Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Испытания металлов на коррозионную химические

    Для изготовления различных конструкций в химическом машиностроении чаще всего применяют листовой металл. Поэтому для коррозионных испытаний использовали листы отожженых сплавов. Конкретный состав сплавов и технология их изготовления бьши приведены в гл. I. Скорость общей коррозии определяли, как это принято, по уменьшению массы образца после коррозионного воздействия агрессивной среды за данный отрезок времени, отнесенному к площади его поверхности и продолжительности испытаний, т.е. размерность скорости коррозии г/(м ч). Зная плотность металла (для опытных сплавов она в каждом случае определяется гидростатическим взвешиванием), скорость общей коррозии легко перевести на глубинный показатель коррозии (мм/год), что имеет больший технический смысл. Этот показатель будет использоваться в дальнейшем в качестве характеристики коррозионной стойкости тугоплавких металлов. [c.59]


    Для очистки от грата, окалины, ржавчины и накипи внутренних поверхностей котельных агрегатов, аппаратов химических производств и другого вида оборудования, включая разветвленную систему стальных труб со всевозможными гибами и многочисленными сварными швами, широко используются кислотно-химические промывки как после монтажа, так и по истечении известного срока работы. Для удаления указанных видов загрязнений с поверхности стали применяются кислоты и другие агрессивные агенты с добавками к ним всевозможных ингибиторов, замедляющих процесс разъедания металла. Моющие средства и ингибиторы кислотной коррозии в настоящее время подбираются на основе коррозионных испытаний, проводимых в лабораторных и стендовых условиях с оценкой скорости коррозии, чаще всего по потерям образцов преимущественно целого металла. [c.123]

    Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности. [c.4]


    Химические коррозионные испытания иначе называют испытаниями при полном погружении образцов в коррозионную среду. В отличие от других специфических методов коррозионных испытаний (например, на щелевую межкристаллитную коррозию и т.д.) химические коррозионные испытания не ставят своей целью ускоренную проверку восприимчивости металла какому-то отдельно взятому виду коррозионных разрушений. Как правило, стендовые химические коррозионные испытания проводятся для определения общей коррозионной стойкости металла в данной среде. При таких коррозионных испытаниях легко контролируются основные факторы, влияющие на результаты определения стойкости металла. [c.160]

    Коррозионные испытания проводятся для определения стойкости сварного шва в коррозионно-активной среде и сравнительной коррозионной стойкости металла шва, зоны термического влияния и основного металла, а также для выбора технологии сварки, обеспечивающей наибольшую коррозионную стойкость сварного соединения. Методы отбора проб для химического анализа регламентированы ГОСТ 7122—54. [c.251]

    Коррозионно-усталостное разрушение сталей с катодными покрытиями сопровождается понижением их электродных потенциалов от стационарных значений до (-600) (—650 мВ), т.е. почти до их уровня у незащищенных разрушающихся сталей. Приложение напряжения к никелированным сталям из-за нарушения сплошности оксидных пленок вызывает сдвиг их потенциалов в отрицательную сторону до 10 мВ, Качественно характер изменения электродного потенциала химически никелированных образцов при испытании в коррозионной среде такой же, как на рис, 27. Длительность II периода также возрастает с повышением прочности стали. Интенсивное понижение потенциала на Ml участке соответствует моменту потери покрытием сплошности, проникновению коррозионной среды к основному металлу и развитию в нем локализованных процессов коррозионной усталости. Спонтанное разрушение образца сопровождается скачкообразным понижением потенциала на IV участке. Характер изменения электродных потенциалов и кинетика процесса разрушения хромирован- [c.178]

    Что касается действия воды, то алюминий стоек, когда pH = = 4,5 8,5. Известно также, что в воде, содержащей наряду с другими солями большое количество хлоридов, наблюдается точечная коррозия алюминия и его сплавов. По этой причине нельзя устанавливать в производстве водоохлаждаемые алюминиевые теплообменники без предварительных коррозионных испытаний металла в воде при эксплуатационных условиях. В теплообменниках воздушного охлаждения, которые стали применяться на наших и зарубежных химических заводах, алюминий используется во все возрастающих масштабах благодаря высокой теплопроводности и хорошим технологическим свойствам, позволяющим изготавливать сребренные и профилированные трубы с увеличенной поверхностью охлаждения. [c.200]

    Руководство состоит из двух частей в первой части излагаются общие сведения о коррозии металлов, о методах коррозионных испытаний и оценки химической стойкости во второй части дается описание лабораторных работ по коррозии и защите металлов. [c.5]

    МЕТОДЫ КОРРОЗИОННЫХ ИСПЫТАНИЙ и ОЦЕНКИ ХИМИЧЕСКОЙ СТОЙКОСТИ МЕТАЛЛОВ [c.7]

    В процессе обследования состояния металла проточной части турбин, выполненных лабораторией металлов предприятия Свердлов-энергоремонт> на электростанциях Свердловэнерго, было обнаружено наличие коррозионных трещин в разгрузочных отверстиях и у заклепочных отверстий дисков последних и предпоследних ступеней ротора низкого давления. Наличие трещин выявлялось магнитопорошковой дефектоскопией. Проводились также механические испытания н химический анализ металла поврежденных дисков. По результатам испытаний металл неповрежденной зоны дисков удовлетворял требованиям технических условий для данной марки стали. Микроструктура также не имела отклонений. Структура металла поврежденной зоны имела коррозионные разрушения межкристаллитного характера. [c.16]

    Поскольку действие противоизносных присадок сводится к химическому взаимодействию на границе раздела металл — масло, эти присадки должны обладать коррозионной агрессивностью. Поэтому проведением соответствующих испытаний на коррозионно-окислительную стабильность необходимо убедиться в том, что степень коррозии металлов, равно как и возрастание кислотности и вязкости окислительного масла, находится в пределах допустимого. [c.114]

    Сложная полиметаллическая система гидропровода способствует возникновению коррозионных процессов. Ускоряющее действие на протекание коррозии оказывают высокое давление и повышенная температура жидкости. На эти процессы оказывают также влияние химический состав и свойства жидкостей. Существующие лабораторные методы испытания металлов на коррозию, естественно, дают лишь относительную оценку коррозионной агрессивности жидкости для гидросистем. Окончательный [c.500]


    Способность смазок в тонком слое защищать металлы от коррозии является комплексным показателем и определяется двумя составляющими защитного действия [96, 107] изоляционным эффектом, связанным с механической изоляцией поверхности металла плотным слоем смазки от коррозионных продуктов, и поляризационным эффектом, обусловленным адсорбцией и химическим взаимодействием компонентов смазки с поверхностью металла, в результате чего происходит его поляризация. Испытания в коррозионных камерах не позволяют дифференцировать эти составляющие защитного действия. Изоляционная составляющая зависит от толщины слоя смазки, прочности, паро- и влагопроницаемости этого слоя и его гигроскопичности. [c.92]

    Гегнером и Вильсоном [55] непосредственно в производственных условиях было проведено исследование коррозионной стойкости титана и некоторых других металлов в химических средах, часто встречающихся в технологических процессах заводов хлорнощелочной группы. Химический состав исследованных сплавов приведен в табл. 17 титан, цирконий, тантал и алюминий были технической чистоты. Испытания проводились непосредственно в химических аппаратах, сосудах, трубах и на другом оборудовании. Результаты испытаний приведены в табл. 18 и 19 (ввиду того, что они взяты из одной работы, номера испытаний идут на этих таблицах последовательно). [c.32]

    Рациональным выбором режимов кислотно-химических промывок, исключающих чрезмерно агрессивное воздействие кислот и других моющих средств на участки с ослабленной коррозионной стойкостью металла, несомненно, удалось бы избежать отмеченных неприятностей в эксплуатации оборудования. Подобная задача может быть сравнительно легко разрешена на основе применения так называемого струйно-зонного метода коррозионных испытаний и использования его для проверки агрессивности среды не только по отношению к целому металлу, но и, что особенно важно, по отношению к участ- [c.123]

    На рис. 17 представлены графики зависимости скорости коррозии сварочной проволоки Св-08А от степени пластической деформации е. Как видно из графика, в этой зависимости отмечается максимум. Подобные зависимости получены в работе [3] коррозионными испытаниями малоуглеродистой стали электрохимическими методами и дано их теоретическое объяснение. Механохимический эффект наиболее сильно проявляется на стадии деформационного упрочнения, когда имеется интенсивное образование дислокационных скоплений в металле, приводящих к росту термодинамического и химического потенциала. Чем выше степень деформации, тем больше скорость коррозии металла. Однако в области деформаций, соответствующих стадии динамиче- [c.48]

    Косвенные лабораторные испытания проводят для определения возможной коррозионной стойкости металлов при изменении некоторых их физических или химических свойств, если известна связь между этими свойствами и коррозионной стойкостью металлов в природных или эксплуатационных условиях. Например, известны экспериментальные данные о корреляции между толщиной, пористостью и стойкостью электрохимических покрытий к атмосферным явлениям. Поэтому нецелесообразно проводить длительные коррозионные испытания. Имея данные по накопленным за длительное время испытаниям, достаточно определить толщину и пористость покрытий, и если покрытие не отвечает предъявляемым требованиям, можно считать его непригодным. К этой группе можно отнести и испытания, которые проводят в стандартных условиях, и по полученным результатам судить о реальных коррозионных процессах. Например для оценки склонности металла к межкристаллитной коррозии проводят испытания, которые невозможно воспроизвести в условиях эксплуатации. [c.91]

    Химический анализ и испытания сварных швов на коррозионную стойкость. Основной, наплавленный и электродный металлы, а также компоненты электродных покрытий и флюсов подвергают контрольному анализу. [c.251]

    Стандартными методами подготовки образцов металлов без защитных пленок к испытаниям являются очистка их поверхности абразивным материалом и обезжиривание. Химическая очистка поверхности не рекомендуется. При оценке коррозионной стойкости образцов с предварительно сформированными защитными пленками такая методика недопустима. В этом случае образцы с пленками промывают струей дистиллированной воды и высушивают в вакуумном эксикаторе с осушителем или в среде инертного газа при комнатной температуре. Необходимо до минимума сократить контакт образцов с пленками с возд -хом, а также их нагрев во избежание возможного. модифицирования защитной пленки. [c.34]

    Количественные критерии оценки коррозионной стойкости материалов определяются особенностями применяемого метода испытаний — ими, как правило, являются различные физические и физико-химические величины, например, значение токов и потенциалов, потери массы (или привес) металла, глубина проникновения коррозии, количество и место расположения очагов локального поражения металла, наличие и глубина коррозионных трещин и т.д. Наиболее часто используемым количественным критерием коррозионной стойкости металлов является скорость его равномерного утончения (мм/год). Для сталей разработана десятибалльная шкала [c.141]

    Исследование металла, вырезанного из корпуса с натуральными коррозионными трещинами, показало, что химический состав металла соответствует требованиям ГОСТа на металл. Металл по механическим свойствам удовлетворяет требованиям ГОСТа на металл, за исключением характеристик пластичности, равных 23% вместо требуемых ЗВД. При деформировании образцов с трещинами имевшиеся на образцах трещины значительно раскрывались, но практически не росли вглубь. Идентичный характер развития трещин имел место при изгибе образцов и их испытании ка малоцикловую усталость при 475 С (рабочей температуре корпуса реактора коксования). Было установлено, что наличие коррозионных трещин на образцах.влияет на число циклов до разрушения и характеристики механических свойств как из-за ослабления сечения рабочей части образца микротрещинами, так и [c.14]

    Установка может быть использована и для исследования коррозии металлов, применяемых для изготовления аппаратов химических производств, работающих с водными средами. Следует иметь в виду, что при коррозионных испытаниях в данной установке нельзя смоделировать и воспроизвести условия для исследования влияния на кинетику коррозии температурного-градиента по высоте стенки. Невозможность учета влияния процесса массопередачи, например конденсации, на скорость коррозии также несколько снижает экспериментальную ценность установки. Достоинством установки является возможность проведения коррозионных исследований (после небольшой модернизации) при нестационарном теплообмене, т. е. при проведении тепловых процессов, обусловленных изменением температуры металла до момента полного выравнивания с температурой окружающей среды. Нестационарный теплообмен характерен для периодов пуска, простоев, изменений технологических режимов работы аппаратов, его влияние на коррозионное разрушение редко поддается учету. [c.197]

    Рассмотрена номенклатура металлического оборудования из коррозионно-стойких сталей и титана, неметаллических материалов. Большое внимание уделено технологии защиты стальных и железобетонных аппаратов футеровочными и полимерными покрытиями. Перспективные методы электрохимической защиты рассмотрены главным образом на примерах анодной защиты, нашедшей в химической промышленности наибольшее применение. В меньшей степени рассмотрены вопросы использования ингибиторов коррозии. Этот вид защиты неразрывно связан с особенностями технологии соответствующих производств, требованиями к химическому составу продукции н рабочих сред, поэтому он будет рассматриваться в книгах, посвященных конкретным отраслям химической промышленности. В эту книгу включены лишь справочные данные о таких общераспространенных процессах, как ингибирование при травлении металлов и ингибиторная защита оборудования в периоды консервации и транспортировки. Описанию способов защиты оборудования предпослана глава о методах коррозионных испытаний металлических и неметаллических материалов и изделий. [c.4]

    Перед началом лабораторных испытаний необходимо иметь полную характеристику как испытуемого топлива, так и образцов металлов, на которых проводится определение. Для топлива должен быть указан его химический состав, кол ичественное содержание коррозионно-агрессивных веществ и пр. Для образцов металлов указывается химический состав, структура, технологическая характеристика, характер и степень деформации, величина и состояние поверхности и ее обработка, форма. [c.255]

    Металлы при воздействии агрессивных сред большей частью остаются непроницаемыми, а пластмассы в ряде случаев становятся пористыми, склонными к набуханию и поглощению агрессивных сред. Поэтому испытание пластмасс и других неметаллических материалсв в агрессивных средах принято называть испытаниями на химическую стойкость в отличие от испытаний на коррозионную стойкость для металлов. Химическая стойкость пластмасс зависит от свойства высокомолекулярного вещества, а также от химического состава агрессивной среды и условий ее воздействия. [c.213]

    Влияние окисления или коррозионной среды. Каков бы ни был ответ на вопрос о существовании истинного предела усталости в отсутствие коррозионной среды, совершенно ясно, что при воздействии на металл коррозионной среды никакого предела не существует этот факт отображен на нижней кривой фиг. 108 разрушение может произойти даже в том случае, если на металл непрерывно действуют переменные напряжения небольшой величины, только для этого потребуется длительное время. К тому же при испытаниях многих цветных металлов на усталость, проводившихся на воздухе, т. е, в среде, которая не считается для этих металлов коррозионно-активной, получаются такие же ниспадающие кривые, из которых видно, что разрушение происходит и при низких напряжениях, если продолжительность испытания достаточно большая. По существу обычное испытание на усталость, проводящееся на воздухе, является испытанием на коррозионную усталость в условиях воздействия коррозионной среды малой активности в связи с этим было много рассуждений на тему о том, не обнаружится ли у цветных металлов предел усталости, если испытания проводить при полном отсутствии влияния химических веществ, вроде сернистого газа, водяного пара, и кислорода. Несомненно, что решение всех этих сомнений потребовало бы очень длительных испытаний, продолжительность же выполненных до сего времени испытаний для большинства материалов была недостаточной. Одна1ко в случае испытания алюминия и его сплава, содержащего [c.645]

    Сосуды, у которых действие среды может вызвать ухудшение химического состава и механических свойств металла, а также сосуды с сильной коррозионной средой или с температурой стенки выше 475 С, подвергаются дополнительному освидетельствованию в соответствии с инструкцией, утвержденной главным инженером предприятия. Результаты дополнетельных освидетельствований (испытаний, исследований) заносятся в специальный журнал а подписью лиц, производивших эти освидетельствования. Журнал находится у лица, осуществляющего на предприятии надзор за сосудами. [c.263]

    Эксплуатационные требования. Автомобильные и авиационные бензины должны бьпъ химически нейгральными и не вызывать коррозию металлов и емкостей, а продукты их сгорания — коррозию деталей двигателя. Коррозионная активность бензинов и продуктов их сгорания зависит от содержания общей и меркаптановой серы, кислотности, содержания водорастворимых кислот и щелочей, присутствия воды. Эти показатели нормируются в нормативно-технической документации на бензины. Бензин должен вьщерживать испытание на медной пластинке. При квалификационных испьгганиях автомобильных и авиационных бензинов определяется также их коррозионная активность в условиях конденсации воды по ГОСТ 18597—73. [c.26]

    Эксплуатационные испытания биоразлагаемых гидравлических масел на базе сложных эфиров показали возможность коррозионного износа деталей из сплавов, содержащих свинец, цинк и олово. Существенные потери массы металлов отмечены при испытании железных пластин со свинцовым, цинковым и оловянным покрытием в среде сложных эфиров триметилолпропана. Химический анализ образовавшегося осадка показал наличие свинцовых, цинковых и оловянных мыл жирных кислот. Ввод 1% карбодиимидов при 80°С резко снизил кислотное число и не привел к образованию нерастворимых осадков. [c.202]

    В процессе правки на многовалковых правильных машинах заготовка подвергается знакопеременному упругопластическому изгибу. В этом случае степень пластических деформаций в заготовке может быть значительно больше, чем при однократном изгибе. Процесс правки заготовок растяжением также связан с возникновением остаточных деформаций и напряжений. Процесс очистки хотя и не связан с изменением формы заготовок, но он также сопровождается возникновением остаточных деформаций и напряжений. Например, в процессе дробеструйной очистки поверхностные слои заготовок подвергаются локальному динамическому воздействию дроби, вызывающей на поверхностных слоях заготовок пластические деформации. Указанный факт является одной из причин повышенной скорости коррозии некоторых сталей в начальный момент коррозионных испытаний. При очистке абразивами и металлическими щетками тонкие поверхностные слои также получают пластические деформации сдвига. Однако, в силу того, что эти слои очень тонкие, то влиянием их на сопротивляемость механокоррозионному разрущению, видимо, можно пренебречь. Химическая очистка способствует наводороживанию поверхностного слоя проката [10]. Тепловая очистка основана на нагреве заготовок до температур 150-200°С с последующей механической очисткой. Если процесс тепловой очистки происходит в результате локального нагрева, то в отдельных зонах возможно появление остаточных деформаций. Процесс механической резки основан на создании в металле деформаций сдвига. В силу того, что между ножами имеется зазор, в зоне резания металл подвергается упругопластическому изгибу. В большинстве случаев после резки производят обработку кромок под сварку. В результате этого слой металла, в котором возникли деформации сдвига, в основном, удаляется. Тем не менее участки, подверженные изгибу, остаются. Процесс гибки и калибровки обечаек аналогичен процессу правки проката упруго- [c.51]

    На рис. 2.23 представлена зависимость скорости коррозионного проникновения Vg сварочной проволоки св-08 от степени пластической деформации 8. В этой зависимости отмечается максимум. Механохимический эффект наиболее сильно проявляется на стадии деформационного упрочнения, когда имеет место интенсивное образование дислокационных скоплений в металле, приводян1ее к росту термодинамического и химического потенциала. Чем больше степень деформации, тем больше скорость коррозионного проникновения металла. Однако, в области деформации, соответствующей стадии динамического возврата, этот эффект заметно снижается. Это связано с затуханием процессов деформационного упрочнения металла. Подобные зависимости отмечаются при коррозионных испытаниях малоуглеродистой стали электрохимическими методами [50]. [c.128]

    Электролитическое никелевое покрытие с 9 %-ным содержанием Р по защитным свойствам можно сравнить с химическими покрытиями из раствора с гликолевой кислотой Электрохимические никелевые покрытия с 3 %-ным содержанием фосфора хуже защищают основной металл но все же несколько лучше, чем электроосажденный никель При увеличении продолжительности коррозионных испытаний все покрытия тускнеют и становятсн пятнистыми Блеск сохраняется дольше на химических покрытиях, полученных из кислых растворов с гликолевой или янтарной кислотой [c.13]

    Установка может быть использована и для исследования коррозии металлов, применяемых для изготовления аппаратов химических производств, работающих с водными средами. Следует иметь в виду, что при коррозионных испытаниях в данной установке нельзя смоделировать и воспроизвести условия для исследон ания влияния на кинетику коррозии температурного градиента по высоте -стенки. [c.162]

    Для сравнительных лабораторных исследований коррозионной усталости сварных соединений труб и основного металла вырезали образцы размером 180Х38Х 10 мм из прямошовных (сталь 17ГС) и спирально-шовных (сталь 17Г2СФ) сварных труб диаметром 820 мм. Механические свойства и химический состав соответствовали ГОСТам и техническим условиям. Учитывая, что в реальных условиях эксплуатации концентраторы напряжений испытывают упруго-пластические деформации, тогда как остальное тело трубы деформируется упруго, т. е. в концентраторах имеет место жесткая схема нагружения, усталостные испытания проводили на машине с задаваемой амплитудой деформации (максимальная тангенциальная деформация 0,22 и 0,3% или интенсивность деформации 0,25 и 0,34% в наружных волокнах) чистым изгибом с частотой 50 циклов в минуту. Коррозионную среду подавали с помощью капельницы (для обогащения кислородом) или влажного тампона. [c.230]

    Проведенные нами исследования [115] на образцах диаметром 5 мм при чистом изгибе их в 3 %-ном растворе Na I также показали увеличение условного предела коррозионной выносливости. Так у стали 20 при базе 5 10 циклов = 30 МПа, в то время как у сталей 45 и У8 при тех же условиях испытания = 50 МПа. Положительное влияние углерода на коррозионную выносливость углеродистых сталей можно объяснить по-видимому, уменьшением общей гетерогенности металла и повышением прочности при сохранении относительно низкой химической активности. В.В.Романов [116] указывает, что низкоуглеродистые стали при коррозионной усталости разупрочняются меньше, чем средне- или высокоуглеродистые стали. [c.50]

    Коррозионная усталость определяется не только химическим составом металла, но и его структурой, что хЬрошо видно на примере испытания тонких образцов из армко-железа, термически обработанного на разную величину зерна. Показано [117], что в 3 %-ном растворе Na I,электродный потенциал железа с более мелкой структурой на 150-200 мВ отрицательнее потенциала железа с более крупным зерном. При циклическом нагружении образцов в коррозионной среде потенциал начинает выравниваться и достигает 520 мВ после 10 и 10 циклов нагружения соответственно для образцов с мелким и крупным зерном. При этом абсолютное разблагораживание железа с мелкой структурой значительно меньше, чем крупнозернистых образцов. Образцы с мелкой структурой имеют также примерно на порядок меньшую долговечность, чем крупнозернистые, хотя к моменту разрушения у обоих типов образцов потенциал примерно одинаковый. Основная причина различного сопротивления железа коррозионной усталости — неравномерное распределение примесей в объеме и по границам зерен. При термообработке, обеспечивающей рост зерен, их границы больше обогащены примесями, что усиливает действие границ как анодов в электрохимических парах и способствует интер-кристаллитному разрушению. В образцах с более мелким зерном характер коррозионно-усталостного разрушения транскристаллитный. [c.50]

    В атмосферных условиях и в условиях повышения влажности ненагру-женные детали из мартенситных нержавеющих сталей не подвергаются заметной коррозии. Однако исследования коррозионной стойкости при повышенных температурах (образцы нагревали до 250 или 350°С, окунали в 3 %-ный раствор МаС1 и переносили во влажную камеру, где при 50°С выдерживали 22 ч. Затем цикл повторялся. База испытаний составляла 30 суточных циклов) с периодическим смачиванием 3 %-ным раствором МаС1 показали, что эти стали подвержены точечной коррозии. Общим иеж-ду исследованием выносливости сталей при повышенных температурах и периодическом их смачивании коррозионной средой, определением коррозионной стойкости без приложения к образцам внешних нагрузок при повышенных температурах и периодическом смачивании является то, что в обоих случаях металл поверхностных слоев образцов подвержен усталости вследствие резко циклического изменения температуры с большим градиентом. Определение коррозионной стойкости сталей при периодическом смачивании коррозионной средой может дать качественную картину влияния химического состава и структуры стали на ее коррозионно-механическую стойкость при повышенных температурах. [c.109]

    Для получения наиболее достоверных данных о влиянии этих элементов был применен метод последовательной дошихтовки сплава, когда плавки №№ 4-10 бьши получены путем дополнительного легирования тем или иным химическим элементом плавки 1. Испытания коррозионной стойкости опытных плавок проводили по методу АМУ (ГОСТ 6032-84) после провоцирующих нагревов, имитирующих высокотемпературные технологические разогревы металла оборудования в диапазоне от 723 до 1023 К во временном интервале от 0,5 до 100 часов. [c.81]

    Железобактерии могут вызвать коррозионное разрушение нержавеющих сталей. На одном из химических заводов для хранения и перекачки азотистой, муравьиной и уксусной кислот были установлены баки и системы трубопроводов, изготовленные из нержавеющих аустенитных сталей 304L и 316L. Перед эксплуатацией баки и трубопроводы прошли гидравлические испытания, для которых использовали обычную водопроводную воду с концентрацией хлоридов 200 мг/л. После испытаний в результате неполного удаления воды в баках остался слой воды толщиной около 1 м. Через месяц были замечены сквозные разрушения стенок бака (толщиной 3 мм) и сплошные коррозионные разрушения труб. Химический и микробиологический анализы продуктов коррозии и вод позволили однозначно установить, что причиной разрушений были железобактерии и марганцевые бактерии (осаждающие нерастворимые соединения марганца). В результате жизнедеятельности этих микроорганизмов в слое у поверхности металла создавались очень высокие концентрации хлоридов железа и марганца, вызывающие интенсивное питтингообразование. [c.67]

    Результаты оценки противоусталостной эффективности масел на установке ЦКУ показывают, что масла гидрокрекинга и синтетические масла примерно вдвое уступают минеральным маслам, среди которых предпочтительнее нафтеновое масло. Как видно из табл. 2, химически и поверхностно-инертные минеральные масла повышают усталостную долговечность металла по отношению к воздуху за счет снижения механических напряжений в поверхностных слоях металла, лучшего отвода тепла, изоляции от коррозионно-агрессивных компонентов и влаги воздуха, тогда как большинство синтетических и гидрированные масла в сравнении с воздухом снижает усталостную долговечность стали за счет проявления поверхностной или химической активности на границе с металлом, стимулирования процессов зарождения и развития усталостных трещин. Критерием проявления поверхностной активности является полярность, диэлектрическая проницаемость жидкой среды, отражающая степень влияния эффекта Ребиндера. Вероятно, именно этот эффект определяет низкую противоусталостную эффективность полярных эфирных масел. Среди испытанных на установке ЦКУ присадок высокий противоусталостный эффект был отмечен для триксиленилфосфата, диэтаноламида, ионола, ингибиторов коррозии КСК, КП, АКОР-1. Отрицательное влияние на усталостную долговечность, как и в условиях фреттинга, показали химически активные противозадирные присадки. 5 целом результаты оценки эффективности масел и присадок в условиях фреттинг-коррозии и циклической коррозионной усталости во многом совпадают, что, как указывалось вьше, отражает близкий характер процессов, определяющих механизм действия смазочных материалов в условиях различных видов коррозионно-механического износа. В основе всех этих видов износа лежит процесс зарождения и развития трещин в металле, сопровождаемый образованием кислого электролита в вершине [c.49]


Смотреть страницы где упоминается термин Испытания металлов на коррозионную химические: [c.189]    [c.164]    [c.333]    [c.190]    [c.55]    [c.84]    [c.631]   
Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Испытание металлов

Испытания коррозионные

Испытания металлов на коррозионную

Металлы коррозионное металлов

Металлы химические

СОДЕРЖАНИИ Часть первая Методы коррозионных испытаний и оценки химической стойкости металлов Общие сведения

Химические испытания



© 2025 chem21.info Реклама на сайте