концентрации ионов М + А ф=0. [c.104]

    Величины электродных потенциалов зависят от концентрации всех компонентов, участвуюш,их в окислительно-восстановительной полуреакции. Зависимость эта выражается уравнением Нернста (VI.21). Стандартная э. д. с. для цепей типа (3) и (И) называется стандартным электродным потенциалом. Если некоторые компоненты окислительно-восстановительных полуреакций являются твердыми веш,ествами, то их химический потенциал не изменяется в ходе реакции и учитывается стандартным электродным потенциалом. [c.116]

    Уравнения типа (13.11) для любого электрода получили название уравнений Нернста. Они характеризуют потенциалы соответствующих электродов, абсолютные значения которых из-за неопределенности значения в уравнениях (13.2) и (13.3) определить невозможно, тогда как определение разности потенциалов возможно и имеет наиболее упрощенный вид, если электрод сравнения является нормальным (т. е. концентрация электролита в нем равна [c.144]

    НЫХ элементов (штифт Нернста) или карборунда, накаленный добела (или докрасна) электрическим током. Пучок света направляется и фокусируется в точке размещения образца зеркалами. Схема (рис. 32.3) ИК-спектрометра во многом сходна со схемой спектрофотометра видимой и ультрафиолетовой области. Здесь также с помощью системы зеркал (М1 и Мг) световой поток разделяется на два строго одинаковых луча, один из них пропускается через кювету с исследуемым веществом, другой — через кювету сравнения. Прошедшее через кюветы излучение поступает в монохроматор, состоящий из вращающейся призмы, зеркала и щели и позволяющий выделять излучение со строго определенной частотой, а также плавно изменять эту частоту. Оба луча встречаются на зеркальном секторе М3. При вращении зеркала в монохроматор попеременно попадают либо отраженный опорный луч, либо прошедший через прорезь луч от образца. Кюветы и окна для защиты детектора, как и призма монохроматора, выполняются из отполированных кристаллов минеральных солей (табл. 32.1), пропускающих инфракрасный свет. В современных приборах призма заменяется дифракционной решеткой, позволяющей значительно увеличить разрешающую способность спектрометров. Для фиксации количества поглощаемой веществом энергии используют два типа детекторов, действие которых основано на чувствительности к тепловому действию света или на явлении фотопроводимости. [c.760]


    Э.д.с. не зависит от стехиометрических коэффициентов уравнения, поэтому в расчетах, связанных с использованием стандартных редокс-потенциалов, они не учитываются. Однако изменение свободной энергии Гиббса АС [см. уравнение ( 11.21)] зависит от числа электронов, участвующих во взаимодействии, а следовательно, и от стехиометрических коэффициентов в уравнении реакции. Гальванические цепи подобного типа (рис. 84) называются редокс-цепями с неактивными (инертными) электродами. Величины редокс-потенциалов определяются природой раствора, соотношением концентраций окисленной и восстановленной форм и температурой. Эта зависимость количественно выражается уравнением Нернста, которое для редокс-систем имеет вид [c.180]

    Фишер [88], отождествляя отношение величин активностей с отношением относительных искажений решетки после пластической деформации, экспериментально проверил зависимость по Нернсту 044), подставив вместо й 1й" отношение деформаций решетки, определенных рентгенографическим путем. Он нашел удовлетворительное согласие для структур электролитической меди трех типов. [c.95]

    В общем случае редокс-систем число уравнений электрокапиллярности и соответственно число уравнений типа (20) и (21) определяется числом независимых переменных в уравнении Нернста, выражающем условия равновесия системы. Очевидно, что из уравнений (18) и (19) можно получить системы соотношений, подобных (11)—(14). [c.220]

    Подстановкой (6.32) в уравнение Нернста для серебряного электрода получим выражение для потенциала электрода этого типа  [c.198]

    Уравнения типа (1.21) являются основным результатом гидродинамической концепции диффузионного слоя, развивающей и уточняющей теоретическую модель Нернста. Действительно, последняя предполагает Vx = Vy = О, а из уравнения (1.18) следует = [c.17]

    Этот раздел главы касается специфических примеров различных типов термодинамических расчетов, в которых используются значения стандартных потенциалов и уравнение Нернста. [c.286]

    Уравнения Нернста типа (6.1>—(6.5 ) и т.д. для окислительно-восстановительных потенциалов иногда называют уравнениями Нернста— Петерса или просто уравнениями Петерса. Уравнения этого типа, выраженные через концентрации, а не через активности, впервые вывел для электродных потенциалов немецкий физико-химик Вальтер Нернст в 1888 г. (тогда понятие активность еще не было известно) на основании своей осмотической теории элеиродных потенциалов. Р. Петерс, сотрудник известного немецкого физико-химика В. Оствальда, показал в 1889 г. применимость уравнения Нернста дш1 окислительно-восстановительных систем. [c.154]

    Формула Нернста справедлива для электродов первого рода, и область ее применения ограничена электродами этого типа. Необходимо, однако, отметить, что эту ограниченность не следует считать непреодолимым недостатком теории Неристз. Так, например, Петерс (1898) показал, что, используя основные представления Нернста, можно получить согласующиеся с опытом уравнения для редокси-электродов. Идеи Нернста былу развиты в работах Батлера (1924), которому удалось кинетическим путем вывести уравиения применительно к различным типам электродов. [c.220]

    Электродный потенциал - один из основных электрохимичесз-ких параметров, измерение которого составляет суть метода потенциометрии, - был предметом многочисленных исследований. Впервые в 1889 г. В. Нернст вывел термодинамическую зависимость э.д.с. от концентрации ионов в растворе. В настоящее время под термином "электродный потенциал" понимают э.д.с. электрохимической цепи ( ), составленной из стандартного водородного электрода и электрода, представляющего любую другую окислительно-восстановительную полуреакцию. Таким образом, данная формулировка включает два основных типа электродов электроды, функционирующие на основе а) электронного и б) электронно-ионного равновесия, иными словами, электроды, обладающие электронной и смешанной (электронноионной) проводимостью. Однако необходимо принять также во внимание третий тип, а именно электроды, перенос зарядов в которых осуществляется за счет ионов, т.е. электроды с ионной проводимостью. По этому принципу функционируют так называемые мембранные электроды, которые рассматриваются в разделе "Ионометрия". [c.20]

    Применяя значение АЕ° окислительно-восстановительной реакции, можно рассчитать ее константу равновесия. Для суммарного процесса типа Ох,- --f-Reda Redl+ 0x2 уравнение Нернста (при 298 К) имеет вид [c.153]

    ТО зависимость Е от 1 а также можно выразить с помощью выражения типа (6.12), но потенциал электрода в этом случае будет зависеть от активности мешающего иона (и опять-таки с нернстов-ским наклоном электродной функции). [c.177]

    К электродам с анионной функцией относятся мембраны, которые в качестве ионитов содержат комплексы положительно заряженных переходных металлов с нейтральными органическими лигандами, например с о-фенантролином. Комплексные соли типа МЬз(КОз)2, где L - лиганд, функционируют как анионообменники. На их основе разработаны электроды, селективные к ионам IO4 , NO3 , BF4 , СГ. В частности, электрод на основе трис-фенантролиновых комплексов применяется для определения нитрат-ионов. Абсолютная величина градиента ионной функции такого электрода соответствует теоретическому значению, рассчитанному по уравнению Нернста для электродов, обратимых по отношению к однозарядным ионам  [c.204]


    Согласно данным Иетса и Хили [191], кремнезем представляет исключение среди других коллоидов в отношении зависимости поверхностного заряда от pH и общей величины емкости двойного электрического слоя. Указанные факторы оказываются гораздо более высокими для кремнезема по сравнению с другими коллоидными системами, для которых была развита приемлемая теория, основанная на уравнении Нернста. Перрам [187] предположил, что при высушивании поверхность такого кремнезема покрывается слоем геля, обладающего микропо-рами, доступными для ионов, но не для азота или каких-либо других молекул. Йетс и Хили на основании, своих исследований по осаждению кремнезема (типа ВОН) пришли к аналогичным выводам. Они также внесли коррективы в кривые потенциометрического титрования при pH >9 с учетом ионизации растворимого кремнезема. Подобные исследования были [c.484]

    Возникают сложности при транспортировке исходных компонентов к месту реакции. Затруднения связаны с необходимостью поддержания значений рабочих параметров (например, давления и температуры газов) в яо-статочно узких диапазонах, обеспечивающих равномерный подвод ко всем элементам и в особенности равномерное распределение исходных продуктов внутри ТЭ. Неизбежные потери, возникающие при реализации заданных условий, входят в общие необратимые потери ЭХГ и согласно уравнению Нернста пропорциональны логарифму отношения исходного давления к давлению в месте реакции. До сих нор не существует надежного метода расчета этих потерь и, что самое важное, не существует методов их оптимизации в системе всей станции. С точки зрения газо- и гидродинамики мы имеем дело со сложными и малоизученными течениями в щелях при малых числах Не. С точки зрения общих идей переноса энергии и вещества мы имеем дело со сложной многослойной многокомпонентной системой, в которой нельзя пренебрегать эффектами второго порядка зависимостью коэффициентов переноса от концентраций, неравенствами между активностями и концентрациями компонентов, наличием эффектов типа термодиффузии и эффекта Дюфора, неизотермичностыо системы и т. п. [c.13]

    Химия жидкостной экстракции неорганических соединений в значительной степени определяется равновесием в многокомпонентных гетерогенных системах. Типы равновесий, наблюдающиеся в некоторых экстракционных системах, очень разнообразны. Различные количественные отношения, выведенные на основе законов Рауля и Генри, правиле фаз, законе распределения Нернста и законе действующих масс в различных формах, только частично удовлетворяют исследоваЛлей, некоторые из них приняты с большим приближением. [c.25]

    Таким образом, процедура качественного химического анализа представляет собой последовательное отделение анаштических групп с дальнейшим откры-таем входящих в них ионов систематическим или дробным методами. В ходе выполнения анализа как систематическим, так и дробным методами аналитик управляет поведением ионов в растворе, прежде всего их концентрациями. Такое управление возможно на основе равновесных реакций путем смещения равновесий. В распоряжении аналитика два типа рав1ювеспых процессов — гомогенные и гетерогенные равновесия. Гомогенные равновесия — это диссоциация — ассоциация, окисление — восстановление, гидролиз, нейтрализация, комплексообразование. Количественное описание этих равновесий основано на законе действующих масс и уравнении Нернста для окислительновосстановительного потенциала системы. К гетероген-ныи равновесиям относятся, прежде всего, растворение и осаждение осадков, экстракционное распределение между двумя жидкими фазами и хроматографические процессы. Расчеты положения гетерогенного равновесия возможны на основе констант межфазных распределений, в первую очередь правила произведения растворимости. [c.72]

    Нагрев с помощью электроэнергии может производиться также путем излучения в инфракрасном диапазоне. Простейшим устройством для этого является специально изготовленная лампа накаливания, стекло которой и объем содержат минимальное количество воды и остатков газа, например широко используются галогенные лампы типа КИМ. Недостатком лампы как источника инфракрасного излучения является большой световой поток в видимом диапазоне. Более совершенны в этом смысле специальные устройства, предназначенные для излучения в инфракрасном диапазоне глобар и штифт Нернста [1]. Инфракрасное излучение при подаче электроэнергии можно получить также с помощью устройств, использующих электролюминесцирующие вещества, однако интенсивность излучения таких устройств невелика. [c.167]

    Подобный вид коэффициента разделения, исходя из закона распределения Нернста, был получен в применении к адсорбции . ногими исследователями [300, 305]. Как отмечали Бюлов с соавторами [305], при адсорбционном разделении бинарных смесей наблюдаются три главных типа зависимости коэффициента избирательности от состава экспоненциальная зависимость, постоянство к и постоянство к в средней области составов, перехо-дящ ее на граничных участках в экспоненциальную зависимость. Анализ всех трех видов зависимости показывает, что причиной отклонения lg к от постоянного значения может быть отсутствие симметрии в ходе зависимостей 1д /а от состава [305]. Если в случае адсорбции из водных растворов взаимодействие адсорбированных молекул каждого компонента между собой однотипно зависит от степени заполнения адсорбционного пространства 0, например наблюдается диполь-дипольное отталкивание молекул адсорбатов полярных веш,еств [307], то можно ожидать, что при адсорбции таких смесей отношение коэффициентов активности компонентов в адсорбционной фазе будет меньше отклоняться от единицы, чем значения коэффициентов активности отдельных компонентов. [c.186]

    В то время, когда Зёренсен впервые определил шкалу pH, свойства электролитов и соотношения э. д. с. элемента и химической реакции, протекающей в нем, обычно выражались в соответствии с классической концепцией Аррениуса и Нернста, Разница в э.д.с. El—Е2 между двумя элементами типа (II.8) соответственно выражалась через концентрации ионов водорода ( h)i и (i h)2 для двух растворов  [c.29]

    При однородной толщине диффузионного слоя Нернста и смешанном диффузионно кинетическом контроле плотность тока элек родного процесса типа О + пе - К связана с перенапряжением уравнением [c.182]

    Большой вклад внес В. А. Каргин в разработку новых видов проточных обратимых электродов амальгамного типа. При разработке электродов подобного типа перед В. А. Каргиным и 3. Я. Берестневой возник вопрос о постоянстве амальгамных электродов в водных растворах и связанный с этим вопрос о применимости форд1улы Нернста к системе амальгама металла—водные растворы солей соответствующих металлов [9]. Это вопрос был изучен для амальгам Ва, А1, Ка и К было показано, что количественная оценка поведения амальгамных электродов в водных растворах его солей может быть описана законом Нернста. [c.19]

    При рассмотрении возможности применения методов второго типа важным становится вопрос об электрохимической обратимости. Электрохимическая реакция обратима, если окисленная и восстановленная формы настолько устойчивы, что реакция может быть проведена в любом направлении, и если скорость реакции настолько велика, что в любой момент времени выполняется соотношение Нернста. При прохождении тока через раствор, содержащий окисленную и восстановленную формы редокс-пары, активности обоих компонентов вблизи электрода изменяются. Считают, что реакция обратима, если потенциал электрода можно вычислить, подставляя в урав.нение Нернста мгновенные значения активности. Следовательно, электрохимическая обратимость зависит от типа наблюдения, а также от свойств изучаемых соединений. Одна и та же реакция может быть обратимой в одном типе опытов и необратимой или ктзиобратимой — в другом. Эта особенность очень важна, так как от нее зависит интерпретация экспериментальных наблюдений. [c.12]

    В очень селективных индикаторных электродах другого типа используются жидкие ионообмепники. В этих электродах внутренний серебряный электрод погружается в жидкий ионообменник, заряженный в форме ионов, которые нужно определять. Например, кальциевый электрод заполнен фосфорорганическим соединением, содержащим кальций. Ячейка с этим веществом прикрепляется к нижней части электрода при помощи диска из спеченного стекла или пластмассовой мембраны. Основное назначение диска или мембраны — предохранить ионообменник от растворения в анализируемом растворе. Было показано, что действие такого электрода подчиняется уравнению Нернста до концентрации кальция М и что электрод достаточно избирательно реагирует на изменение концентрации ионов кальция. Электроды такого типа были разработаны для определения хлорида, нитрата, перхлората, тетрафторбората, кальция, меди, а также для определения жесткости воды (выраженной в концентрации двухвалентных катионов). [c.416]

    Для более детальной характеристики адсорбции водорода кривые заряжения скелетных платино-иридиевых катализаторов согласно уравнению Нернста удобно представить в форме изотерм адсорбции водорода в координатах 1п Рн 0 . Характерно, что с ростом содер- кания иридия в сплаве тип изотермы все более приближается к типу иридия. Даже при небольших добавках иридия изотермы адсорбции бл11зки по форме к изотерме адсорбции водорода на чистом иридии. [c.129]

    Источником излучения в интервале 20—150 мк служит обычно штифт Нернста или глобар иногда используются в лабораторных исследованиях угольная дуга, сетка Ауэра, платиновая лента, покрытая слоем тория. Однако для установки в спектрофотометрах, выпускаемых промышленностью, приемлемыми оказались только первые два типа источников, эффективных вплоть до длин волн порядка 80 мк, далее же следует использовать ртутную лампу высокого давления. Она обычно представляет собою кварцевую трубку, заполненную парами ртути. В процессе разряда температура паров ртути повышается до 1200° К, а давление достигает нескольких атмосфер. Есть основание полагать, что излучение с длиной волны короче 50 мк исходит от зон, прилегающих к стенкам кварцевой трубки, а длинноволновое — от внутренних зон разряда. Излучение с длиной волны выше 300 мк составляет 70—80% всего излучения разряда. Приемники — металлические и полупроводниковые болометры, а также оптикоакустические приемники. В последнее время начинают все более широко применяться приемники, работающие при температурах жидкого азота и гелия угольные болометры, германиевые болометры и малоинерционные приемники из антимонида индия. [c.277]


Смотреть страницы где упоминается термин Нернста типов: [c.8]    [c.329]    [c.47]    [c.345]    [c.34]   
Очерк общей истории химии (1979) -- [ c.9 , c.190 , c.219 , c.228 , c.249 , c.250 , c.257 , c.266 , c.267 , c.290 , c.300 ]




ПОИСК





Смотрите так же термины и статьи:

Нернст



© 2024 chem21.info Реклама на сайте