Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы метода нейтрализации

    При титровании мутных и окрашенных растворов методом нейтрализации флуоресцирующие индикаторы подбирают, сообразуясь с цветом испытуемого раствора. Так, например, для черных, синих и зеленых растворов цвет флуоресцирующего индикатора должен быть зеленым или синим и т. д. [c.156]

    Рабочие растворы метода нейтрализации 287 [c.287]

    Техника определений методом нейтрализации 14. Рабочие растворы метода нейтрализации [c.287]


    Рабочие растворы метода нейтрализации 289 [c.289]

    Для того чтобы можно было титровать не только сильные, но и слабые кислоты или основания, в качестве рабочих растворов метода нейтрализации употребляются обязательно растворы сильных оснований и кислот. [c.289]

    Отсюда видно, что главной разбавляющей примесью концентратов, выделяемых из сернокислотных растворов методом нейтрализации, является чаще всего железо. Оно может быть в значительной мере удалено фракционным отделением путем гидролиза, который протекает при более низком значении pH, чем начало гидролиза солей уранила. В некоторых схемах очистка растворов от железа не выделяется в самостоятельную операцию, а приурочивается к концу выщелачивания. Для более полного удаления железа его полностью окисляют до трехвалентного и затем осаждают водной суспензией окиси кальция или магния при соответствующем значении pH. [c.217]

    В целом методы нейтрализации диоксида серы обеспечивают высокую степень очистки газа. Недостатки этих методов — значительные затраты на оборудование и обслуживание (точную регулировку подачи компонентов, поддержание оптимальной pH поглотительного раствора, выделение конечного продукта), снижение температуры газа, что ведет к ухудшению рассеивания, п образование во многих случаях твердых отходов, идущих в отвал. [c.60]

    При нейтрализации двухосновной кислоты сильным основанием возможны два положения. Если первая ступень диссоциации двухосновной кислоты соответствует диссоциации сильной кислоты, а вторая ступень — диссоциации слабой кислоты, то титрование такой кислоты, например хромовой, протекает так же, как титрование смеси сильной и слабой кислот. Если же обе ступени диссоциации отвечают почти одинаковым по силе кислотам, то кривые титрования накладываются одна на другую, так как основание распределяется одновременно между обеими кислотами. В этом случае количественно определить содержание кислоты в растворе методом титрования невозможно, но определенная зависимость между количеством добавленного основания и значением pH раствора все-таки имеется и рассчитать эту зависимость можно. [c.508]

    I. Растворы для метода нейтрализации [c.304]

    Кислотно-основное титрование (иногда называется также методом нейтрализации). В качестве рабочих титрованных растворов (реактивов) применяют обычно кислоты и щелочи. Определять этим методом можно кислоты, щелочи, соли слабых кислот и соли слабых оснований, а иногда также вещества, которые реагируют с такими солями. Если в растворе содержится несколько компонентов, имеющих различные кислотно-основные свойства, нередко возможно раздельное определение таких компонентов в их смеси. Применение неводных растворителей (спирт, ацетон и т. п.), в которых степень диссоциации кислот и оснований сильно изменяется, позволяет расширить число веществ, которые можно определять титрованием кислотами или основаниями. -% [c.272]


    Этот метод имеет еще более важное значение для определения концентрации растворов различных методов объемного анализа. Так, например, в методе нейтрализации наиболее важным рабочим раствором является соляная кислота, в окислительно-восстановительных методах — серноватистокислый натрий и марганцевокислый калий. Эти растворы обычно устанавливают по различным исходным веществам (соответственно — по буре, по двухромовокислому калию и по щавелевой кислоте). Кроме того, можно установить (или проверить) нормальность этих растворов следующим образом. Берут смесь растворов йодистого и йодноватокислого калия и приливают к ней определенный объем рабочего титрованного раствора соляной кислоты. При этом выделяется йод в количестве, эквивалентном содержанию соляной кислоты  [c.289]

    Метод йодометрического определения кислот позволяет установить связь между рабочими растворами дзу.х методов объемного анализа методом нейтрализации и методом йодометрии. [c.416]

    Как уже было сказано, момент эквивалентности в методе нейтрализации определяется по pH раствора. В процессе титрования pH раствора изменяется и достигает расчетной величины, соответствующей точке эквивалентности. В объемном анализе для определения точки эквивалентности чаще всего применяют кислотно-основные индикаторы — вещества, которые меняют окраску в зависимости от pH раствора. [c.98]

    Другим примером вытеснительного титрования является определение ионов СОз -. Из этого следует, что при титровании по методу нейтрализации надо применять растворы щелочей, не содержащие карбонатов, иначе могут возникнуть ошибки. [c.326]

    Что такое рабочий (стандартный, титрованный) раствор Какие концентрации рабочих растворов обычно используют в методе нейтрализации  [c.81]

    Количество титранта, соответствующее точке эквивалентности, можно считать за 100 или за 0%. В последнем случае счет процентов ведут в обе стороны от нуля (считая за нуль точку эквивалентности). Проще всего по оси абсцисс откладывать число миллиметров прибавленного титранта. По оси ординат откладывают числовое значение показателя, характеризующего какое-либо свойство титруемого раствора, изменяющееся в процессе титрования. Например, в методе нейтрализации по оси ординат откладывают pH или рОН. [c.339]

    Положение начальной точки кривой титрования на оси ординат зависит от концентрации анализируемого раствора до начала титрования. Например, в методе нейтрализации начальная точка кривой титрования зависит от pH анализируемого раствора. Однако pH раствора в свою очередь определяется константой диссоциации анализируемой кислоты или основания. Для сильных кислот и сильных оснований, практически полностью диссоциирующих в растворе на ИОНЫ, положение начальной точки на оси ординат вычисляют непосредственно по их концентрации. Для слабых кислот и слабых оснований необходимо знать константу диссоциации. Например, константа диссоциации уксусной кислоты 1,86-10 Если имеем 0,1 н. раствор [c.340]

    В методе нейтрализации чаще всего готовят рабочий титрованный раствор соляной кислоты. Сначала готовят приблизительно 0,1 н. раствор кислоты и затем устанавливают его точную концентрацию по тетраборату натрия или другому веществу. Раствор НС1 точной концентрации нельзя приготовить непосредственным разбавлением концентрированной соляной кислоты (d=l,19, содержит 37% H I). Можно составить пропорцию, которая позволяет вычислить количество кислоты, необходимое для приготовления 1 л приблизительно 0,1 н. раствора (округлив грамм-эквивалент 36,46 г до 36,5 г)  [c.377]

    Потенциометрическое титрование в методах нейтрализации применяют для растворов кислот и оснований с константой диссоциации не меньше 10 ". Можно также титровать смеси двух кислот, двух оснований, многоосновные кислоты и основания, применяя платиновый индикаторный водородный электрод. [c.501]

    Кислотно-основное титрование часто называют методом нейтрализации. Это название псе же следует считать неудачным, так как по окончании титрования раствор оказывается нейтральным только в частных случаях. [c.172]

    Кислотно-основные реакции используют главным образом для прямого количественного определения сильных и слабых кислот и оснований или их солей. На таких реакциях основан метод кислотно-основного титрования (метод нейтрализации). В этом методе применяют в качестве реагентов растворы сильных кислот или сильных оснований — так называемые рабочие растворы. Возможны, например, такие определения  [c.22]

    Лурье Ю. Ю. Справочник по аналитической химии. М., Госхимиздат, 1962, 288 стр. В книге приведены таблицы факторов, величины эквивалентных и молекулярных весов важнейших соединений, данные о растворимости солей, константы диссоциации кислот и оснований, таблицы окислительных потенциалов и потенциалов полуволн, даны сведения об индикаторах для метода нейтрализации, окисления-восстановления, для метода осаждения и комплексообразования, приведены таблицы плотности растворов кислот и щелочей. Указаны методики приготовления буферных растворов. [c.383]


    Основными рабочими растворами метода нейтрализации являются раствор кислоты (обычно НС1 или HjSOJ и раствор щелочи (обычно NaOH или КОН). [c.249]

    Чтобы иметь возможность определить содержание различных кислот в растворах, приготовим другой основной рабочий раствор метода нейтрализации, а именно—титрованный раствор щелочи, например NaOH. [c.331]

    Методы нейтрализации диоксида серы. Эти методы основаны иа поглощеиип диоксида серы из газов растворами или суспензиями различных реагентов. [c.55]

    Реагенты, нейтрализующие сероводород,— медный или железный купорос, хлорное железо, каустическая сода, Т-66, Т-80, ВНИ-ИТБ-1. При сероводородной а1-рессии резко интенсифицируются коррозионные процессы, повышается аварийность, загрязняется атмосфера, возникает опасность отравления людей. Наиболее распространенным методом нейтрализации сероводорода является химический метод, т. е. введение в буровой раствор перечисленных выше реагентов. [c.60]

    Концентрацию определенного компонента раствора (как заряженного, так и незаряженного) можно контролировать потенциометричес-ки, если подобрать электрод, потенциал которого определяется реакцией, включающей этот компонент Проводя титрование анализируемого компонента, потенциометрически определяют конечную точку титрования по резкому изменению потенциала электрода в точке эквивалентности. Так, используя электрод, потенциал которого зависит от pH раствора, можно провести потенциометрическое титрование кислоты или щелочи по методу нейтрализации. Индифферентные электроды используются для титрования обратимых окислительно-вос-становительных систем (окислительно-восстановительное потенциометрическое титрование). Широко применяется также потенциометрическое титрование по методу осаждения или комплексообразования. В этом случае рабочий электрод должен быть обратим по отношению к компоненту раствора (чаще иону), который в процессе титрования образует осадок или комплекс. [c.123]

    В качестве индикаторов используются также вещества, которые в точке эквивалентности меняют свою структуру (вследствие изменения pH, окислительно-восстановительного потенциала системы или концентрации ионов), что сопровождается резким изменением светоиоглоще-ния раствора. Например, при титровании по методу нейтрализации с кислотно-основным индикатором в точке эквивалентности содержание определенной формы индикатора, поглощающей при выбранной длине болны, резко возрастает. При дальнейшем прибавлении титранта светопоглощение не изменяется (см. рис. 105, кривая 6). [c.267]

    Получают МеН2Р04 несколькими способами [10. Наиболее распространен метод нейтрализации Н3РО4 растворами до pH 4,5 с последующим упариванием до начала кристаллизации. [c.92]

    Для получения хлоридов рубидия и цезия часто, особенно в лабораторной практике, используют метод нейтрализации МегСОз соляной кислотой. Метод универсален, так как большинство солей рубидия и цезия можно перевести, обрабатывая их растворы щавелевой кислотой, в гидрооксалаты, а последние, прокаливая по (13), — в карбонаты [10, 29]. [c.103]

    Вскрытие серной кислотой (рис. И). Отвальный вольфрамитовый кек обрабатывают 4 ч 98%-ной серкой кислотой (Т Ж = 1 1 ) при 220°, что обеспечивает практически полный переход скандия в воднорастворимое состояние. При выщелачивании водой сульфатизи-рованной массы в раствор вместе со скандием (0,2—0,3 г/л) переходит большая часть железа (15—25 г/л) и марганца (15—20 г/л), а также 2г, Т1, ТЬ, РЗЭ, А1, ЫЬ, Та и другие примеси. Железо и алюминий отделяют карбонатным методом, основанным на способности скандия образовывать комплексные карбонаты с содой и карбонатом аммония, растворимые в избытке соответствующего карбоната. Для этого сернокислые растворы после нейтрализации аммиаком до pH 2, 30— 40-минутного кипячения и отстаивания декантируют. Осадок отмывают горячей водой, объединяют основной и промывной растворы. Перемешивая, вливают объединенный раствор в 20%-ный раствор соды или карбоната аммония равного объема. После двухчасового отстаивания раствор, содержащий скандий, отделяют от осадка, в котором концентрируется большая часть Ре, Мп, Са. Осадок подвергают трехкратной репульпации 10%-ным раствором соды. Из объединенного раствора (основного и промывного) после подкисления соляной кислотой до pH 1 и кипячения (для удаления СОа) осаждают 5с(ОН)з, прибавляя концентрированный раствор аммиака. Прокаливая гидроокись при 850°, получают 40—70%-ную ЗсаОз. Дальнейшую очистку от примеси Т1, 2г, ТЬ и РЗЭ проводят экстракционными методами с применением различных экстрагентов. От А1 и Ве рекомендуется отделять 5с, осаждая его в виде оксалата. Скандий в виде окиси чистотой 99,99% извлекается на 80—88% [17]. [c.37]

    Применение смешанных растворителей оказалось весьма важным в методах нейтрализации, или протолиза. В этом случае константы диссоциации кислот и оснований обычно значительно больше, чем в водной среде. Например, какую-нибудь аммонийную соль в водном растворе нельзя точно оттитровать раствором гидроокиси натрия или калия, так как диссоциация NH4OH мала. Однако при титровании в смешашюм растворителе, содержащем только 0% воды и 90% этилового спирта, в присутствии индикатора аммонийную соль можно точно оттитровать едкой щелочью. Константа диссоциации увеличивается в этих условиях. Поэтому интервал скачка титрования становится большим. [c.326]

    Раньше всех начали применять кислотно-основные индикаторы, или рН-индикаторы, в методах нейтрализации (ацидиметрия, алкалиметрия, галометрия). Это синтетические или природные соединения (наиример, лакмус), обладающие свойствами красителей и характеризуемые как слабые кислоты или слабые основания. Они специфически реагируют на изменение концентрации ионов водорода (гидроксония ОН 1,) или ионов гидроксила. Показатель титрования для них рТ = — 1ё1Н+1, где 1Н+1 обозначает концентрацию ионов водорода, при которой наблюдается середина интервала изменения окраски индикатора (в конце титрования). У мети ювого оранжевого рГ 4, фенолфталеина р79, у бромтимолового синего рГ . Слабые кислоты рекомендуется титровать, используя индикаторы, меняющие цвет в слабощелочном растворе, слабые основания — с индикаторами, меняющими окраску в слабокислом растворе. Величина р7 указывает pH, при котором данный индикатор наиболее пригоден. Окраска в титруемых растворах зависит от степени диссоциации молекул индикатора Н1п(1 —> Н + 1п(1  [c.332]

    Комплексонометрические, или металлоиндикаторы, применяют для установления конечной точки титрования в комплексометрии. Это тоже красители, как и индикаторы в методах нейтрализации. Образуют внутрикомплексные соединения с катионами металлов, менее прочные, чем соединения комплексонов с катионами тех же металлов. В конечной точке титрования наблюдается окраска металло-индикатора, вытесняемого из комплекса с катионами металла молекулами комплексона. Например, комплекс магния с эрохромом черным Т при pH 8—10 (в буферном растворе) красный, а свободный эриохром черный Т — синий. [c.333]

    Индикаторы при титровании обычно изменяют свою окраску не сразу, а в некотором интервале изменения концентрации реагирующих вещес1в в растворе. Это можно пояснить на примере индикаторов методов нейтрализации. Все цветные индикаторы этого метода представляют собой слабые органические кислоты или слабые органические основания, для которых цвет недиссоциированных молекул отличается от цвета их ионов. Такая теория предложена в 1894 г. В. Оствальдом. [c.334]

    Индикаторы, применяемые в методе нейтрализации, называются кислотно-основными. Применяются также универсальные индикаторы — смеси отдельных индикаторов. Они имеют расширенный интервал изменения окраски. Например, индикатор Кольтгоффа пригоден для pH от 2,0 до 10. Такие индикаторы применяют только для определения pH растворов. Для титрования по методу нейтрализации применяют или индивидуальные индикаторы, например, метиловый оранжевый, метиловый красный, нейтральный красный, фенолфталеин, тимолфталеин, или же смешанные индикаторы, позволяющие наблюдать весьма отчетливо переход окраски индикатора в конечной точке титрования. Например, к раствору метилового оранжевого с этой целью добавляют индигокармин. На протяжении всего титрования иидигокармин сохраняет синюю окраску. Поэтому в щелочной среде желтый цвет метилового оранжевого и синий цвет индигокармина, нак-ладываясь друг на друга, сообщают раствору зеленую окраску. В кислой среде метиловый оранжевый сообщает раствору красный цвет, а индигокармин продолжает оставаться синим. Наложение этих цветов сообщает раствору фиолетовую окраску. В точке перехода метилового оранжевого при pH 4,0 зеленый и фиолетовый цвета, как дополнительные, взаимно уничтожаются, но раствор становится не бесцветным, а светло-серым. Таким образом, смешанный индикатор в конечной точке титрования даст очень резкий переход окрасок от зеленой к серой, а в случае перетитрования — от серой к фиолетовой. [c.374]

    Определение карбонатов, боратов, тартратов и других солей методом нейтрализации. Простейиий случай — титрование растворимых и не растворимых в воде карбонатов. Наряду с этим бывает необходимо титровать карбонаты в присутствии щелочи. С определением карбонатов мы встречаемся и при определении жесткости воды методом нейтрализации. В первом случае титруют карбонаты щелочных металлов раствором соляной кислоты по метиловому оранжевому без подогревания. Метиловый оранжевый не чувствителен к углекислоте. При очень точном определении незначительное влияние углекислоты устраняют, прибавляя перед окончанием титрования к титруемому раствору соляную кислоту из бюретки. Затем нагревают раствор для удаления СО2 и дотитровывают его раствором соляной кислоты. В водных растворах карбонаты щелочных металлов гидролизуются  [c.385]

    Кроме 1еводного титрования с индикаторами метода нейтрализации, можно применять потенциометрическое, кондуктометрическое, амперометрическое титрования. Размеры капель неводных растворов значительно меньше размера капель водных растворов вследствие меньшего поверхностного натяжения. Это повышает точность титрования. Неводное титрование можно применять для редокспроцессов, комплексообразования и осаждения. [c.445]

    В аналитической практике хемилюминесцентные реакции используют 1) для установления точки эквивалентности при титровании мутных или окрашенных растворов (применение хемилюминесцентных индикаторов в методах нейтрализации, окисления — восстановления, комплексообразования) 2) для определения основных компонентов хемилюминисцентных реакций (хемилюминесцентного реактива, окислителя или восстановителя), 3) для определения микроколичеств ионов металлов, которые являются катализаторами или ингибиторами хемилюминесцентных реакций 4) для определения органических веществ, которые являются ингибиторами хемилюминесцентных реакций, по их окислению. [c.364]

    Полная (общая) обменная ем выражается в мг-экв г сухой смолы или мг-экв л набухшей смолы. Ог Лется методом нейтрализации — кислотного катионита раствором едко Ьчи (NaOH или КОН), а анионита — раствором кислоты (НС1 или HjS /статических и динамических условиях. [c.346]


Смотреть страницы где упоминается термин Растворы метода нейтрализации: [c.328]    [c.459]    [c.52]    [c.104]    [c.326]    [c.337]   
Количественный микрохимический анализ (1949) -- [ c.171 ]




ПОИСК





Смотрите так же термины и статьи:

Метод нейтрализации

Нейтрализация



© 2025 chem21.info Реклама на сайте