Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические в основном стандартном

    Стандартные состояния веществ, основные стандартные состояния элементов и стандартная температура. При изучении термодинамических свойств веществ и параметров реакции большое значение приобрело понятие стандартного состояния. Для индивидуальных твердых веществ и жидкостей в качестве стандартного принимают состояние их при давлении 1,013-10 Па (т. е. 1 атм) и данной температуре. Для индивидуальных газов в качестве стандартного принимают состояние их в виде гипотетического идеального газа, фугитивность которого равна единице при данной температуре, и энтальпия вещества в этом состоянии равна энтальпии реального газа при той же температуре и при давлении, равном нулю. Свойства индивидуальных газов при давлении 1,013-10 Па (т.е. 1 атм) частью не слишком сильно отличаются от свойств их в стандартном состоянии, и при расчетах, не требующих высокой точности, обычно пренебрегают этим различием. [c.22]


    Свободная энергия Р, теплосодержание И и энтропия 5 чистых веществ зависят от количества, давления, физического состояния и температуры вещества. Если определять стандартное состояние твердого вещества или жидкости как состояние реального твердого тела или жидкости при 1 атм, а стандартное состояние газа — как состояние идеального газа при 1 атм, то для одного моля вещества в определенных стандартных условиях эти свойства зависят только от температуры. Термодинамические характеристики при давлениях, отличающихся от атмосферного, можно рассчитать, используя численные значения этих функций для стандартных условий и основные термодинамические закономерности (уравнение состояния, коэффициент сжимаемости вещества и др.). Влияние [c.359]

    При сопоставлении различных состояний элементов и при рассмотрении реакций образования из них химических соединений возникает необходимость выбрать одну из различных форм существования элемента в данных условиях в качестве базисной формы, по отношению к которой можно выражать значения термодинамических параметров соответствующих процессов. Стандартное состояние элемента в этой форме мы будем называть основным стандартным состоянием .  [c.23]

    Как правило, основным стандартным состоянием элемента считают стандартное состояние его для той формы, которая термодинамически наиболее устойчива при данной температуре и [c.23]

    Для Нг, Ог, N2, Рг, СЬ и инертных газов значения т — Н ЭВ представленные здесь, относятся к основному стандартному состоянию этих элементов при соответствующих температурах. Термодинамическая характеристика базисного состояния для них приведена в табл. 1. [c.356]

    Фазовые превращения. Элементарные вещества могут находиться в различных агрегатных состояниях. Основным стандартным состоянием вещества считается его состояние в наиболее термодинамически устойчивой форме при 25 °С (298,15 К) и давлении 101,3 кПа. Последовательность фазовых превращений с изменением температуры показывает, что вещество обладает наибольшим запасом энергии в газовом состоянии. [c.38]

    В справочнике приведено около 15 000 значений основных термодинамических констант (стандартные теплоты образования, изобарные потенциалы, теплоемкости, энтропии) для более 4000 органических и неорганических веществ. [c.175]


    Стандартный электродный потенциал металла является одной из основных его электрохимических характеристик, определяющий, в частности, степень его термодинамической стабильности. Стандартные электродные потенциалы ионизации атомов титана, рассчитанные по изменению свободных энергий процессов, даются обычно для электродных реакций [115], [116]  [c.83]

    Поскольку для реагентов известны стандартные значения термодинамических величин (табл. УМ), а также уравнения Ср = ЦТ), определим зависимость Д ° отдельных реакций от температуры в пределах О—900 °С, выражая g " в ккал/(г-атом-К). Термодинамические условия тем больше способствуют основной реакции, чем выше для нее отрицательное значение Ag , т. е. чем ниже относительно других расположен ее график зависимости от температуры (рис. УМО). [c.180]

    Свойства как газов, так и жидкостей и твердых тел при давлениях, отличающихся от атмосферного, определяются по величинам, найденным для стандартного состояния, с использованием основных термодинамических соотношений, в которые входит сжимаемость вещества. В ряде случаев полезными оказываются данные о давлении пара. Читателю, желающему найти подробное описание методов исследования и интересующемуся закономерностями для растворов твердых и жидких веществ, следует обратиться к общим учебникам по термодинамике. [c.365]

    Основные соображения. При переработке нефти происходят следующие реакции изомеризация, гидрирование, дегидрирование, полимеризация, крекинг, циклизация, ароматизация, обессеривание и т. д. В большей или меньшей степени все эти реакции термодинамически возможны для углеводородных систем. Однако благодаря селективному действию катализатора и подбору условий процесса — давления, температуры — многие из этих реакций подавляются (скорость реакций становится незначительной), несмотря на то, что они могут быть термодинамически чрезвычайно благоприятными. Так, нанример, гидрокрекинг парафинов проводят только при высоких температурах, несмотря на то, что и при комнатных температурах происходящие при этом реакции характеризуются сильно отрицательными стандартными свободными энергиями. [c.374]

    ОСНОВНЫЕ ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ ХИМИЧЕСКИХ СОЕДИНЕНИЙ В СТАНДАРТНЫХ УСЛОВИЯХ [c.603]

    В нашей стране обобщающая монография по термодинамике нефтехимических процессов издана в 1960 г. (А. А. Введенский. Термодинамические расчеты нефтехимических процессов. ГОНТИ, Л., 1960, 576 с.). Эта превосходно написанная для своего времени книга в определенной степени устарела по следующим причинам. Ее значительная часть посвящена анализу разрабатывавшихся в 50-е годы методов определения стандартных термодинамических функций, которые сейчас практически не используются. Конкретный термодинамический анализ выполнен для тех реакций, которые получили промышленное применение в 30-е —50-е годы. Практически нет данных о химических равновесиях в системах с несколькими фазами, о равновесиях в растворах. Основная конкретная информация относится к простым реакциям. [c.6]

    Приложение VII. Основные термодинамические константы некоторых неорганических веществ в стандартных условиях [c.240]

    Изменение плотности отдельных углеводородов, входящих в состав сжиженных газов технических марок, может быть подсчитано по известным термодинамическим и эмпирическим зависимостям. Для смесей сжиженных газов такие зависимости отсутствуют. Между тем определение объема и плотности сжиженных газов осуществляется в самых разнообразных температурных условиях, и приведение их к определенным (стандартным) условиям является основным способом объективного учета сжиженных газов. [c.7]

    В химической термодинамике пользуются условными значениями термодинамических функций для отдельных ионов, принимая, что для иона в растворе все три основные функции в стандартном состоянии равны нулю при любой температуре  [c.267]

    В последние годы для расчетов равновесия большое распространение получили стандартные таблицы термодинамических функций. Основное преимущество таких таблиц состоит в том, что та часть вычислений, которая требует много времени и является источником наибольших ошибок, сделана с возможно большей тщательностью. Стандартные таблицы содержат величины изменений энтальпии (АН°) и изобарного потенциала (А2°) соединений, а также абсолютные значения энтропии S° элементов и соединений. Все данные таблиц отнесены к стандартному состоянию ( 38) — температуре Т = 298,16° К и давлению 1 атм. При этом АН° и AZ° в таблицах приводятся в ккал/моль, а S° в тл моль-град. [c.131]

    Основные термодинамические свойства некоторых соединений в стандартных условиях. [c.373]

    До сих пор рассматривалась скорость коррозии, лимитируемая катодными реакциями. Однако иногда коррозия может контролироваться и анодными реакциями. Обычно это наблюдается на металлах, способных пассивироваться, таких, как хром, алюминий, титан, цирконий, никель, тантал и др. Пассивностью металла называется состояние его повышенной коррозионной устойчивости, вызванное торможением анодного процесса. Согласно термодинамическим расчетам, пассивный металл может подвергаться коррозии, но практически не корродирует из-за того, что анодное растворение его протекает крайне медленно. Например, стандартные потенциалы алюминия (Еар+/а1 = = —1,66В), циркония (Е г +/2г= —1,54 В), титана (Ет =+/т1 = = —1,63В), хрома (Есг"+/сг = — 0,74 В) значительно отрицательнее потенциалов кислородного и водородного электродов, поэтому можно было бы ожидать, что они будут корродировать как с выделением водорода, так и с поглощением кислорода. Однако они отличаются высокой коррозионной стойкостью благодаря склонности к пассивации. Пассивность в основном вы- [c.233]


    Вода относится к числу наиболее распространенных в природе веществ. Она играет исключительно важную роль в природе, в жизнедеятельности растений, животных и человека, а также в технологических процессах в различных отраслях народного хозяйства. На тепловых и атомных электростанциях, например, вода является основным рабочим веществом — теплоносителем, а на гидроэлектростанциях — носителем механической энергии. Исключительная роль воды в природе и технике обусловлена ее свойствами. Вода — термодинамически устойчивое соединение. Стандартная энергия Гиббса образования жидкой воды при температуре 298 К равна —237,57 кДж/моль, водяного пара —228,94 кДж/моль. Соответственно константа диссоциации водяного пара на водород и кислород очень мала  [c.370]

    Основные термодинамические свойства некоторых веществ в стандартных условиях (25°С, 1 атм) [c.389]

    Шкала кислотности может быть продолжена в обе стороны в виде функций кислотности, предложенных Гамметом. Основные трудности здесь заключаются в определении относительной активности иона лиония (лиата) по отношению к активности в чистом растворителе, что представляет собой термодинамическое стандартное состояние. Гамметом было предложено решить этот вопрос с помощью индикаторов. [c.44]

    Стандартные характеристики растворенного вещества согласно общепринятому выбору стандартного состояния относятся к гипотетическому одномоляльному раствору, обладающему свойствами бесконечно разбавленного, т. е. к нулевой ионной силе, а химический эксперимент проводится при конечных концентрациях реагентов. Изучение равновесий, как правило, проводится в растворах с постоянным и довольно высоким значением ионной силы, причем полученные значения констант равновесия и тепловых эффектов далеко не всегда пересчитываются на нулевую ионную силу. Термодинамические характеристики реакций комплексообразования при конечных значениях ионной силы оказываются несопоставимыми с основными стандартными характеристиками ионов, фигурирующими в справочной литературе, что закрывает путь для многих расчетов и сопоставлений. Термодинамические характеристики для растворов с конечным значением ионной силы часто оказываются несопо-ставимыми и между собой, так как каждый исследователь выбирает значение ионной силы раствора и электролит для ее поддержания в значительной степени произвольно, используя чаще всего нитраты или перхлораты, а иногда хлориды щелочных металлов. [c.260]

    Даже поверхностное - знакомство с экспериментальными данными приводит к выводу, что предложенная Тафтом комбинация реакционных серий щелочного и кислотного гидролиза сложных эфиров здесь не годится, поскольку отсутствуют сведения для достаточно представительной группы заместителей X, изолированных от реакционного центра, скажем, одни.м метиленовым звеном. Поэтому такой путь расчета индукционных постоянных о может быть использован разве только в целях характеристики нескольких опорных заместителей с тем, чтобы не менять их первоначального масштаба. Фактически большинство значений 0, приведенных Тафтом [37, с. 562] для неуглеводородных заместителей, вычислено из рКа карбоновых кислот или данных для нескольких других реакционных серий — вторичных стандартов. Чартон [74] предлагает использовать рКа карбоновых кислот типа ХСН2СООН в качестве основной стандартной реакционной серии при определении индукционных постоянных заместителей 0/. Указанная серия действительно наиболее представительна. Однако и в этом случае далеко не для всех заместителей X имеются вполне надежно определенные термодинамические значения рКа- Кроме того, остается еще проблема сопоставления с данными для нескольких других, столь же представительных реакционных серий. Соответствующий выбор не отличается изобилием, особенно, если претендовать на достаточно большую чувствительность к индукционному влиянию. Могут быть использованы еще следующие серии  [c.139]

    Все остальные формы элементов, приведенные в табл. 4 и 5, являются основными стандартными состояниями при температурах, к которым относятся значения —Я дз и 5 — 5298. Базисным состоянием, к которому относятся значения Я — Я293 и 5 — 5293, для этих форм служит кристаллическое состояние их при 298,15° К (кроме Вгг и Нд, для которых базисным служит жидкое состояние при 298,15° К). Термодинамические свойства их в этом состоянии даны В табл. 1. [c.344]

    Второй сравнительный метод термодинамического расчета стандартных электродных потенциалов для трех основных типов электродов базируется на связи стандартных потенциалов в неводных растворителях з со стандартными потенциалами в воде н,о и изобарными потенциалами гидратации АСн,о и сольватации АСсольв ионов. [c.286]

    Использование термодинамических данных. Основным критерием оценки возможности осуществления какой-либо реакции с точки зрения термодинамики является изменение свободной энергии (изобарного потенциала) AG или стандартной свободной энергии AG298 к изучается или зависимость ее от температуры ДО = ф(Т ), или определяется значение температуры, при которой AG = О, т. е. когда реакция может протекать с одинаковой легкостью в обоих направлениях. [c.12]

    Предельные ошибки с вероятностью 95% можно считать равными двум стандартным ошибкам, поэтому можно оценить 2здя д5 0,8 кДж/моль. Тогда, учитывая, что именно неточности в определении ДЯ°с и ДЯ°об являются основной причиной ошибок термодинамических расчетов, дадим следующие оценки. [c.72]

    Понятно, что при использовании метода поправок можно начинать расчеты, выбрав в качестве основного любое вещество (не обязательно указанное в табл. П.1). Например, можно найти теплоту образования бензальдегида по теплоте образования изопропилбензола и поправке на замещение двух групп СНз группой =0. Это значительно расширяет возможности метода, если имеются стандартные термодинамические таблицы. Так, первоначально универсальный метод поправок не позволяет определять термодинамические функции цис- или транс-олефинов. Если же сочетать его с методом поправок для олефинов, то окажется возможным определять термодинамические функции различных олефинов и их производных. Если, например, нужно определить термодинамические функции для непредельной кислоты СНзСН=СН—СН2СН2СООН (ч с-форма), то [c.363]

    Из органических соединенпй наиболее изученными являются углеводороды. В работах Россини, Питцера, Фроста и др. был получен и собран экспериментальный и расчетный материал по различным термодинамическим свойствам в стандартном состоянии идеального газа при разных температурах от 298,15 до 1000 или до 1500 К и значительно более ограниченный для других состояний. Наряду с калориметрическими методами при получении этих данных были широко использованы, методы статистической термодинамики и э.мпирический метод групповых уравнений (см/ 45), причем в основных справочниках уже не делается указаний, каким методо.м получены те или иные из приводимых значений. В многотомном справочном издании Физико-химические свойств а индивидуальных углеводородов , выходившем под редакцией М. Д. Тилпчеева (1947—1955 гг.), в разделах, составленных [c.80]

    Был выполнен приближенный расчет основных термодинамических параметров реакций получения соответствующих 1,3-диоксанов из бутиленов и формальдегида при стандартной температуре 298,1.5 К теплоты образования (AH29g), изменения энтропии (ASj g), изменения энергии Гиббса [c.252]

    Для рассматриваемой стандартной системы известно аналитическое уравнение состояния [5], что дает возможность вычислить все термодинамические свойства смеси твердых сфер и использовать полученные данные в расчете свойств реальных жидких смесей. Численные методы расчета термодинамических свойств Me i твердых сфер из уравнения состояния не обеспечивают точног вычисления таких свойств, как энтальпия, энтропия и теплоем кость вследствие появления ошибок при численном дифференци ровании [9]. Целью настоящей работы является получение анали тических выражений для расчета основных термодинамически свойств смеси твердых сфер свободной энергии Гельмгольца А и Гиббса (G), внутренней энергии и энтальпии U и Н, соответствен но), энтропии (S) и теплоемкости [Ср и v), а также химическог потенциала. [c.30]

    Основные термодинамические особенности МСС заключаются в Бер-нуллевском распределении состава по термодинамическим потенциалам, следствием которого является метастабильность и статистическое самовоспроизведение систем. Бернуллевское распределение обуславливает нормальное распределение по термодинамическому потенциалу, свободной энергии, энтропии, энтальпии, а также стандартным температурам кипения. [c.65]

    Электродный потенциал - один из основных электрохимичесз-ких параметров, измерение которого составляет суть метода потенциометрии, - был предметом многочисленных исследований. Впервые в 1889 г. В. Нернст вывел термодинамическую зависимость э.д.с. от концентрации ионов в растворе. В настоящее время под термином "электродный потенциал" понимают э.д.с. электрохимической цепи ( ), составленной из стандартного водородного электрода и электрода, представляющего любую другую окислительно-восстановительную полуреакцию. Таким образом, данная формулировка включает два основных типа электродов электроды, функционирующие на основе а) электронного и б) электронно-ионного равновесия, иными словами, электроды, обладающие электронной и смешанной (электронноионной) проводимостью. Однако необходимо принять также во внимание третий тип, а именно электроды, перенос зарядов в которых осуществляется за счет ионов, т.е. электроды с ионной проводимостью. По этому принципу функционируют так называемые мембранные электроды, которые рассматриваются в разделе "Ионометрия". [c.20]

    В системах с химическими процессами основной причиной изменения термодинамических параметров являются химические реакции. Поскольку химические превращения весьма разнообразны, возникает проблема выбора начала отсчета энергетических величин, например термодинамических потенциалов. С этой целью в термодинамике широко применяют такие понятия, как стащартные состояния и стандартные условия. Рассчитывая различные величины, например изменение энтальпии в реакции, далее можно находить параметры исследуемых процессов в конкретных условиях. [c.37]

    В пособии излагаются основные вопросы химической термодинамики растворов электролитов, включая термодииаиические свойства веществ и термодинамические характеристики процессов в растворе. Приводится метод парциальных молярных величии и расчет парциальных молярных свойств раствора. Изложены теория Дебая—Хюккеля и ее приложения для расчета стандартных термодинамических характеристик процессов в растворе и свойств веществ. Уделено внимание термодинамике процессов кислотно-основного взаимодействия и образования координационных соединений, влиянию температуры на устойчивость. [c.2]


Смотреть страницы где упоминается термин Термодинамические в основном стандартном: [c.358]    [c.240]   
Методы практических расчетов в термодинамике химических реакций (1970) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте