Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ биологических ткани

    Анализ твердых объектов (кусочки тканей, органов) требует дополнительных операций при подготовке пробы для выделения определяемых веществ из биологического материала. Для этой цели обычно используется экстракция р астворителем или отгонка с водяным паром. Полученный раствор в органическом растворителе или воде анализируется так же, как и жидкий биологический материал, однако при оценке точности анализа необходимо учитывать полноту выделения вещества из твердых тканей. Типичными случаями такого анализа являются определения ацетона [62], ароматических углеводородов [63] и хлорированных алифатических углеводородов [64] в твердых биологических тканях, пред- [c.134]


    Коллаген — это наиболее распространенный белок позвоночных на его долю приходится почти 50% сухого веса хрящей и около 30% твердого вещества кости. В биологических системах коллаген встречается в виде пучков линейных волокон, которые по прочности иа растяжение почти не отличаются от стальной проволоки. В свете столь важной роли коллагена не удивительно, что многие серьезные заболевания связаны с нарушением его синтеза. Пожалуй, наиболее известна цинга, которая вызывается дефицитом витамина С. При этом нарушается синтез коллагена, так как в отсутствие витамина С пролин не окисляется до 3- и 4-оксипролина. Оксипролины содержатся только в коллагене поэтому их анализ в тканях отражает концентрацию коллагена в этих тканях. [c.410]

    Анализ равновесной паровой фазы (АРПФ) применяют в тех случаях, ког а необходимо определить содержание летучих веществ в жидкостях или твердых телах, причем непосредственный ввод анализируемого вещества в хроматограф по каким-либо прич-йнам нежелателен. Такая ситуация возникает, например, при анализе различных биологических тканей и жидкостей (крови, мочи), природных и сточных вод, алкогольных и безалкогольных напитков, пищевых продуктов, полимерных материалов и т. д. Анализ равновесной паровой фазы в простейшем варианте заключается в том, что анализируемый объект помещают в герметичный сосуд, выдерживают при определенной температуре до установления равновесия между газовой и жидкой или твердой фазами, затем газовую пробу вводят в хроматограф. При этом достигаются по крайней мере три цели избегают ввода в испаритель хроматографа жидких или твердых проб, ксгорые могут разлагаться, сорбироваться на начальных участках колонки, вызывая появление дополнительных пиков или загрязняя систему ввода хроматографа и колонку (например, в случае биологических жидкостей) получают информацию о содержании веществ в газовой фазе над объектом, которое часто больше интересует исследователя, чем содержание летучих компонентов в самом объекте, например при изучении аромата пищевых продуктов, напитков или вредных веществ, выделяющихся из полимерных строительных материалов существенно снижают содержание в пробе основных компонен- [c.205]

    Этот метод используется во многих случаях. Например, в сфере металлургии его применяют для исследования природы частиц, присутствующих на границах зерен, и состава следов коррозии геологи используют его для изучения мельчайших включений в минералах сообщалось о проведении анализа биологических тканей на микроанализаторе. Хотя приборы этого типа дороги, изучение распределения элементов существенно необходимо во многих областях исследования, что оправдывает их приобретение. [c.101]


    Очень редко существует возможность анализа всего объекта в целом. Вместо этого обычно анализируют его малую часть, пробу. Объект анализа составляет нечто целое, параметры которого необходимо определить с помощью химического анализа. Объектом может быть, например, препарат крови, биологическая ткань, вода в озере, партия топлива в танкере, дневная продукция химического завода и т. д. [c.452]

    В большинстве случаев подготовка пробы для газохроматографического анализа проводится с целью удаления нелетучих компонентов, присутствие которых может осложнить определение летучих соединений. Поскольку газохроматографический анализ, несомненно, является более мощным методом разделения, чем фракционная дистилляция, применение последней ограничено, хотя она и используется для удаления основной массы растворителя после экстракции (см. далее), и предпочтительными методами предварительной обработки пробы являются простая дистилляция и дистилляция с паром. Таким образом, дистилляция проводится с тем, чтобы количественно извлечь летучие компоненты из самых различных проб, таких, как смолы, океанические осадки, биологические ткани и пищевые продукты. Если выделение пробы осуществляется только экстракцией, она может быть загрязнена нелетучими и высококипящи- [c.73]

    Процесс развития животного из оплодотворенного яйца — одно из наиболее замечательных биологических явлений. Из первых, очень сходных между собой эмбриональных клеток в ходе всего нескольких клеточных делений возникают дифференцированные органы и ткани, такие, как печень, мозг, почки, кожа и эритроциты. Дифференцированные клетки характеризуются, как правило, высокоспециализированными биохимическими свойствами. Так, эритроциты содержат гемоглобин, тогда как в мышечных клетках в больших количествах образуются миозин и актин. В эндокринных клетках поджелудочной железы синтезируются инсулин и глюкагон, а в экзокринных-—пищеварительные ферменты, которые секретируются в пищеварительный тракт. В целом считается, что в клетках специализированных тканей одновременно транскрибируется не более 10% общего количества генов (исключение составляет ткань мозга см. разд. Б, 8). Методом химического анализа четко установлено, что специализированные клетки содержат нормальное количество ДНК, т. е. полный набор генов, но 90% этого количества не функционирует. [c.352]

    Агрохимия, биология, медицина, экология и криминалистика. Метод РФА широко используется для анализа почв, аэрозолей из воздуха, растений, пищевых продуктов, крови, биологических тканей. [c.42]

    Книга представляет собой фундаментальную монографию, в которой рассмотрены теоретические и экспериментальные основы применения методов газовой хроматографии в биохимии. В ней подробно изложены основные понятия и определения, современное состояние техники газовой хроматографии, приготовление наполнителей разделительных колонок и оценка их эффективности. Большой раздел посвящен принципам работы и описанию конструкции наиболее распространенных газовых детекторов. В отдельных главах рассмотрено применение этого метода для анализа газов и конденсирующихся органических паров, летучих компонентов биологических тканей и жидкостей, циклических соединений, липидов и т. д. [c.559]

    Атомно-абсорбционный метод очень широко применяется для определения почти всех металлов в биологических материалах. Растворы этих материалов приготовляются относительно легко либо нагреванием в кислоте, либо сжиганием в муфельной печп. Различие в методах анализа пищевых продуктов или биологических тканей весьма незначительно. Поэтому специалист в поисках информации должен обращаться не только к литературе, ограниченной одной узкой областью биологических исследований. [c.150]

    Метод применен для анализа различных веществ воды [26], промышленных стоков [24], пищевых добавок [45] и биологических тканей [46]. [c.37]

    Некоторые органические соединения, находящиеся в воздухе, являются постоянными газами, а другие — конденсирующимися парами. Критерием, на основании которого мы судили о том, включать ли вещество в данную главу или рассматривать его среди летучих соединений биологических тканей (см. гл. 3), служил лишь метод отбора и ввода пробы. При вводе пробы в хроматограф в виде газа или поглощении пробы из воздуха с помощью ловушки, заполненной набивкой для колонки, мы рассматриваем метод, в настоящей главе, даже если сорбат содержит компоненты, обычно являющиеся жидкостями. Анализ табачного дыма включен в гл. 3, поскольку пробу сжигают и пары конденсируют в замкнутой системе. [c.190]

    Открытая система, изображенная на рис. Х.8, будучи удобной для анализа простых растворов, не подходит для работы с такими сложными объектами, как кровь и биологические ткани. [c.321]

    Основой анализа в судебных исследованиях является идентификация компонентов образца, нри этом исследованию подвергают объекты разной степени сложности. По сложности состава криминалистические объекты можно подразделить на следующие 1) образцы простого состава, к ним можно отнести лекарства или яды, присутствующие в физиологических жидкостях или биологических тканях 2) смеси простых веществ, например лекарственные препараты, составленные по определенному рецепту 3) натуральные продукты растительного или животного происхождения, такие, как пищевые продукты, волосы, биологические субстраты, микроорганизмы и другие объекты, представляющие собой сложные системы  [c.209]


    При анализе биологических материалов иногда можно не проводить полного разложения пробы, а разрушать стенки клеток тканей и извлекать коллоидный раствор. Такой метод используют при определении следовых количеств ионов металлов в биологических материалах (см. разд. 4.16). [c.41]

    В работах [416, 414] был дан критический обзор методов осаждения для диффундирующих веществ (табл. 12.1), а на рис. 12.6, взятом из работы [417], приводятся способы применения этого метода для биологических тканей. Важно, что специфичность реакции адекватно проверяется. Так, метод осаждения органической соли серебра для хлорида будет также давать осадок с бромидом, а широко используемая пироантимо-натная методика для натрия приведет также к появлению осадка с калием, магнием, кальцием и марганцем. В недавно опубликованной работе [418] приводится обзор пироаитимонатных методов осаждения и представлен ряд критериев, которые полезно применять, когда этот метод используется для анализа [c.282]

    При анализе биологических материалов частицы угля отделяют от тканей легкого смесью ледяной уксусной и 90%-ной муравьиной кислот (4.341]. [c.95]

    Монотерпены весьма склонны к разложению как в процессе выделения этих соединений, так и при последующем их хроматографическом исследовании, что необходимо учитывать при анализе результатов [38, 53, 54]. Наиболее общим методом выделения летучих масел из биологических тканей является перегонка с водяным паром [38]. В тех же случаях, когда необходимо свести к минимуму возможность деструкции выделяемых соединений, лучше использовать экстракцию растворителями [54]. Следует, однако, отметить, что обработка растворителями (без последующей фракционной перегонки [54, 55]) дает, как правило, суммарный липидный экстракт, который перед анали- [c.232]

    Эта методика используется в первую очередь для определения нормального содержания хрома в биологических жидкостях — сыворотке крови [709, 574, 711, 710, 493] и моче [711, 687, 703], а также в биологических тканях [498]. В качестве детекторов при указанном способе анализа, кроме ЭЗД, применяют ПФД [687] и МЭД [493]. Процент определения в моче и сыворотке, по-видимому, зависит от метода подготовки проб так, авторы работ [493, 637, 687, 709] приводят самые различные данные 75% [709], 79—92% [687], 86,4—94,6% [493] и 97,3% [637]. Для анализа мочи и плазмы достаточна проба объемом 50 мкл при содержании 5 нг/см стандартная ошибка составляет 2% [574]. [c.163]

    Перед атомно-абсорбционным анализом биологических материалов (крови, мочи, тканей) микроэлементы непосредственно или после окисления пробы экстрагируют из водных растворов в виде хелатов органическими растворителями [195-198]. [c.53]

    Каталитические ферментативные методы анализа используют преимущественно для определения многих органических соединений, п частности таких, которые содержатся в биологических объектах (в крови, моче, тканях и др.). Таким способом можно определять мочевину, мочевую кислоту, аминокислоты и другие органические кислоты, глюкозу и другие сахара, антибиотики и т. д. [c.450]

    Несмотря на встречающиеся трудности, некоторые исследователи пытались провести количественный анализ массивных биологических материалов с использованием одной или более из трех процедур коррекции, которые были изложены. Однако неизбежная шероховатость поверхности образца, повышенная глубина проникновения пучка, низкое пространственное разрешение (5—10 мкм) и относительно низкая точность метода (10—20 /о) в сочетании с сомнительной справедливостью техники введения поправок для легких элементов в органической матрице приводят к тому, что обычный анализ массивных биологических материалов используется значительно реже других количественных методов, описываемых ниже. Единственным исключением может служить применение процедур при анализе замороженных в гидратированном состоянии тканей с использованием в качестве эталонов замороженных растворов солей. [c.76]

    Высокая эффективность разделения биологически активных веществ, в том числе белков, при исключительно малом объеме инжектируемого раствора явилась одной из причин того, что капиллярный зонный электрофорез в настоящее время широко применяется для анализа биологических жидкостей, цитоплазмы клеток растительных и животных тканей, определения концентраций нейропереносчиков. При этом заостренный конец капилляра вводят на некоторое время ( 25 с) непосредственно в клетку. В этом случае объем инжектируемой жидкости составляет от 50 до 80 пл. Аналогичные устройства применяются при проведении фармаки-нетических исследований. [c.585]

    Термин анализ следовых количеств впервые возник при биологических исследованиях. К концу прошлого столетия уже были известны основные компоненты тканей живых организмов — углеводы, белки и жиры, а при анализе растений были обнаружены 10 важнейших элементов С, О, Н, N. 8, Р, К, Са. М , Ре. Позже были найдены также следовые количества других элементов, не вс( гда присутствующих в живых жанях. таких, как В, Со, Си, Мп, Мо, 2п. В организмах животных (редко встречаются бор или марганец, но важным элементом является селен. Заметное влияние на жизненно важные процессы оказывают также Зп. Т1. V, Сг. (N1 и другие элементы, находящиеся в тканях ЖИЕ1ЫХ организмов в следовых количествах. Практически невозможно указать, какие из них наиболее важны, поскольку влияние, оказываемое элементами на жизнедеятельность растений или животных, различно. Такие важнейшие элементы, как В. Си. Мо. 2п, 5е, Сг, находясь в избытке, могут стать для организма ядом. Особенно ядовиты кадмий и серебро даже в следовых количествах. Поэтому очень важно контролировать содержание следовых количеств эж ментов в воздухе, воде, почве, растениях и в организмах животных и людей. [c.407]

    Термин опал в широком смысле охватывает многие типы гидратированных аморфных кремнеземов, обнаруживаемых в природе от отложений внутри бамбука, называемых таба-шир [344], микроскопических кремнеземных образований внутри живых биологических тканей и до массивных минеральных осадков вблизи горячих источников. Такой кремнезем аморфен в том смысле, что он не дает резкой картины дифракции рентгеновских лучей, хотя для некоторых разновидностей было показано, что кремнезем состоит из субмикроскопических кристаллитов кристобалита с некоторым содержанием воды между кристаллами. Однако благородный опал , показывая блестящие переливающиеся цвета, почти полностью аморфен и идентифицируется как опал А [345]. Такой опал дает размытую дифракционную полосу, соответствующую межплоскостному расстоянию в решетке 4,1 А, и не проявляет эндотермического эффекта на кривой дифференциального термического анализа при 150°С, что характерно для некоторых других опаловых кремнеземов [346]. Благородный опал добывается в несколь- [c.545]

    О, Р, Ка, К и др.), которые имеют более высокий, по сравнению с тяжелыми элементами, порог (у,и)-реакции [36]. Так, при анализе проб биологической ткани, несмотря на то, что НАА имеет на 2-3 порядка более низкие пределы определения большинства элементов, ФАА оказывается более предпочтш-ельным. Поскольку нейтронный анализ приводит к сильной активации макроосновы биологического образца за счет Ка, К и С1, гфактически невозможно использовать инстру менталь-ный НАА по радионуклидам с периодами полураспада менее одних суток. ФАА обладает высокой экспрессно-стью и производительностью, так как для подавляющего числа возникающих по реакции (у, )-радионуклидов характерны малые периоды полураспада. Имеется также возможность анализа проб большой массы (до 1 кг) из-за отсутствия эффекта самоэкранирования. Наиболее широкое распространение ФАА получил после создания линейных ускорителей электронов, бетатрона и микротрона, на которых формируют мощные пучки регулируемого по максимальной энергии тормозного излучения электронов высокой стабильности, что дало возможность ФАА получить низкие пределы определения большинства элементов (табл. 9.5). В настоящее [c.59]

    По сравнению с другими классами химических веществ (например, промышленными химическими продуктами, пестицидами) изучение фармацевтических препаратов представляет собой область, в которой чрезвычайно широко используется и совершенствуется большое число различных хроматографических методов, в первую очередь ВЭЖХ и хроматомасс-спектрометрия. Хроматография (ГХ, хроматомасс-спектрометрия, ВЭЖХ и ТСХ) находит широкое применение для проверки чистоты, однородности и устойчивости промышленной продукции, в анализе биологических жидкостей и тканей, для установления соответствующей дозировки, путей метаболизма и фармакокинетики, а а также в токсикологии и судебно-медицинской практике. [c.88]

    Отделение от основы микропримесей осаждением их органическими осадителями часто используют при химико-спектральном анализе биологических объектов [64, 65]. Например, при анализе растительных материалов, биологических тканей и жидкостей применяют 8-оксихинолин, таннин, тионалид. При различном значении рН-раствора перечисленные реагенты осаждают А , А1, В1, Со, Сг, Си, Ре, Мо, N1, РЬ, 5п, Т1, V, 2п [4]. [c.171]

    Многие из соединений группы тетрапиррола могут выполнять роль фотосенсибилизаторов в процессах перехода кислорода из основного триплетного состояния в синглетное. Поскольку двойные связи конъюгированных ароматических систем, а также ненасыщенные боковые заместители способны взаимодействовать с кислородом в синглетном состоянии, целесообразно — по меньшей мере в тех случаях, когда неизвестны химические свойства компонентов анализируемой смеси, — осуществлять хроматографическое разделение в отсутствие света (обычно достаточно обернуть колонку или хроматографическую каме-ру алюминиевой фольгой) и защищать вещество от воздействия света до и после хроматографирования. Кроме того, ароматический характер тетрапирролов способствует как одноэлектронному окислению циклической части молекулы, так и аутоокислению периферических заместителей, протекающему через промежуточное образование радикалов типа бензила. Когда молекулы адсорбированы на большой поверхности неподвижной фазы, скорость указанных реакций может существенно возрасти под действием света или окислителей, например присутствующих в растворителях пероксидов. Таким образом, как и в случае большинства других хроматографических экспериментов, для разделения рассматриваемых соединений следует использовать растворители подходящей квалификации. В силу того что тетрапирролы обладают высоким сродством к ионам металлов, необходимо позаботиться о том, чтобы растворители и сорбент не содержали примесей ионов тяжелых металлов, способных образовывать комплексы с хроматографируемыми соединениями. На практике, когда проводят выделение достаточно больших количеств вещества, это свойство тетрапирролов, как правило не создает особых проблем. Однако при работе на аналитическом уровне, особенно если соединения экстрагированы из природных источников, будь то биологические ткани или геологические образцы, необходимо отдавать себе отчет в том, что присутствие ионов металлов может привести к некоторому искажению хроматографической картины. Не существует никаких других удобных и общих способов избежать этого, кроме как свести к минимуму вероятность контактов образца с ионами металлов или металлами в ходе его экстракции, подготовки к анализу и хроматографирования (следует отметить, что даже никелированный шпатель может оказаться источником загрязнения образца). Поскольку константы связывания порфиринов с ионами металлов часто соизмеримы по своей величине с константами, характерными для таких хелатирующих агентов, как ЭДТА, использование последних при низкой концентрации с [c.203]

    В предьщущем изложении в качестве объектов анализа методом газовой хроматографии рассматривались лищь жидкие материалы с применением жидкостной или газовой экстракции материала. Однако из представленных результатов легко сделать вьшод, что методы жидкостной экстракции и анализа равновесной газовой фазы должны также быть пригодными для анализа различных твердых, квазижид-ких и гетерогенных материалов. Например, количественному газохроматографическому анализу, включающему экстракцию или анализ равновесной газовой фазы, могут подвергаться пятна, выделенные из тонкослойных хроматограмм, пишевые продукты, лекарственные препараты, биологические ткани, вещества, представляющие интерес для судебной экспертизы, растения и т.д. [c.127]

    Методы анализа без разрушения образца, такие, как рентгенофлуоресцентный или нейтронный активационный анализ, исключительно удобны для определения микроэлементов в тканях животных, поскольку они не требуют озоления образцов. Эти методы хорошо приспособлены к определению некоторых микроэлементов в крови или других биологических жидкостях. При анализе твердых тканей рентгепофлуоресцентпым методом эталонные кривые следует строить для каждого тина тканей, чтобы свести к минимуму влияние основы. В нейтронном активационном анализе без разрушения образца возможность образования ири активации тканей животных радиоизотопов, мешающих определению данного элемента, является серьезным препятствием, но, вероятно, менее серьезным, чем при анализе растений или почв. [c.76]

    БИОЛОГИЧЕСКИЕ МЕТОДЫ АНАЛИЗА, методы качеств. обнаружения и количеств, определения неорг. и орг, соединений, основанные на применении живых организмов в кач-ве аналит. индикаторов. Живые организмы всегда обитают в среде строго определенного хим. состава. Если нарушить этот состав, напр., исключив из питательной среды определяемый компонент или введя его дополнительно, организм через нек-рое время подаст соответствующий сигнал. В Б. м, а. устанавливаются связи характера и (или) интенсивности ответного сигнала с кол-вом определяемого компонента. В кач-ве индикаторов применяются микроорганизмы (бактерии, дрожжи, плесневые грибы), водоросли и высшие растения, водные беспозвоночные и позвоночные животные (простейшие, ракообразные, моллюски, личинки комаров, олигохеты, пиявки, рыбы и др.), насекомые, черви, а также ткани, разл. органы и системы (нервная, кровеносная, половая и др,) теплокровных. Питательная среда м, б. естественной, искусственной или синтетической. [c.287]

    В тех случаях, когда образец биологического происхождения представляет собой жидкость (кровь, моча, спинномозговая жидкость и т. д.), требуемое количество этой жидкости вводят с помощью капиллярной пипетки в описанную выше платиновую чашку. При анализе образцов ткани, а также других твердых и полутвердых образцов, их взвешивают в закрытом сосуде, если требуется определить их вес во влажном состоянии, или сушат и взвешивают в сухом виде. Твердые образцы также помещают в платиновый сосуд для озоления. Сосуды, изготовленные из материала, содержащего кремний, например из фарфора или термостойкого стекла, не могут быть использованы для этой цели ввиду образования нерастворимых силикатов, препятствующих последую- [c.173]

    Обычно отбор проб тканей млекопитающих производится в зимний период От свежей туши крупного животного (волка, лисицы и др.) отре-застся кусок мышечной ткани (100 г) и жира (50 г), а от небольшого хищника (соболя, куннцы и др.) - нижняя половина туши без хвоста Еще более мелкие особи (до 300 г) берутся на пробу целиком. В один сезон достаточно отобрать биологический материал от 5-7 особей одного вида. Образцы хранятся в замороженном состоянии до анализа [c.193]

    Удаление воды возгонкой в вакууме из замороженных проб, называемое лиофилцзацией, используют для высушивания биологических тканей, растительных объектов и при анализе воды [133, 134]. Примеси Си, Ре, N1 и РЬ в хлориде аммония определяют атомно-эмиссионным методом после отделения матрицы возгонкой [135]. Для удержания микроэлементов в остатке перед концентрированием к пробе добавляют небольшое количество ( 1%) ортофосфорной кислоты. При анализе карбонатов и нитратов щелочных металлов матрицу отгоняют в потоке аргона и в остатке определяют Со, Сг, Си, Ре, Мп и N1 непламенным атомно-абсорбционным методом [136, 137]. Углерод в натрии опреде- [c.39]

    Сходные закономерности структуры можно отметить и для некоторых других пептидов-предшественников, хотя они, как правило, исследованы в гораздо меньшей степени, чем предшественники опиоидов, АКТГ и МСГ. Можно полагать, что дальнейший анализ биологической активности их фрагментов позволит выявить источники новых НП. На рис.9.2 обращают на себя внимание большие области пептидов-предшественников, где пока не идентифицированы НП. Хотя часть из них выполняет (судя по Р-эндорфину, АКТГ) функции дополнительных адресных последовательностей, уточняющих взаимодействие НП преимущественно с определенной тканью или органом, есть основания предполагать и в них наличие последова гельностей еще не идентифицированных НП. [c.317]

    С целью сохранения тканей в условиях, гарантирующих постоянство состава в отношении определяемых компонентов, пробу обычно сразу же замораживают и сохраняют до анализа при низких темпера гурах (до -180 С) 186-881, Применяют и другие методы фиксации биологического материала, например в формалине. Иногда тк ши перед заморазкиванием гомогенизируют. Замороженные образцы хорошо сохраняются длительный период и могут находиться в таком состоянии многие годы (89 . Так, в Канаде банк образцов содержит свыше 10 тыс. тканей 210 видов птиц, 43 видов млекопитающих, 50 видов рыб, 11 видов рептилий и 6 видов амфибий. В качестве емкостей для замороженнь(х проб используются фольга или стеклянная посуда. [c.193]

    Эта формула — прямое следствие уравнения (II 1.49) — не требует знания соотношения объемов фаз системы и позволяет проводить анализ в случаях, когда измерение численного значения г оказывается сложным или невозможным (напримгр, анализ полимерных пленок или кусочков ткани биологического материала). [c.238]


Смотреть страницы где упоминается термин Анализ биологических ткани: [c.204]    [c.59]    [c.318]    [c.234]    [c.238]    [c.392]    [c.220]    [c.162]    [c.301]    [c.163]    [c.35]    [c.401]   
Спектрохимический эммисионный анализ (1936) -- [ c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Ткань биологическая



© 2025 chem21.info Реклама на сайте