Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ каталитического крекинга

    В последнее время в нефтяной промышленности особенное развитие получает переработка природных углеводородов нефти в моторные топлива при помощи каталитических процессов. Известно, что по разнообразию химических реакций и масштабам применения эта отрасль превосходит все другие процессы, связанные с катализом. Каталитический крекинг проводится на установках, в каждой из которых ежесуточно тысячи тонн нефти перерабатываются в различные иродукты с использованием сотен тонн катализатора. На установке с псевдоожиженным слоем это количество катализатора может циркулировать из реактора в регенератор и обратно 40—50 раз в день при температуре около 500 С. В 1956 г. нефтяная промышленность потребила около 175 ООО т синтетического алюмосиликатного катализатора крекинга и 100 000 т природных глин [1]. [c.11]


    Явление изменения скорости протекания химической реакции, вызываемое различными катализаторами, называется катализом. Различают однородный (гомогенный) и неоднородный (гетерогенный) катализы. При неоднородном катализе катализатор и реагирующие вещества находятся в разных состояниях (фазах), при эюм часто катализатор является твердым телом, а реагирующее вещество находится в жидкой или газовой фазе. К последнему типу катализа относится и каталитический крекинг иногда такие каталитические процессы называют контактными, а твердые катализаторы контактными веществами или просто контактами. [c.44]

    Наличие такого переменного фактора приводит к выводу, что в данном случае катализ практически далеко не соответствует идеальному классическому определению катализатора. Согласно последнему катализатор должен лишь ускорить реакцию, не изменяясь при этом. При каталитическом крекинге катализатор изменяется довольно быстро, хотя изменение его носит не постоянный характер, [c.150]

    Известно, что в продуктах каталитического крекинга преобладают изопарафины и н-олефины [6]. Так, при крекинге на цеолитах отношение нормальных и изопарафинов ап =1/аи составляет 0,15—0,20 для аморфного алюмосиликатного катализа- [c.110]

    Катализаторы — это веш ества, способные изменять скорость химических реакций. Явление изменения скорости реакции с помощью катализатора называют катализом, а саму реакцию — каталитической. Изменение скорости реакции ири каталитическом воздействии обусловлено промежуточным химическим взаимодействием реагирующих веществ с катализатором. Молекулы веществ, активируясь на поверхности катализатора (в порах), легче реагируют друг с другом, и скорость реакции повышается во много раз. После участия в реакциях химический состав и масса катализаторов остаются неизменными. В процессах каталитического крекинга доминирующее положение в настоящее время занимают нока алюмосиликатные катализаторы, главным образом синтетические. [c.10]

    Изомеризации олефинов посвящено огромное число работ, вероятно, большее, чем какой-либо другой реакции. Это объясняется тем, что изомеризация является эффективной модельной реакцией для изучения механизма теплового, фото- и радиационнохимического воздействия на вещество. Она активируется огромным числом гомогенных и гетерогенных катализаторов, поэтому на ее примере удобно изучать механизм катализа и кинетические закономерности химических процессов. Наконец, эта реакция оказывается целевой или сопутствующей во многих технических процессах изомеризации олефинов и парафинов, окислении олефинов, их полимеризации и др. В таких процессах, как сорбционное выделение олефинов, каталитический крекинг, гидроформилирование, алкилирование, сульфирование и др., она существенно влияет на выход и свойства продуктов, и возникает необходимость как ее подавления, так и активирования. [c.5]


    Рнс. 6.6. Реактор каталитического крекинга с гранулированным катализа- [c.221]

    Поток взвеси образуется при распылении мелкозернистого (пылевидного) катализатора в газовом потоке, а также при перемешивании мелкозернистого материала в потоке жидкости. В катализе газов этот метод применяют, главным образом, при каталитическом крекинге паров нефтепродуктов, образуюш,их поток взвеси с мелкозернистым (пылевидным) катализатором. В некоторых жидкофазных процессах (гидрирование жиров, получение уксусной кислоты, эфиров, фенола и других веществ) мелкозернистый катализатор перемешивается с жидкостью при помощи мешалок и в результате образуется взвесь. Однако применение потока взвеси не получило широкого распространения. [c.10]

    Таким образом, каталитический крекинг практически включает чередование рабочего процесса и процесса регенерации катализатора, который затем возвращается на стадию катализа. [c.68]

    Реакторы каталитического крекинга отличаются состоянием слоя катализатора. В промышленности используют два типа реакторов со взвешенным, или кипящим (исевдоожижен-ным), слоем катализатора и с движущимся катализатором. В этих реакторах имеются зона катализа и зона регенерации. Катализатор непрерывно циркулирует между ними. [c.68]

    Каталитический крекинг — типичный пример гетерогенного катализа реакции протекают на границе двух фаз твердой (катализатор) и газовой или жидкой (сырье). Поэтому решающее значение имеют структура и поверхность катализатора. Алюмосиликатные катализаторы вследствие своей пористости обладают высокоразвитой поверхностью—в среднем 150—400 однако установлено, что активная поверхность их может быть при этом значительно меньше. Величина активной поверхности связана с размерами пор катализатора если диаметр некоторой части пор меньше среднего диаметра молекул сырья, то естественно, что поверхность этих пор не будет использована. Однако в мелкие поры будут поступать продукты разложения, которые подвергнутся дальнейшим превращениям и вызовут излишнее коксо- и газообразование. Поэтому при крекинге тяжелых видов сырья рекомендуются широкопористые катализаторы. Для некоторых катализаторов в табл. 24 указан средний диаметр пор. [c.149]

    Отравление катализатора может быть обратимым, когда контактные яды снижают активность катализатора временно, пока они находятся в зоне катализа, и необратимым, когда активность катализатора не восстанавливается после удаления контактных ядов из зоны катализа. Контактные яды могут содержаться в реагентах, поступающих на каталитический процесс, а также образовываться в качестве побочных продуктов в самом процессе. Устойчивость к контактным ядам является важнейшим свойством промышленных катализаторов. Для удлинения срока службы контактных масс в химико-технологических процессах предусматривается стадия тщательной очистки реагентов от вредных примесей и операция регенерирования катализатора (например, выжигание высокоуглеродистой полимерной пленки, обволакивающей зерна катализатора, в процессах каталитического крекинга, нефтепродуктов, изомеризации и дегидрирования органических соединений). [c.132]

    Каталитический крекинг, как и каталитический риформинг, применяют на так называемых комбинированных нефтеочистительных заводах для сокращения промежуточных дистиллятов и увеличения выхода автомобильного бензина и ненасыщенных газов, которые являются полупродуктами для последующей химической переработки. Сырьем обычно служит тяжелый газойль и даже парафин, разлагающийся при высокой температуре в присутствии кремнеземно-глиноземного катализатора. Большинство современных крупных реакторов каталитического крекинга работает по принципу подвижного (текучего) катализа , при котором сырье и свежая порция катализатора непрерывно подаются в реакционную колонку, откуда одновременно выводится отработанная порция катализатора, направляемая в регенерационный резервуар для реактивации посредством обработки горячим воздухом. Чистый продукт из реакционной колонки разгоняется в первичном сепараторе на легкие фракции, промежуточные дистилляты и тяжелые фракции. Верхние погоны (смесь жидких метана, этана и каталитического бензина) отбираются и сепарируются в абсорбционной колонке с помощью легкой абсорбционной нефти на неконденсированный газ (метан, этилен и этан) и на абсорбированную фракцию, состоящую из СНГ и бензина. Насыщенный абсорбент ( жирная нефть) десорбируется от содержащихся в нем легких фракций, которые сепарируются на бензиновую фракцию и СНГ в голове колонки-дебутанизатора. [c.21]

    Для объяснения каталитического крекинга обычные теории катализа, видимо, недостаточны. Крекинг отличается от других каталитических реакций тем, что 1) поверхность катализатора все время покрывается адсорбированными смолистыми веществами н [c.319]


    Хотя мы остановились лишь на немногих из многочисленных предложенных до сего времени процессов каталитического крэкинга, но в ануждады признать, что катализ должен играть. в дальнейшем все ббльшую роль в технике крэкинга. Следует ли думать, что когда-нибудь введение этого нового фактора вызовет революцщо в прак-тиЕе крэкинга, иначе говоря, мояшо ли ожидать, что процессы крэкинга, применяемые в настоящее время, будут заменены процессами каталитического крекинга Мы этого не думаем. [c.339]

    Представлены наиболее оригинальные работы одного из ведущих ученых страны в области нефтепереработки и нефтехимии В. С. Гутыри по каталитическому крекингу и риформингу нефтяного сырья, каталитической очистке продуктов первичной нефтепереработки, получению спиртов из газообразных продуктов пиролиза нефтяных фракций, катализу на цеолитах углеводородного сырья. Приведен очерк о жизни и научной деятел1)Н0сти В. С. Гутыри, указатель его печатных работ. [c.2]

    Учитывая особую актуальность проблемы промышлеппого развития процессов каталитического крекинга и риформинга и значит( льную разрозненность литературных материалов по этому вопросу, мы поставили перед собой задачу более детально осветить проблему гетерогенного катализа в технологии крекипга. Используя работы советских ученых, мы преследовали также и косвенную цель подчеркнуть роль отечественных химиков в подготовке промышленной реализации контактно-каталитических процессов. [c.40]

    Дальнейшие систематические исследования каталитических свойств природных алюмосиликатов (флоридина и кавказской активной глины) проводит С. В. Лебедев [12, 13]. Он последовательно вскрывает глубокие возможности низкотемпературных каталитических преобразований углеводородов над природными катализаторами — флоридинами, кавказскими глинами и каолинами — в температурном интервале от —80 до 260 С [14—22]. С. В. Лебедев придавал особое значение активности катализатора. Он первый применил искусственную тепловую активацию природных г.тии и изучил механизм изомеризации олефипов под воздействием алюмосиликатов, показав способность алюмосиликатов вызывать по только неремоп ение двойной связи в цепи молекулы, но и скелетньсе изменення, приводящие к переходу несимметричной структуры олефипов в симметричную. Наконец, с исчерпывающей полнотой С. В. Лебедев доказал, что в области температур выше 250 °С парофазный процесс катализа над природными алюмосиликатами является по существу типичным сложным процессом каталитического крекинга, когда гладкая деполимеризация полимерных олефинов переходит в совокупность реакций дегидрогенизации, распада на элементы и глубокого дегидроуплотнения молекул с одновременным образованием парафинов. [c.158]

    Из табл. 1 видно, что итоговый выход легкого бензина (с концом кипения 165 °С) от двух ступеней каталитического крекинга составляет около 14 % иа исходную керосиногазойлевую фракцию и является заниженным. Последнее обусловлено мягкими условиями второй ступени процесса, рассчитанными не столько на дополнительное образование бензиновых фракций за счет хвостовых компонентов мотобензина, сколько на насыщение олефинов, образовавшихся в первой ступени процесса при достаточно жес1ком режиме (выход газа 24,5 %). Характеристика мотобензина первой сту11ени и бензина второй ступени катализа приведены в табл. 2. [c.286]

    В предыдущих наших статьях обсуждался индивидуальный углеводородный состав [1] двухступенчатого каталитического крекинга (в слое псев-доожиженного мелкодисперсного синтетического катализатора) газойлевой фракции балаханской тянселой нефти, а также индивидуальный состав ароматических углеводородов [2 в аналогичных бензинах каталитического крекинга, отличающихся по исходному сырью и температурному режиму первой ступени катализа. Показано, что соотношения концентраций индивидуаль 1 ых ароматических углеводородов — g в исследованных нами бензинах в нервом приближении соответствуют аналогичным соотношениям в бензинах, изученных американскими исследователями [31, п близки к значениям, рассчитанным для термодинамического равновесия в температурной области 420—480 С. При изучении состава индивидуальных ароматических углеводородов четырех образцов бензина каталитического крекинга мы получили после хроматографического извлечения ароматических [2] нафтенопарафиновые остатки, которые представляли интерес с точки зрения оценки содержания в них гексаметнленовых углеводородов, учитывая вероятность генетической связи последних с ароматическими. [c.298]

    Исследован бензиновый дистиллят (к. к. 180° С) каталитического крекинга, полученный в процессе с неподвижным катализа-тород [5]. Идентифицированы многие индишвдуальные углеводороды и вычислен детализированный групповой состав (в объемп. %)  [c.123]

    Важным фактором является также диспропорция между масштабами потребления бензина и других легких дистиллятов и содержанием их в нефтях прямая перегонка нефти дает их слишком мало, нужна деструкция тяжелых углеводородов до более легких. В прошлом эта причина вызвала к жизни сначала термический, а затем каталитический крекинг. Эти процессы и сейчас играют важную роль в переработке нефти, но их возможности ограничены из-за низкого содержания водорода. Хиндс подсчитал потенциальный выход бензина как функцию содержания водорода в сырье в случае так называемого идеального катализа, когда водород совсем не участвует в образовании нежелательных продуктов (рис. 1). Если учесть, что содержание водорода в тяжелом сырье обычно равно 12%, теоретический выход бензина составит не более 75—80%. Фактические выходы из-за газообразования существенно ниже. Следовательно, для повышения выходов ценных дистиллятных продуктов в переработке нефти неизбежно применение гидрогенизационных процессов. [c.10]

    Каталитические реакции, осуществляемые в нефтеперерабатывающей промышленности, относятся как к окислительно-воостано-вительным (гидрогенизация и дегидрогенизация), так и к кислотным (каталитический крекинг, алкилирование изобутана бутенами, полимеризация олефинов). Широко применяется бифункциональный катализ (изомеризация парафиновых углеводородов, рифор-минг, гидрокрекинг). Катализ основаниями в нефтеперерабатывающей промышленности не применяется. [c.135]

    Подтверждением того, что процесс гидрокрекинга на катализа торах риформинга, представляет собою бифункциональный катализ явлйё сй ув ёлйченне его скорости с повышением Kn otHo TH ката лизаторов в результате увеличения содержания галогенов 162, 78) Поскольку продукты гидрокрекинга — предельные углеводороды дезактивация катализатора происходит значительно медленнее, чем при каталитическом крекинге. [c.45]

    Очистке подвергают бензины прямой гонки, каталитического крекинга, термического крекинга и коксования. Процесс проводят на алюмокобальтмолибденовом катализ аторе при 380—420 °С, иод давлением 2,5—5 МПа, ири объемной скорости подачи сырья 1,0— 5,0 ч- и циркуляции водородсодержащего газа 100—600 сырья. Для гидроочистки обычно исно/ьзуют водородсодержащий газ, получающийся при каталитическое риформинге. Концентрация водорода в этом газе может изменяться от 60 до 90 % (об.). [c.303]

    Пркпия 13. Кислотный катализ. Катализаторы каталитического крекинга. ЛешжаЛ4. Механизм процесса каталитического крекинга и основы управления реакциями. [c.317]

    Лекпия 13. Кислотный катализ. Катализаторы каталитического крекинга. [c.342]

    Для осуществления полностью непрерывного процесса были разработаны схемы гидроформинг-процесса с псевдоожиженным слоем катализ 1Тора (рис. 77). Принципиальные отличия подобной схемы от аналогичной схемы каталитического крекинга в основном обусловлены следующим  [c.235]

    Химию нефти в значительной степени обогатили глубокие ис-следоваия Зелинского и его учеников. В 1911 г. Зелинский открыл явление, названное им избирательным катализом, заключающееся в обратимом гидрировании-дегидрировании шестичленных нафтенов на металлических катализаторах. Позднее он исследовал процесс разложения нефтяных фракций в присутствии флоридина (1915 г.), а затем хлорида алюминия (1918 г.). Работы Гудри по каталитическому крекингу нефтяных фракций, выполненные в двадцатые годы, фактически были продолжением исследований Летнего, Лермонтовой и Зелинского в области катализа. Важное практическое значение имела реакция дегидроциклизации алканов на металлических и оксидных катализаторах, открытая в 1935—1936 гг. Зелинским, Казанским, Молдавским, Каржевым и их сотрудниками [5, 6], которая дала возможность получать ароматические углеводороды из парафинового сырья. [c.5]

    При одинаковой скорости подачи жидкого сьфья способность к каталитическому крекингу выше у фракций с более высокой средней температурой кипения. Однако это только кажущаяся закономерность, потому что у фракций с более низкой средней температурой кипения более низкий средний молекулярный вес, в связи с чем в данном объеме или массе сьфья содержится большее количество молекул. Следовательно, в единицу времени над одним и тем же катализатором можно подвергнуть крекингу одинаковое количество молекул высоко- и низкокипящих нефтяных фракций. Тем не менее для высококипящих фракций число крекированных молекул составляет больший процент от общего числа молекул. По этой причине крекинг одного и того же числа молекул этих двух фракций соответствует разньпи степеням превращения. Этот пример показывает, что, пользуясь понятием "объемная скорость" (в обшем-то очень полезньп понятием в катализе), можно прийти в случае крекинга к сомнительньпи выводам. [c.47]

    Если катализируемая система и сам катализатор находятся в одинаковом агрегатном состоянии (жидком, паро- или газообразном), катализ называют гомогенным. Примерами последнего могут служить хлорирование метана в присутствии паров хлористого сульфу-рила, образование сложных эфиров из спиртов и карбоновых кислот под действием небольших количеств серной или соляной кислот, реакции кислотного гидролиза и т. д. Если же катализируемая система и катализатор находятся в разных агрегатных состояниях, катализ называют гетерогенным. Примерами гетерогенных каталитических реакций являются синтез метанола или высших спиртов из смесей окиси углерода с водородом над твердыми катализаторами, различные гидро- или дегидрирования, процессы дегидроциклизации, каталитический крекинг, окисление бензола в малеиновый ангидрид или нафталина во фталевый ангидрид и т. д. Гетерогенные каталитические реакции бэлее распространены и имеют большее практическое значение, чем гомогенные. [c.22]


Библиография для Катализ каталитического крекинга: [c.292]   
Смотреть страницы где упоминается термин Катализ каталитического крекинга: [c.169]    [c.111]    [c.52]    [c.38]    [c.1]    [c.3]    [c.63]    [c.89]    [c.147]    [c.157]    [c.251]    [c.282]    [c.218]    [c.66]    [c.136]    [c.54]   
Химическая кинетика и катализ 1974 (1974) -- [ c.419 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитический крекинг Крекинг каталитический

Крекинг каталитический

Крекинг, катализ



© 2025 chem21.info Реклама на сайте