Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Предел диспергирования

    Оба этих рисунка подтверждают достаточную для инженерной практики достоверность предлагаемой модели для описания реального процесса диспергирования в условиях акустического воздействия. Действительно, с течением времени в результате взаимодействия частиц твердой фазы с кавитационными пузырьками происходит рост числа частиц вследствие их разрушения, и темп этого роста сдерживается процессами агрегирования (рис. 3.3). Параллельно, спустя период индукции (из-за непрерывного генерирования) число кавитационных пузырьков остается постоянным (рис 3.4). Незначительное снижение их числа связано с уже отмеченными при построении факторами. Тем не менее, это снижение в пределах времени диспергирования не может существенно сказаться на качестве целевого процесса. [c.125]


    Рассмотрим два предельных случая. В первом случае вследствие коагуляции устанавливается характерный для рассматриваемого аппарата диаметр частиц, не зависящий, в определенных пределах, от объемного расхода диспергированной фазы. Во втором предельном случае пренебрегается коагуляция и дробление частиц. В зтом случае остается постоянным по высоте аппарата поток числа частиц, но не меняется их диаметр. [c.245]

    На действующих битумных производствах установлены колонны, предназначавшиеся для других процессов нефтепереработки. Поэтому габариты колонн колеблются в широких пределах диаметр — от 2,2 до 3,8 м, высота — от 10 до 30 м большинство колонн имеет диаметр 3,4 и высоту 20—25 м. Колонны снабжены штуцерами для ввода и вывода сырья и битума, воздуха и газов окисления, люками-лазами и предохранительными клапанами (рис. 83). Толщина стенки колонны обычно равна 10—16 мм. Для диспергирования воздуха внутри колонны монтируется-маточник (рис. 84) для уменьшения закоксовывания его перфорируют, как и в случае кубов, в нижней части лучей. Число отверстий колеблется от 200 до 500 (больше отверстий в колоннах большего диаметра), их диаметр — 8—18 мм. [c.134]

    Работа экстракционной колонны существенно зависит от гидродинамических условий. Они определяют, в частности, скорости потока обеих фаз. Для сплошной фазы с напорным движением скорость можно подобрать в таких пределах, чтобы получить свободное движение диспергированной фазы. Скорость потока сплошной фазы вдоль колонны подвержена колебаниям вследствие присутствия капель. В сечениях, заполненных наибольшим количеством капель, эта скорость достигает максимума, а в сечениях с одной только сплошной фазой—минимума. Так как положение этих сечений постоянно подвергается изменениям, то скорость потока диспергированной фазы в определенном сечении колонны постоянно колеблется между максимальным и минимальным значением. Скорость диспергированной фазы [17, 18, 37, 47, 48,90, 123] относительно скорости сплошной фазы зависит исключительно от свойств обеих жидкостей и для соответственно малых капель может быть вычислена по закону Стокса  [c.301]

    В нормальных условиях работы (ниже точки захлебывания) размеры капель диспергированной фазы зависят в первом периоде от свойств жидкости и размеров отверстий в распылителе [64, 122], не изменяясь в широких пределах нагрузки этой фазы. С ростом нагрузки растет только количество капель без изменения их размеров. Для скорости истечения из отверстий до 0,33 м/сек. размеры капли можно определить из следующего эмпирического уравнения [64]  [c.302]


    Капли образуются в отверстиях распределителя, по которому жидкость подается в колонну. Скорость движения капелек диспергированной жидкости относительно стенок колонны зависит от вязкости, разности плотностей [уравнение (4-2)], а также от линейной скорости сплошной фазы. Чтобы получить возможно большую поверхность контакта фаз, в колоннах этого типа следует применять максимальные скорости потока сплошной фазы, так как при этом действительная скорость капелек Шд уменьшается [см. уравнение (4-9)] и вследствие повышенной удерживающей способности улучшается массообмен. Скорость фаз ограничивается пределом захлебывания [16, 32, 136]. Одной из зависимостей для скоростей потоков на границе захлебывания является уравнение [42]  [c.311]

    Диаметр выходных отверстий в распылителе, от которого зависит величина капель, находится в пределах 1,7—10,1 мм. Для малых капель объемные коэффициенты выше, так как больше поверхность контакта. Из хода кривых видно также, что с увеличением количества диспергированной и сплошной фаз (до известного предела) объемные коэффициенты массопередачи тоже увеличиваются. Для малых отверстий (1,7—2,9 мм) на рис. 4-4 виден максимум. Рост коэффициентов вместе с увеличением скорости фаз объясняется изменениями поверхности контакта. [c.313]

    Пульсация характеризуется двумя величинами, которые можно изменять в широких пределах частотой и амплитудой. Интенсивность пульсации ограничивается образованием эмульсии и отрывом столба жидкости от движущихся частей пульсатора (явление кавитации). При пневматической пульсации, кроме того, амплитуда уменьшается с увеличением частоты и для некоторых ее значений падает до нуля. Амплитуда пульсации в колонне отличается от амплитуды в пульсаторе, если эти аппараты разных диаметров, но ее легко рассчитать по объему хода пульсатора. С этой целью при--меняются также измерительные методы, основанные на разнице в электрической проводимости обеих жидкостей (сплошной фазы и диспергированной после слияния капель). [c.351]

    Размер мицелл находится в пределах 10—10 нм (нанометр), т. е. значительно меньще, чем размер диспергированных частиц в эмульсиях типа нефть в воде или вода в нефти (10 —10 нм). [c.186]

    Хотя разработка оптимальной структуры катализатора в деталях может изменяться в зависимости от конкретных систем и химических процессов, однако одно основное правило при этом применяется достаточно широко. Это правило отражает геометрическую взаимосвязь между средним размером кристалла хорошо диспергированного тугоплавкого стабилизатора, объемным соотношением спекающегося вещества и стабилизатора и средним размером кристалла спекающегося, вещества после спекания. Когда происходит хорошее смешение, без сегрегации обеих составляющих, и спекающееся вещество обладает малым начальным размером кристаллов, то (как показывает опыт — хотя и довольно приближенно) получается взаимосвязь типа, представленного на рис. 6. Чем меньше размер частиц диспергирующего вещества, тем меньше размер частиц спекающегося вещества после спекания, и чем меньше доля спекающегося вещества, тем меньшими получаются его кристаллы. Катализаторы имеют тенденцию изменять в очень широких пределах соотношение объема спекающегося компонента и объема диспергирующего — от отношения меньше единицы до отношения больше десяти. Кристаллы диспергирующего вещества для некоторых композиций часто очень малы (около 20 А). [c.39]

    В КОЛОННЫХ экстракторах с ситчатыми тарелками (рис. 1Х-22) может быть обеспечено диспергирование как легкой, так и тяжелой фазы. В последнем случае переливные патрубки 2 направлены вверх, а подпорные слои тяжелой фазы образуются над тарелками. Ситчатые тарелки I имеют отверстия диаметром 3 — 9 мм, расположенные по вершинам равностороннего треугольника с шагом 12 — 20 мм. Скорость движения дисперсной фазы через отверстия тарелки принимают в пределах 0,15 — 0,3 м/с. [c.321]

    При разделении эмульсий (см. рис. Х1У-2) ход расчета остается таким же, с той лишь разницей, что капелька диспергированной жидкости должна пройти путь меньший, чем Я — Яд, так как ей надо лишь пересечь слой "чужой" жидкости и добраться до "своего" слоя. Учесть это в расчете можно, используя другие пределы интегрирования в уравнениях (Х1У.5). Если во взвешенном состоянии находятся капельки тяжелой жидкости, то для обеспечения отстоя они должны пройти путь в пределах радиусов вращения от / о ДО если взвешены капельки легкой фазы — от Я до Я,. Радиус Я, поверхности раздела слоев обеих жидкостей можно определить из соотноше- [c.401]

    Перекрытие при помоши системы тяг щели в распределительном патрубке позволяет изменять перепад давления (в пределах 0,2-1,0 ат) и степень диспергирования эмульсии. При постоянной щели (шириной 5-8 мм) и максимальной производительности аппарата обеспечивается перепад давления [c.50]

    При исследовании на нижнем пределе масштаба исследования, т. е. на уровне предельных частиц, необходимо охарактеризовать локальную структуру. Например, в случае диспергирования частиц технического углерода следует определить, являются ли частицы агломератами или индивидуально диспергированными частицами. Этот фактор может существенно влиять на химические свойства (например, на погодостойкость полиэтилена, содержащего технический углерод) и на механические свойства полимеров. Важность исследования локальной структуры в большой степени зависит от функционального назначения диспергируемой фазы. Локальную структуру изучают с помощью либо прямого микроскопического анализа, либо других доступных методов, позволяющих исследовать структуру на уровне предельных частиц [7]. [c.190]


    Приведенные выше факты даже качественно далеко не исчерпывают многообразие экспериментальных результатов по зависимости А = А (с). Для более сложных по своему строению и более высокомолекулярных веществ изотермы А = А (с) имеют более сложный вид. Это вызвано прежде всего мицеллообразованием (агрегированием молекул в объеме в более крупные частицы), наступающим при повышении концентрации раствора выше определенного предела. При наличии мицеллообразования объемная концентрация молекулярно-диспергированной части поверхностно-активного вещества не повышается с ростом его общей концентрации, поскольку прибавление новых, дополнительных количеств вещества идет только на образование мицелл. В результате поверхностная концентрация и А остаются постоянными и не зависят от изменения полной объемной концентрации. Иногда процесс мицеллообразования может быть полностью или частично необратимым, и тогда может наступать пересыщение по отношению к молекулярно-дис- [c.114]

    Размер шариков дисперсной фазы в эмульсиях колеблется в широких пределах от таких, которые можно рассмотреть даже невооруженным глазом, до шариков коллоидной степени дисперсности. Размер шариков дисперсной фазы в эмульсиях в большей части составляет 0,1—10,0 мкм. Поэтому их можно наблюдать в поле обычного оптического микроскопа. Эмульсии весьма распространены в природе и технике. К ним относятся, например, молоко, яичный желток, нефть, в которой всегда содержатся в диспергированном виде вода, млечный сок растений — каучуконосов, охлаждающие эмульсии, которые используются при холодной обработке металлов. В производстве полимеров используется эмульсионный метод полимеризации. Если процесс полимеризации может происходить только при контакте мономера с катализатором, который растворяется в другой жидкости, то создают соответствующую эмульсию. При этом существенно увеличивается поверхность соприкосновения мономера с жидкостью, содержащей катализатор, и во столько же раз увеличивается скорость реакции полимеризации. [c.448]

    Масштабный фактор объясняет резкое повышение трудности измельчения при переходе ко все более и более мелким крупинкам (тонким фракциям). Процесс грубого измельчения можно представить себе как, в основном, развитие имеющихся дефектов структуры. При переходе же к более мелким крупинкам дефекты в них становятся все более редкими, а сами крупинки — все более прочными. Практический предел тонкого измельчения — механического диспергирования — составляет от 1 до 0,1 мкм. Дальнейшее измельчение должно сводиться к образованию новых дефектов в почти идеально прочных крупинках и к их последующему развитию. [c.183]

    Полагая в наиболее характерной коллоидной области б = 10- см, находим сг С 0,01 эрг смг . Такое облегчение адсорбционным воздействием и в пределе самопроизвольное диспергирование (пептизация) частичек, характерное, например, для натриевого или литиевого монтмориллонита в воде, приводит к возникновению высокодисперсной коллоидной фракции частичек в суспензии, что необходимо для коагуляционного структурообразования при низком содержании твердой фазы в системе. [c.186]

    П. А. Ребиндер установил явление понижения сопротивления твердых тел упругим и пластическим деформациям, а также механическому разрушению под влиянием адсорбции поверхностноактивных веществ окружающей среды. Явления адсорбционного облегчения деформаций или адсорбционного понижения твердости твердых поверхностей обусловлены облегчением развития микрощелей в поверхностных слоях деформируемого или разрушаемого тела. Адсорбционные слои из поверхностно-активных молекул, возникающие на поверхности микрощелей, отличаются способностью к миграции по поверхности в глубь микрощелей, способствуя, таким образом, их развитию и нарастанию деформации, а вблизи предела прочности — и разрушению твердого тела (эффект расклинивающего давления). К адсорбции чувствительны только те микрощели, устья которых выходят на поверхность кристалла, а тупиковые части остаются внутри тела. В процессах измельчения твердых тел адсорбционные слои облегчают диспергирование и способствуют значительному повышению степени дисперсности. [c.295]

    При диспергировании твердых фаз частицы под воздействием усилий со стороны мелющих тел претерпевают сначала упругую, затем пластическую деформацию, пока в каком-либо сечении напряжение не превысит предела прочности материала. В результате механического воздействия происходит разделение частиц на более мелкие, которые разлетаются с определенной скоростью. [c.252]

    Приготовление и термо-механическое диспергирование загустителя. С омыления жиров или нейтрализации жирных кислот начинается процесс получения смазок. После окончания омыления из мыльно-масляной суспензии полностью (для гидратированных кальциевых и кальциево-натриевых смазок до определенного предела) удаляют влагу. При производстве смазок на сухих мылах мыльно-масляную суспензию получают непосредственным смешением компонентов в заданных соотношениях. Затем суспензию нагревают до получения однородного расплава. Известны способы получения смазок, когда мыльномасляную суспензию нагревают при сравнительно невысокой температуре — проводят лишь набухание мыла в масле. Такой способ получил название холодной варки или низкотемпературного процесса производства. [c.97]

    Скорость окисления возрастает при повышении содержания рас-творенкого кислорода (т. е. при увеличении давления) и улучшении эффекткв юсти смешения воздуха (или кислорода) с расплавленным парафином. Процесс проводят при давлении от 1 до 21 ат в колоннах, через нижнюю часть которых барботирует воздух, диспергированный пористыми керамическими плитами. Условия реакций могут изменяться в широких пределах. Иногда применяют растворимые катализаторы — стеараты цинка и марганца, нафтенат кобальта и, чаще всего, перманганат ка.гия (около 0,1%). [c.155]

    Это — распределительное устройство, представляющее собой несколько перфорированных горизонтально расположенных труб. Суммарное сечение отверстий должно обеспечить подачу в куб заданного количества воздуха, а диаметр отверстий — необходимое диспергирование воздуха. Обычно диаметр отверстий колеблется в пределах 8—1в мм. Если отверстия расположены на верхней части трубок-лучей маточника, то битум, заполняющий эти трубки в конце каждого цикла окисления после прекращения подачи воздуха, в последующем цикле работы не вытесняется воздухом полностью. Битум, накапливающийся в мнжней части трубок, подвергается глубокому окислению, и маточник довольно быстро закоксовывается. Для предупреждения закок-совывания маточника отверстия выполняют в нижней части или в глухих концах трубок (торцевые отверстия). В этом случае битум, попадающий в трубки в конце цикла окисления, практически полностью вытесняется в куб воздухом в начале следующего цикла, а маточник закоксовывается гораздо медленнее. [c.128]

    Экспериментальное исследование растворимости ацетилена в жидком кислороде было начато в 1937 г. И. П. Ишкиным и П. 3. Бурбо [36]. Методика их опытов заключалась в фильтрации суспензии твердого ацетилена в жидком кислороде, полученной диспергированием газообразного ацетилена в жидкий кислород. В результате многократных определений количества ацетилена в фильтрате были получены одинаковые результаты. Было установлено, что растворимость ацетилена в жидком кислороде при 90° К лежит в пределах 4,1—5,7 см 1дм и в среднем составляет 4,8 см /дм (6,0 микродолей). Растворимость ацетилена в жидом азоте составляет примерно 2,78 см 1дм . [c.86]

    В случае, когда процесс массопередачи лимитируется сопротивлением дисперсной фазы, переход от распылительной колонны к каскаду распылительных колонн — тарельчатой колонне — связан с выбором оптимального расстояния между тарелками. На первый взгляд наиболее выгодным с точки зрения массообмена является минимальное расстояние между тарелками, так как уменьшение времени контакта (расстояние между тарелками) приводит к увеличению среднего значения коэффициента массопередачи. Однако уменьшение расстояния между тарелками выгодно лишь до определенного предела. Дело в том, что в тарельчатой колонне как процесс массопереноса, так и химическая реакция происходят не во всем объеме между тарелками. Диспергирование на каждой из тарелок осуществляется нод действием разности удельных весов фаз, что требует наличия на каждой тарелке слоя скоагулировавшейся дисперсной фазы. Объем, занимаемый скоагулировавшейся дисперсной фазой, не принимает участия в процессе массопередачи и слабо участвует в химическом взаимодействии. При этом слой диспергируемой жидкости [c.257]

    Установлено, что слишком большие скорости движения жидкостей приводят к ухудшению массообмена, поэтому во многих случаях может оказаться выгодным увеличение скорости только одной фазы. При увеличении количества диспергированной фазы размеры капель и скорость их отстаивания остаются вначале без изменений, количество же капель в колонне возрастает, следовательно увеличивается поверхность контакта и улучшается объемный массообмен. Если количество диспергированной фазы превышает некоторый предел, массообмен ухудшается. Это происходит в связи с тем, что при больших нагрузках и слишком больших скоростях истечения из отверстий распылителя капли имеют неодинаковые размеры и, соответственно, разную скорость, в результате чего часто сталкиваются и сливаются (т. е. уменьшается поверхность контакта). Если истечение жидкости из распылителя происходит нормально, то увеличение количества диспергированной фазы приводит в конце концов к захлебыванию колонны. Влияние количества диспергированной фазы тем заметнее, чем меньше диаметры отверстий для истечения. Подобные зависимости существуют и для сплошной фазы. При увеличении количества последней уменьшается скорость отстаива- / ния капель, увеличивается удерживающая способность, в этих условиях массообмен улучшается. При больших количествах сплошной фазы мелкие капли могут слиться в крупные, которые отстаиваются скорее, что уменьшает удерживающую способность и поверхность контакта и снижает коэффициенты массопередачи. [c.309]

    Гидродинамические условия в колонне с насадкой существенно отличаются от гидродинамики пустотелых колонных экстракторов. Зависят они прежде всего от смоченности насадки [1, 7, 8, 44, 48, 49]. Если сплошная жидкость лучше смачивает насадку, чем диспергированная, то поток будет иметь тот же характер, что и в колоннах без насадки, и вторая фаза будет протекать через колонну в виде капель, которые катятся по поверхности. Если жидкость, которая вводится через распылитель, обладает лучшей смачиваемостью, то такая жидкость образует на насадке либо сплошные, либо прерывистые пленки. В этом случае обе жидкости будут сплошными фазами. Измененные условия потока характеризуются, между прочим, тем, что массообмен не зависит тогда в широких пределах от количества стекающей по насадке жидкости и только незначительно зависит от скорости потока. Жидкость, которая вводится через распылитель, в этом случае называется условно диспергиро- [c.321]

    В промьшшейной практике дисперсность нефтяных эмульсий изменяется в широких пределах и зависит от условий их получения. Экспериментально степени дисперсности эмульсий обычно определяют микроскопическими или седиментащюнным методом. Мы считаем микроскопический метод менее точным, так как измерение происходит на очень малых участках, ограниченных полем видимости микроскопа. Кроме того, при микроскопическом анализе эмульсии нельзя избежать ошибок, обусловленных испарением жидкости в тонком слое, а также деформацией частиц покровным стеклом. Более точные результаты степени дисперсности можно получить при анализе эмульсии седиментационным методом, разработанным Н. А. <№гуровским и основанным на измерении скорости оседания (или всплывания) диспергированных частиц, зависящей от их величины. [c.20]

    Явление электрического диспергирования нефти весьма нежелательно, так как при этом затрудняется слияние водяных капель, а образующиеся высокодисперсные капельки очень трудно удаляются из нефти. Этот процесс усиливается с повышением напряженности электрического поля. Верхним пределом допустимой напряженности поля можно считать 4—5 кв1см. [c.49]

    Из формулы (IV. 120) следует, что при 100%-ной селективности мембрана пропускает только растворитель. Как правило, увеличение концентрации фильтруемой системы приводит к снижению проницаемости и селективности мембраны. В то же время С и ср увеличиваются с повыщением давления, конечно же, до определенного предела. Так как через мембрану преимущественно проходит растворитель, то у ее поверхности значительно увеличивается концентрация растворенных или диспергированных веществ. Это явление называется концентрационной поляризацией. Оно может привести к снижению скорости процесса, к осаждению растворенного вещества и коагуляции дисперсной фазы, к порче мембраны. Основной метод борьбы с концентрационной поляризацией — [штенсивиое пере.мепшванпе фильтруемой системы. [c.244]

    Наибольшим разнообразием факторов устойчивости и методов коагуляции отличаются дисперсные системы с жидкой дисперсионной средой. Для них характерны все ранее рассмотренные как термодинамические, так и кинетические факторы устойчивости, поскольку только в жидких средах наблюдается диссоциация электролитов, вызывающая образование двойных электрических слоев, и сольватация, при которой возможно резкое снил ение межфазного натяжения. В жидких средах можно наблюдать адсорбционное понижение поверхностной энергии до минимальных значений, компенсирующихся энтропийным расталкиванием. В результате этого становится возможным самопроизвольное диспергирование нли образование гетерогенных дисперсных систем, устойчивых практически неограниченное время. В жидких средах возможно изменение плотности фаз в широких пределах, что, например, позволяет значительно легче достигать термодинамической устойчивости по отношению к седиментации (седиментацион-по-диффузионное равновесие). Для дисперсных систем с л<идкой дисперсионной средой, безусловно, возможно регулирование и кинетических факторов устойчивости к коагуляции и седиментации (изменение вязкости среды). [c.342]

    Распределение эмульгатора между двумя жидкими фазами способствует образованию таких эмульсий (Вудмен, 1929). Эмульсии, приготовленные с монолауратом сорбитана (рис. 111.34), диспергированном в воде (Шерман, 1963) или распределенном между водной и масляной фазами (Бехер, 1958), относятся к эмульсиям типа М/В в пределах широкой области концентрации дисперсной фазы. При объемной доле 0,6 и 1,5—4,5 вес. % эмульгатора еще получаются эмульсии М/Б. Если концентрация эмульгатора увеличивается до 6,0%, то эмульсия будет множественной. При повышении объемной доли масла концентрация эмульгатора возрастает, так как объем воды уменьшается. Это сопровождается переходом свободного [c.189]

    Проведенные лабораторные эксперименты показали, что диспергирование ХА до 20-30 мкм приводит к увеличению выхода ДХГ. Концентрацию раствора ДХГ можно увеличить до 60 г/л при малом выходе побочных продуктов за счет его циркуляции. Повышение содержания Na l в пределах до 100 г/л не оказывает сильного влияния на выход ДХГ [207, 208]. [c.91]

    Первоначально набухание характеризовали на основании визуальных наблюдений без применения замерных устройств. Из множества методик виауального определения величины набухания следует выделить методику, предложенную М. X. Фишером, заключающуюся в следующем. Диспергированное вещество помещается в градуированный сосуд, и фиксируется его начальный объем. Затем в сосуд вводится жидкость и по истечении определенного промежутка времени измеряется объем набухшего вещества. Отношение объема набухшего вещества к его начальному объему по данной методике характеризуется как величина набухания. Поскольку величина пористости пробы одного и того же вещества при подобных определениях может варьироваться в широких пределах, получаемые величины дают трудносходимые результаты, а порой и отрицательное набухание. Ф. Ф. Лаптев и А. Г. Кирьянова предложили для определения набухания использовать резиновые пленки, в которые помещаются цилиндри- [c.18]

    При ликвидации последствий разлива с использованием для сбора нефти сорбентов в диспергированной форме (каучуковая крошка, порошок фенолформальдегидной смолы, гранулы полистирольного пенопласта и др.) общим их недостатком можно считать низкую технологичность в связи со сложностью равномерного размещения диспергированного сорбента по загрязненной нефтью поверхности водоема (особенно при низкой плотности сорбента, который может произвольно рассеиваться ветром) и последующего его извлечения из воды. Как правило, эти работы требуют существенных, затрат ручного труда с использованием ковшей, лопат, металлических перфориро/занных листов, сеток и иных подручных средств. Механизация процесса извлечения из воды слоя диспергированного сорбента с поглощенной нефтью возможна при использовании ковшовых перфорированных элеваторов или сетчатых транспортеров, однако при этом неизбежно возвращение в водоем части поглощенной сорбентом нефти за счет ее самопроизвольного стока под действием силы тяжести (это явление неизбежно и при ручном сборе отработанного сорбента). Кроме того, возможный прорыв части сорбента за пределы боновых ограждений, локализующих нефтяной разлив, например, за счет уноса сорбента ветром, может привести к вторичному загрязнению окружающей среды уже самим сорбентом, слабо разлагающимся в природных условиях. [c.73]

    Одна из важных проблем получения и использования эмульсий — обеспечить их устойчивость во времени, т. е. стабилизировать. Из-за термодинамической неустойчивости эмульсии разрушаются благодаря стремлению капель диспергированной жидкости к слиянию. Такое слияние (к о а л е с ц е н ц и я) в пределе приводит к полному расслаиванию двухфазной системы. Получение устойчивых эмульсий возможно в присутствии специальных стабилизирующих веществ, называемых эмульгаторами. Они образуют на поверхности капель диспергированного вещества адсорбционные защитные пленки, препятствующие коа-лесценции. [c.79]

    Переходя непосредственно к получению коллоидных систем методом диспергирования, следует указать, что при простом механическом дроблении или растирании образуются обычно порошки, размер частиц которых не меньше нескольких микрометров. Этот предел обусловен тем, что при механическом измельчении [c.233]

    Адсорбционное воздействие окружающейГ поверхностно-активной среды, понижая поверхностную энергию, облегчает развитие новых поверхностей, способствуя диспергированию, или в пределе (при сильном понижении поверхностной энергии почти до нуля) вызывает пептизацию, т. е. распад твердого тела под влиянием весьма малых внешних сил или только одного теплового (броуновского) движения. Кроме того, адсорбционные слои окружающей среды, проникая по сетке поверхностных дефектов деформируемого твердого тела двухмерной миграцией, стабилизуют эти дефекты, замедляя их обратное смыкание в период разгрузки. Это сильно понижает усталостную прочность твердых тел, их выносливость по отношению к периодическим (циклическим) нагружениям. Применение адсорбционно-активных сред с использованием радиоизотопов позволяет проследить кинетику развития сетки дефектов, начинающихся с поверхности деформируемого тела, и показать, что такая вторичная коллоидная структура определяет не только прочностные свойства, но может быть обнаружена и при достаточно малых напряжениях, где эта структура в ее развитии заметно влияет на упругие свойства твердых тел. [c.211]


Смотреть страницы где упоминается термин Предел диспергирования: [c.315]    [c.167]    [c.151]    [c.209]    [c.319]    [c.170]    [c.246]    [c.104]    [c.439]    [c.210]    [c.376]    [c.11]   
Механохимия высокомолекулярных соединений (1971) -- [ c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Диспергирование



© 2025 chem21.info Реклама на сайте