Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Идеальный катализ

    Катализ на неоднородных поверхяо<т1х. Модель идеального адсорбир. слоя, как наиболее простая, широко Применяется для описания кинетики гетерогенно-каталитич. р-ций. Она, однако, не всегда способна описать количественно явления на пов-стях реальных катализаторов. Напр., скорость адсорбции не пропорциональна 06, а зависит от нее экспоненциально. В таких случаях необходимо отказаться по крайней мере от одного из Предположений модели идеального адсорбир. слоя либо считать места пов-стн неодинаковыми (т. наз. биОграфич. неоднородность), либо принять воз.можность взаимного влияния адсорбир. частиц (индуцир. неоднородность Пов-сти). Тогда термин одйо-родная поверхность будет означать почти то же, что И идеальный адсорбир. слой , однако допускается возможность адсорбции частицы на двух и более соседних местах пов-сти. [c.350]


    Одним из главных вопросов любой теории гетерогенного катализа является вопрос о модели активного центра на поверхности катализатора. Впервые представление об активном центре было развито Тейлором. По Тейлору, поверхность катализатора не является идеальной, ровной поверхностью. На ней могут быть трещины, ребра, дефекты кристаллической решетки. Энергетические свойства разных участков поверхности могут сильно различаться. Каталитически активными центрами может быть небольшая часть дефектов поверхности. Причиной каталитической активности Тейлор считал ненасыщенность связей в атомах, находящихся в активном центре. По Тейлору, активными центрами являются пики , вершины на поверхности катализатора. [c.655]

    Для процессов гетерогенного катализа необходимым условием устойчивости является соблюдение неравенства XV,67) на каждом этапе теплоотвода а) внутри зерен катализатора к наружной поверхности б) от наружной поверхности зерен к потоку реакционной смеси в) от слоя катализатора к охлаждающему веществу. Условия устойчивости для этапов б и в для модели слоя идеального смешения удалось найти, используя хорошо разработанный первый метод Ляпунова. Анализ устойчивости решений этапа а этим методом проводить нельзя, поскольку стационарные состояния описываются ун<е не алгебраическими уравнениями, а дифференциальными нелинейными уравнениями второго порядка. Соответственно отклонения от стационарного состояния характеризуются не обыкновенными уравнениями, а уравнениями в частных производных. Как указывалось выше, общих методов анализа числа и свойств решений таких уравнений не существует. [c.514]

    Отношение скоростей реакции в точке К в направлениях Кз и К1 равно а=йз/ 1[А], где числитель и знаменатель относятся соответственно к Кз и Кь Когда дробь очень мала (в частности, в начале реакции при большой [А]), рассматриваемая схема почти не отличается от схемы идеального катализа. Когда же а велико, то взятое количество катализатора не только не вызывает превращения бесконечного количества вещества А, но может до конца истратиться само, оставив непрореагировавшей значительную часть вещества А, так что реакция практически остановится. И все-таки, подобная реакция должна быть признана каталитической. [c.292]

    Наличие такого переменного фактора приводит к выводу, что в данном случае катализ практически далеко не соответствует идеальному классическому определению катализатора. Согласно последнему катализатор должен лишь ускорить реакцию, не изменяясь при этом. При каталитическом крекинге катализатор изменяется довольно быстро, хотя изменение его носит не постоянный характер, [c.150]


    Все перечисленные явления приводят к тому, что в реальном кристалле число дефектов значительно превышает аналогичную величину для гипотетического идеального кристалла. Разнообразные нарушения поверхности резко увеличивают адсорбционноактивную поверхность, а следовательно, и число адсорбционных и каталитических центров. Поскольку в реальном кристалле на зушения решетки могут быть самыми различными, активные центры могут обладать разным адсорбционным нотенциа-лом, т. е. возникает энергетическая неоднородность поверхности. Псэтому естественно, что в теориях гетерогенного катализа, как правило, в той или другой степени учитывается реальное ст )оение активной поверхности. Рассмотрим три модели. [c.341]

    При возрастании избытка вещества В и катализатора К показатели степени пит снижаются от единицы до нуля. Концентрация основного исходного вещества (например, А) в батарее из трех реакторов снижается согласно ломаной линии на рис. 16. При достаточном количестве реакторов в батарее (5—7) ломаная линия приблизится к кривой идеального вытеснения. Тогда можно рассчитать процесс во всей батарее по уравнению (11.37), в котором V — общий Объем жидкости во всех реакторах. Отметим, что рис. 16 может иллюстрировать катализ в газовой среде применительно к многополочному аппарату смешения, в частности, в аппарате кипящего слоя. [c.54]

    Созданию электронной теории катализа на полупроводниках посвящены работы Ф. Ф. Волькенштейна. В этой теории рассматривается полупроводниковый катализатор, представляющий"собой идеальный кристалл, образованный ионами с оболочкой инертного газа. При отличной от абсолютного нуля температуре в зоне проводимости такого кристалла имеются электроны, обеспечивающие свободные валентности на его поверхности. Эти электроны участвуют в образовании связей адсорбирующихся частиц с поверхностью кристалла. Возможны три типа связи. 1. Слабая гомеополярная связь, обеспечиваемая валентным электроном одного из адсорбирующихся атомов, затягиваемым в зону проводимости кристалла. 2. Прочная гомеополярная связь, в которой кроме этого электрона участвует электрон кристалла, переходящий на локальный энергетический уровень, возникающий в запрещенной зоне кристалла в результате адсорбции. 3. Ионная связь, образующаяся при переходе валентного электрона адсорбированного атома в решетку кристалла. Наиболее реакционноспособны состояния со слабой связью, так как они характеризуются ненасыщенными валентностями. [c.279]

    Пример 1-3. Моделирование кинетики гетерогенного каталитического процесса. Рассмотрим пример, взятый из области гетерогенного катализа. Опишем кинетику реакции гидрогенизации, проводимой в аппарате идеального смешения. В ней принимают участие вещества, находящиеся в трех различных фазах в газовой фазе содержится водород (под большим давлением), в жидкой фазе — четыре вещества Л, 5, С и Н , а в твердой фазе — катализатор, представляющий собой слой зернистого материала. В этой системе происходят следующие реакции  [c.129]

    При высокой линейной скорости газового потока, проходящего по этому кольцевому зазору, на каждом из 35—50 зерен катализатора создаются условия катализа, близкие к безградиентным, а во всем слое, состоящем из цепочки таких реакторов, создаются условия катализа, соответствующие методу идеального вытеснения. [c.40]

    В реакторах с движущимся слоем шарикового катализатора катализ, массо- и теплообмен осуществляются фильтрацией прямотоком в режиме, близком к идеальному вытеснению, то есть в реакторе интегрального типа. К недостаткам реакторов этого типа следует отнести  [c.467]

    Пиридоксальфосфат обладает рядом особенностей, которые делают его великолепным катализатором реакций переамипирования. Во-первых, гидроксильная группа идеально расположена для того, чтобы осуществлять общий кислотный и основной катализ. Будучи внутримолекулярным, такой катализ особенно эффективен. Во-вторых, положительно заряженный азот пиридинового кольца действует как сток (акцептор) электронов, понижая свободную энер- [c.434]

    В реакторах с псевдоожиженным (кипящим) слоем микросферического катализатора катализ, тепло- и массообмен осуществляются при идеальном перемешивании реактантов с катализатором в режиме, характерном для безградиентных реакторов (то есть дифференциального типа). Как наиболее значимые достоинства реакторов этого типа следует отметить  [c.467]

    Дело в том, что результаты изучения порядка и молекулярио-сти реакций привели к выводам о том, что норм-алыные химические превращения , укладывающиеся в схему кинетической классификации Вант-Гоффа, по его же словам, представляют довольно редкие случаи . Поэтому Вант-Гоффу по необходимости пришлось заняться огромной по масштабам новой проблемой -- - изучением так называемых возмущающих действий, к которым он отнес стеночный катализ, автокатализ конечными продуктами, рекуперацию тепловой энергии реакций, действие растворителей и т. д. Этим явлениям Вант-Гофф в Очерках по химической динамике отводит в два раза больше места, чем нормальным реакциям , которые выглядят у него как идеальный случай. [c.114]


    Одной из характерных особенностей ферментативного катализа является способность ферментов образовывать адсорбционные, обычно нековалентные комплексы. Идеальные модели ферментативных процессов должны включать взаимодействия данного типа. К такого рода ассоциатам могут приводить ионные и неполярные взаимодействия, а также образование водородных связей. К неполярным следует относить мицеллярные комплексы, я-комплексы и комплексы включения. [c.310]

    Важным фактором является также диспропорция между масштабами потребления бензина и других легких дистиллятов и содержанием их в нефтях прямая перегонка нефти дает их слишком мало, нужна деструкция тяжелых углеводородов до более легких. В прошлом эта причина вызвала к жизни сначала термический, а затем каталитический крекинг. Эти процессы и сейчас играют важную роль в переработке нефти, но их возможности ограничены из-за низкого содержания водорода. Хиндс подсчитал потенциальный выход бензина как функцию содержания водорода в сырье в случае так называемого идеального катализа, когда водород совсем не участвует в образовании нежелательных продуктов (рис. 1). Если учесть, что содержание водорода в тяжелом сырье обычно равно 12%, теоретический выход бензина составит не более 75—80%. Фактические выходы из-за газообразования существенно ниже. Следовательно, для повышения выходов ценных дистиллятных продуктов в переработке нефти неизбежно применение гидрогенизационных процессов. [c.10]

    Стехиометрические нарушения, а также инородные примеси неизбежно вызовут местные искажения геометрического порядка в кристалле. Все эти нарушения могут в ряде случаев привести к тому, что кристалл окажется разделенным трещинами на отдельные микрокристаллические блоки, в той или другой степени скрепленные друг с другом. Такое блочное строение характерно для многих кристаллических тел (например, различные силикагели, алюмогели, активированный уголь и др,), имеющих важное значение в гетерогенном катализе. Таким образом, в реальном кристалле, кроме обусловленных термодинамическими причинами тепловых дефектов, имеются необратимые нарушения, связанные с историей образования данного образца, так называемые биографические дефекты. Поскольку нарушения решетки приводят к энергетической неравноценности отдельных элементов кристалла, наличие этих нарушений облегчает образование и дополнительного количества тепловых дефектов, число которых может быть значительно больше, чем в идеальном кристалле. Отклонения от свойств идеального кристалла могут быть обнаружены и экспериментально. Так, сухие кристаллы поваренной соли разрушаются при натяжениях порядка 4 кГ/см , в то время как теоретический расчет дает величину порядка 200 кГ1см . Если же эксперимент проводить с кристаллом, погруженным в насыщенный раствор соли, т, е, в условиях, когда возможно залечивание микродефектов, опытная нагрузка приближается к теоретической. Изучение интенсивности отражения от кристалла рентгеновских лучей (Ч, Г. Дарвин) показало, что многие кристаллические тела состоят из совокупности микрокристаллов, повернутых друг к другу под различными углами. При этом было установлено, что для большинства кристаллических тел линейный размер отдельных блоков равен 10 -ь10- см. Такой же результат был получен и при исследовании лауэграмм механически деформируемых кристаллов (А. Ф. Иоффе). Объемная блочная [c.340]

    Применение электронных представлений к гетерогенному катализу приводит к интересным, хотя пока только качественным результатам, показывающим, что каталитическая активность связана с электронным состоянием катализирующей по-нерхности. Однако следует помнить, что все теоретические построения связаны с идеальным кристаллом. Поэтому выводы мектронной теории оказываются применимыми лишь в предельном случае и практически количественно не могут быть пока сопоставлены с опытными данными. Интенсивное развитие в последние годы этого раздела теории катализа позволяет надеяться, что в недалеком будущем будут разработаны количественно сопоставимые с опытом варианты электронной теории катализа. [c.368]

    Применение непрерывных проточных или проточно-циркуляционных методов, широко используемых в гетерогенном катализе, не решает полностью проблему неизотермичности в экзотермических реакциях. Наиболее полно требованиям изотермичности удовлетворяют применяемые сравнительно недавно в гетерогенном катализе импульсные методы, высокая чувствительность, экс-прессность, практически идеальная изотермичность и другие достоинства которых в сочетании с возможностью математического моделирования позволяют значительно повысить эффективность и качество кинетических исследований. [c.108]

    О самопроизвольк" " " екающей реакции при катализе можно говорить только как. г термодинамически разрешенной. Но в действительности потенциальные барьеры сдерживают многие реакции, и до вмешательства катализатора они ни практически, ни идеально- самопроизвольно не идут. Можно ли говорить, например, что реакция [c.142]

    Вероятностный, или статистический, о котором частично было уже сказано выше. Он связывает возможность эволюции с вероятностью изменення природы ЭОКС м под влиянием внешней среды. Если № ,зи = 0, то катализ протекает идеально без изменения катализаторов. Если и7 з = 1, то катализатор становится реагентом. Реальный же катализ характеризуется неравенством 0>и7 з < 1, А это означает, что одной из основ саморазвития каталитических систем должен быть статистический фактор, [c.204]

    Ферменты, как правило, идеально приспособлены Энзимы - эт(5 для катализа какой-либо одной реакции, например, специфические пищеварительный фермент папаин — катализатор отализаторы белковой С N— [c.345]

    При таком взгляде явно или неявно подразумевается пассивность субстрата в ферментативном акте, ему отводится роль инертного материала, над которым производится некая операция. Между тем современная концепция ферментативного катализа (концепция взаимно-индуциро-ванного соответствия) отводит обоим компонентам взаимодействия фермент—субстрат равноправные активные роли. Суть ее в том, что при образовании фермент-субстрат-ного комплекса происходит одновременное изменение конформации и субстрата, и фермента это дает в итоге идеальную подгонку молекул обоих участников одна к другой. [c.146]

    Пиридоксальфосфат идеально приспособлен для катализа реакции аминосоединений. Поэтому его обнаружение в роли необходимого кофактора гликогенфосфорилазы (гл. 7 разд. В, 5) вызвало удивление. Кофермент связан с фосфорилазой в основном так же, как и в случае трансаминазы (разд. Д, 6), но функция его не ясна [43]. Поразительным является тот факт, что, по имеющимся данным, 50% всего количества витамина Ве в организме находится в виде PLP в составе мышечной фосфорилазы [44]. Из исследований, проведенных на крысах с недостаточностью витамина Ве, следует, что PLP в фосфорилазе может служить резервным источником, значительная асть которого при недостаточности витамина Ве может расходоваться на другие цели. [c.222]

    Использованию ферментов в качестве катализаторов для реакции соединения пептидов и в настоящее время уделяется большое внимание. Катализ образовании пептидов при биосинтезе белка осуществляет фермент перти-дилтрансфераза. Так как этот фермент взаимодействует с протеиногенными аминокислотами независимо от природы боковой цепи, теоретически он представляет собой идеальный катализатор для реакций целенаправленного синтеза пептидов. Пептидилтрансфераза в сложной рибосомной системе структурно тесно связана со всеми другими составляющими, кроме того, на стадии элонгации во время биосинтеза белка одновременно действуют также другие факторы. Поэтому вероятность того, что выделенный из естественной среды фермент вообще будет способен к катализу реакции синтеза пептидов, очень мала. Никакого выхода в практику пептидного синтеза не получил также изученный Липманном механизм биосинтеза пептидных антибиотиков, который проходит с участием определенных ферментов. [c.166]

    Химические производства включают три основных этапа подготовка сырья (1), химические превращения (2), разделение продуктов (3). Массообмен в значительной степени обеспечивает первую стадию, когда требуется подготовить сырье определенного состава (с заданным содержанием компонентов). Он обычно играет определяющую роль на третьей стадии. Дело в том, что процессы происходят не со 100-процентными выходами и не с идеальной селективностью — остаются непрореагировавшие вещества, появляются побочные продукты. Поэтому из гаммы полученных компонентов необходимо вьщелить целевые, хорошо бы разделить и остальные с целью их разумного использования. Но и на второй стадии собственно химическое превращение сопровождается массопереносом. Например, гетерогенный катализ вкпючает адсорбцию исходных компонентов на зерне катализатора, собственно химическое взаимодействие и десорбцию продуктов с поверхности зерна в ряде случаев именно адсорбция или десорбция (а это — массообменные эффекты) являкугся наиболее медленной стадией процесса и потому определяют скорость технологического процесса в целом. [c.735]

    Определение границы условий, при которых играет роль внешняя диффузия и теплопередача, О. Левеншпиль П1)едлагает провести следуюпцт образом [18]. На основании опытных данных измеряется степень превращения Хд реагента А в реакторе идеального вытеснения при различных линейных скоростях потока и неизменных объемной скорости и начальном составе исходных реагентов (газа). Линейную скорость газового потока при прочих равных условиях можно изменить, проводя серию опытов в реакторе с разной высотой слоя катализатора и соответственным изменением объемного потока реакционной массы, чтобы сохранить постоянным отношение V/F a . JPA.a)y где V - объем 1)еактора. Тогда при внешнедиффузионной области гетерогенного катализа определяющей является диффузия через пограничный диффузионный слой у внешней поверхности катализатора (уравнение 11.10), толщина которого, а следовательно, и диффузионное сопротивление зависят от линейной скорости газа. Если диффузионное сопротивление существенно, то степень превращения (Хд) меняется с изменением скорости газового потока. Величина Хд остается постоянной, когда скорость реакции не зависит от диффузионного сопротивления. Пределы условий, при которых становится заметным влияние переноса вещества и теплоты, соответствуют точке, при которой Хд начинает уменьшаться. [c.679]


Библиография для Идеальный катализ: [c.101]    [c.101]   
Смотреть страницы где упоминается термин Идеальный катализ: [c.50]    [c.78]    [c.360]    [c.322]    [c.291]    [c.181]    [c.543]    [c.9]    [c.4]    [c.47]    [c.10]    [c.98]    [c.279]    [c.491]    [c.415]    [c.83]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.50 ]




ПОИСК







© 2024 chem21.info Реклама на сайте