Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Царская водка, растворение металлов,

    Подгруппа элементов медь — серебро — золото. Строение атомов, сравнен ние структуры электронных оболочек атомов щелочных металлов н атомов элементов подгруппы меди. Аналогия и различие в свойствах этих металлов. Положение меди, серебра и золота в ряду напряжений. Отношение этих металлов к кислороду, воде и кислотам. Растворение золота в царской водке. Окислы и гидроокиси. Важнейшие соли. Окислительные свойства ионов благородных металлов. Комплексные соединения. [c.189]


    Более сильным окислителем является смесь концентрированных азотной и соляной кислот — "царская водка". Она растворяет даже золото и платину, которые не растворяются в азотной, а тем более в соляной кислоте. Ее окислительная активность обусловлена снижением редокс-потенциала растворяющихся металлов, т.е. усилением их восстановительных свойств за счет образования прочных хлоридных комплексов (см. реакцию растворения золота в царской водке на с. 314). [c.408]

    Выполнение определения содержания хро-ма в присутствии ванадия. Навеску металла от 0,1 до 2 г (в зависимости от содержания хрома) растворяют в конической колбе емкостью 500 мл простые стали—в 50 мл серной кислоты 1 4 стали, содержащие вольфрам и ниобий — в смеси, состоящей из 10 мл серной кислоты (пл. 1,84), 5—7 мл фосфорной кислоты (пл. 1,7) и 40 мл воды сплавы на основе никеля растворяют в 40 мл царской водки. Растворение сначала идет на холоду, а потом при подогревании на песчаной бане. После полного растворения навески к раствору добавляют по каплям 3—4 жл азотной кислоты (пл. 1,4) для разрушения карбидов и окисления железа. Раствор кипятят до удаления окислов азота без соляной кислоты и до начала выделения паров SO3 в присутствии соляной кислоты. В сталях, содержащих большое количество карбидов, раствор лучше вначале выпарить до появления паров SO3, а затем разрушить карбиды азотной кислотой, после чего раствор вновь упарить до появления паров SO3. [c.332]

    Растворенное золото — коллоидный раствор этого благородного металла — можно приготовить и самостоятельно. Чтобы получить раствор пурпурного цвета, надо сначала собрать изрядное количество осколков фарфора или стекла с позолотой. Затем приготовить царскую водку — смесь, состоящую из 30 мл концентрированной соляной кислоты НС1 и 10 мл концентрированной азотной кислоты HNOg. Хранить смесь кислот надо в плотно закрытой склянке, использовать с максимальной осторожностью, беречь руки и особенно глаза. [c.339]

    Смесь соляной и азотной кислот ( царская водка ) применяют для растворения благородных металлов и их сплавов, сульфидов, окисленных руд, ртути, соединений мышьяка и др. [c.122]

    Для растворения навески твердого вещества чаще всего применяют обработку пробы минеральными кислотами при нагревании на песчаной или водяной бане. Нередко используют смесь кислот, например царскую водку (смесь концентрированных соляной и азотной кислот), или смесь кислоты и окислителя (пероксида водорода, брома), или (реже) смесь кислоты и восстановителя. Подбор растворителя упрощается, если основные компоненты пробы известны из предварительных данных. Многие сульфидные руды сначала обрабатывают соляной кислотой при нагревании, затем добавляют азотную и новую порцию соляной кислоты. Разложение часто заканчивают обработкой пробы серной кислотой при нагревании. Так поступают при определении в рудах свинца, меди и других металлов. Если же предстоит определение серы, то пробу обрабатывают дымящей азотной кислотой, иногда с добавкой брома, чтобы окислить сульфид до сульфата и не допустить потери серы в виде сероводорода. [c.19]


    Назвать продукты, образующиеся при растворении сульфидов металлов в соляной и азотной кислотах и в царской водке. [c.24]

    Аппаратуру для химич. аффинажа изготовляют из каменного литья, керамики, фосфора, стекла, свинца, тщательно футерованного дерева, специальной стали, твердом и мягкой резины и пластмасс. Операции с царской водкой (растворение, выпаривание с конденсатором) иногда ведут в сосудах из плавленного кварца. Для осуществления поточности на аффинажном заводе аппаратуру располагают каскадно. Контроль чистоты металлов производится химическим и спектральным анализами (применяется большой спектрограф с кварцевой оптикой),  [c.41]

    Например, итальянский химик и историк химии М. Джуа, посвятивший в 1925 г. специальную работу сопоставлению атомистических взглядов Р. Бойля и П. Гассенди, нашел, что свои представления о комбинации качественно однородных атомов в качественно различные ансамбли Бойль вынужденно — по велению опыта — координировал с представлениями о химических элементах. Бойль заключил, что корпускулы, из которых образованы тела, остаются неизменными при различных превращениях последних [4, с. 92]. Основанием для такого заключения служил опыт действие на золото царской водки, а на серебро, медь и ртуть азотной кислоты приводит к исчезновению этих металлов и их переходу в раствор, но их корпускулы, растворенные в кислоте, должны сохраняться без изменения, потому что из этих растворов можно снова получить исходные металлы (с. 92). Исходя из такого вполне логичного. заключения, М. Джуа при.ходит к выводу, что исследования Бойля вели к объяснению химических реакций на основе понятия элемента (там же). [c.36]

    Тефлон отличается рядом выдающихся свойств. Так, по своей химической стойкости он превосходит не только все высокомолекулярные вещества (природные, искусственные и синтетические), но и металлы, даже благородные — золото и платину. Вполне стоек против кислот, щелочей, солей, окислителей. Даже такой сильнейший окислитель, как царская водка (смесь кислот азотной и соляной), не действует на тефлон, в то же время указанный реактив растворяет золото и платину. Было испытано много сотен различных реагентов, но выяснилось, что они не действуют на тефлон вплоть до температур кипения. ОказалосЁ, что только фтор и щелочные металлы (расплавленные ИЛИ растворенные в жидком аммиаке) агрессивны в отношении тефлона. Далее, смола чрезвычайно устойчива к действию агентов, вызывающих коррозию. Вода даже при длительном соприкосновении [c.244]

    Растворение. Твердое вещество растворяют в воде, минеральных кислотах или в неводных растворителях. Предпочтительнее всего в качестве растворителя вода, так как при растворении в ней в образец не вводятся дополнительные анионы. Большинство органических и биологических соединений растворимо в органических растворителях, причем для каждого класса соединений требуется подходящий растворитель. Например, кетоны растворимы в ацетоне, спирты — в этаноле металлы растворяют, как правило, в азотной кислоте, некоторые — в царской водке. [c.247]

    Технический галлий (99,6%) очень медленно растворяется при комнатной температуре в соляной, серной и азотной кислотах с образованием иона Оа + и в щелочах с образованием галлата. В горячих растворах щелочей он растворяется несколько быстрее, а в горячих кислотах — значительно быстрее, чем на холоду. Металл хорошо растворяется в горячей фтористоводородной, а также хлорной кислотах [1306]. По охлаждении из раствора последней осаждается перхлорат галлия, который часто используют в качестве исходного материала для получения различных соединений галлия. Разбавленные кислоты действуют на галлий значительно слабее, чем концентрированные. Это связано с образованием газовой пленки на поверхности металла если ее удалить, растворение галлия продолжается. Металлический галлий легко растворяется при нагревании со смесью 2 ч. концентрированной серной кислоты и 1 ч. 72%-ной хлорной кислоты [805] Один из лучших растворителей галлия царская водка. [c.17]

    Такой способ получения хлорида палладия эффективнее растворения металла в царской водке [c.140]

    Не растворяется в воде и минеральных кислотах. Растворение в царской водке, а также растворах сульфидов щелочных металлов и аммония сопровождается химическим взаимодействием. [c.832]

    Растворение золота и платиновых металлов в царской водке становится термодинамически возможным благодаря комилексо-образованкю, а большая скорость реакции обеспечивается наличием в растворе хлора и хлористого нитрозила, активно взаимодействующих с этими металлами. Указанные металлы растворяются в концентрированной азотной -кислоте и в присутствии других комплексообразователей, но процесс протекает очень медленно. [c.410]


    Способ 2. Отработанные растворы (в лабораториях, где работают с благородными металлами), собранные в специальных сосудах, содержат производные элементов в различных степенях окисления. Их прежде всего освобождают от органических растворителей (спиртов, уксусноэтилового эфира и т. д.) отгонкой с водяным паром. Затем к растворам добавляют избыток соляной кислоты (иногда серной) и проводят цементацию благородных металлов гранулированным цинком при кипении раствора. Полученную таким образом сырую платину всегда подвергают дополнительной очистке путем растворения в царской водке с последующим осаждением сероводородом. [c.1806]

    Для полного растворения рекомендуется перед обработкой царской водкой восстановить металл в токе водорода с последующим охлаждением в токе углекислоты. Полученный раствор несколько раз выпаривают на водяной бане с концентрированной НС1 до минимального объема или до влажных солей для полного удаления HNO3. Рекомендуется при выпаривании с НС1 добавлять небольшое количество Na l, если при последующих операциях не мешают соли натрия. [c.96]

    В последнее время рекомендуется определять водОрод в газах иокрым путем 1В обьтновенных пипетках. Для этого приготовляется раствор 5% хлористого палладия в воде. Для лучшего растворения полезно прибавить к воде хлористого натрия. Такой раствор поглощает водород исключительно" (если удалена окись углерода). При этом хлористый палладий восстанавливается до металла. Отработанный реактив регенерируется растворением металлического осевшего палладия в царской водке.  [c.385]

    Старые способы рафинирования заключались в растворении золота в царской водке и его осаждении сульфатом железа (Рб504). Применялся также метод продувки хлора через расплавленное золото (способ Миллера, 1867 г., США). Первый способ дорог в эксплуатации. Применение обоих способов связано с заметными потерями драгоценных металлов. [c.245]

    По хим. св-вам П. близок к платине и является наиб, активным платиновым металлом. При нагр. устойчив на воздухе до 300°С, при 350-800 °С тускнеет из-за образования тонкой пленки PdO, выше 850 °С PdO разлагается и вновь становится устойчивым на воздухе. Хорошо раств. в царской водке. В отличие от др. платиновых металлов, раств. в горячих конц. HNO3 и H SO . Переходит в р-р при анодном растворении в соляной к-те. При комнатной т-ре взаимод. с влажными С1 и Bfj, при нагр.-с F , S, Se, Те, As и Si. Характерная особенность П.-способность поглощать большие кол-ва Н (до 900 объемов на 1 объем П.) благодаря образованию твердых р-ров с увеличением параметра кристаллич. решетки предполагается также образование гидридов. Поглощенный Hj легко удаляется из П. при нагр. до 100 С в вакууме. Явления, наблюдаемые при поглощении тяжелого изотопа водорода катодом из П. в ходе электролиза DjO, принимались за свидетельство, холодного ядерного синтеза. П. взаимод. с расплавл. KHSO4, с Na Oj. ц [c.440]

    Металлы платиновой группы представлены платиной и ее спутниками—палладием, родием, рутением, иридием и осьми-ем. Последние два металла практически не растворяются в золоте и при переплавке порошка золота, получаемого процессом цианирования, остаются на дне тигля. Их содержание в анодном золоте не превышает одной сотой доли процента. Родий и рутений не растворимы в царской водке, при растворении золотого анода они переходят в шлам. Платина и палладий образуют с золотом твердый раствор, при анодном растворении образуются ионы этих металлов. [c.249]

    Интересные особенности возникают, если в растворе присутствует комплексообразователь, образующий с ионами металла достаточно прочные комплексы. При этом равновесный П(зтенциал металла смещается в отрицательную сторону и становится возможным растворение металлов, которые в отсутствие комплексообразователя не растворяются. Так, например, медь медленно растворяется в растворах цианида калия с одновременным выделением водорода. Золото растворяется в присутствии КС1 и растворенного кислорода. Комплексообразованне играет важную роль при растворении благородных металлов (золота, платины и др.) в царской водке. Окислительно-восстановительный потенциал царской водки более отрицателен, чем окислительно-восста-новительный потенциал азотной кислоты. Однако присутствие в царской водке ионов хлора, образующих прочные комплексы с благородными металлами, смещает равновесный потенциал металла в отрицательную сторону настолько, что происходит саморастворение металла (например. Au), не растворяющегося в концентрированной HNO3. [c.358]

    Именно в силу обретения А. собственного теоретич. взгляда на свой предмет главные практич. вклады А. приходятся на 8-12 вв. в арабском мире и на 12-14 вв. в Европе. Получены серная, соляная и азотная к-ты, винный спирт, эфир, берлинская лазурь. Создано разнообразное оснащение мастерской-лаборатории - стаканы, колбы, фиалы, чаши, стеклянные блюда для кристаллизации, кувшины, щипцы, воронки, ступки, песчаная и водяная бани, волосяные и полотняные фильтры, печи. Разработаны операции с различными в-вами-дистилляция, возгонка, растворение, осаждение, измельчение, прокаливание до постоянного веса. Расширен ассортимент в-в, используемых в лаб. практике нашатырь, сулема, селитра, бура, оксиды и соли металлов, сульфиды мышьяка, сурьмы. Разработаны классификации в-в. Впервые описано взаимодействие к-ты и щелочи. Открыты сурьма, цинк, фосфор. Изобретены порох, фарфор. Бонавентура (13 в.) установил факт растворения серебра и золота в царской водке. В трактате Р. Бэкона Зеркало алхимии можно усмотреть неосознанное приближение к правилам стехиометрич. соотношений и принципу постоянства состава. Ему же принадлежит систематизированное описание св-в семи известных тогда металлов. Но успехи прикладного св-ва А. должна разделить с хим. ремеслом. [c.108]

    Цветные металлы и их сплавы растворяют в азотной кислоте. При растворении в HNOз олово и сурьма образуют малорастворимую метаоловянную или метасурьмяную кислоту для перевода нх в раствор применяют царскую водку. [c.127]

    При анализе зубоврачебных сплавов золота, содержащих Ag, Ir, Sn, ln, u, Zn, Ni, Pd, Rh и Pt, индий выделяют в присутствии нитрита натрия и NaOH [216]. Сначала обработкой сплава царской водкой выделяют Ag в форме Ag l и Ir — в форме металла после этого выделяют олово гидролизом. Затем осаждают Аи восстановлением нитритом натрия при рП около 1,5 и, не отфильтровывая Аи, устанавливают pH раствора на необходимом уровне добавлением NaOH по тимолфталеину и кипятят. При этом осаждаются In, u, Zn и Ni.В фильтрате остаются Rh и Pt.Индий отделяют от Си, Zn и Ni после растворения осадка осаждением избытком аммиака. [c.39]

    Металлы растворяют в кислотах (исключая щелочные и щелочноземельные, растворимые в воде). Лучшим растворителем является соляная кислота, однако нужно учитывать, что при растворении могут образоваться летучие соединения, а это может привести к потерям. Серная кислота (2 н., 6 н. или 1 1) также может хорошо растворять металлы и сплавы. Некоторые металлы, стоящие правее водорода в ряду напряжений, растворяются в азотной кислоте (Си, Hg). Растворение ведут сначала в разбавленных кислотах если растворение идет медленно, смесь подогревают. Если растворение в разбавленных кислотах происходит плохо, растворяют пробу в концентрированных кислотах при нагревании. Если растворения не происходит, применяют царскую водку (смесь концентрированных 1 ч HNO3 с 3 ч НС1). Некоторые металлы растворяют в концентрированных растворах щелочей (Zn, Al). [c.89]

    Простое вещество. Хром представляет собой голубоватосеребристый металл, который легко растворяется в обычных кислотах (разбавленных соляной, серной и др.), но пассивируется кислотами-окислителями типа азотной и царской водки. При растворении металлический хром обычно окисляется до характерного для него состояния Сг(Ш). [c.347]

    Четырехокись осмия — наиболее важное соединение для аналитических целей, получается при окислении ос.мия на воздухе, при растворении тонко раздробленного металла в дымящей азотиой кислоте или царской водке, либо при сплавлении с едким иатром в смеси с нитратом или хлоратом калия, обработкой плава азотной кислотой с последующей перегонкой. Четы-рехокись осмия — бесцветные кристаллы, возгоняющиеся при сравиительно низкой температуре и плавящиеся при 100°. Пары ее напоми- [c.573]

    Старый слой металлов платиновой группы можно снять растворением его в царской водке или анодным растворением в процессе электролиза в растворах соляной кислоты концентрацией выше 5 и. Для снятия старого слоя платиновых металлов предложена также обработка электродов расплавами NaOH или КОН в смеси с такими окислителями, как NaNOg, KNO3 [1931 при температуре выше 250 °С, расплавленными окислителями, содержащими органические основания [194], или расплавами, содержащими бису.тьфат или пиросульфат щелочных металлов [195]. Слой платиновых металлов или их окислов может быть снят также при обработке электрода кислым или щелочным раствором перекиси водорода с последующим растворением в соляной кислоте [196]. [c.179]

    В случае легированных сплавов или сталей для отделения Ре пользуются также некоторыми специфическими приемами. Так, при анализе сталей с большим содержанием Сг и N1 предложены Хроматографические методики разделения после растворения стали в царской водке [1271]. Для определения Се в сплавах, содержащих Сг и V, можно либо выделять его в виде гидроперекиси из щелочной среды в присутствии НаОа [9511 и определять далее спектрофотометрически в ультрафиолетовой части спектра, либо отделять прежде всего гидролизом Ре в присутствии большого избытка КвСОд. Далее при аэрации фильтрата в присутствии сплава Де-варда небольшие количества Р(1 и Аи выделяются в виде металлов, а остальные компонента в растворе окисляются, так что V перехо дит в неокрашенное соединение, Сг осаждается в виде хромата, а Се остается в растворе в виде карбонатного комплекса, в котором его определяют колориметрически. Последняя методика применена для анализа пирофорного сплава [1621]. [c.235]

    Германий. Карабаш и др. [165] предложили два варианта химико-спектрального анализа германия и его двуокиси на содержание магния и других примесей. В первом варианте после растворения металла в царской водке или двуокиси в НС1 концентрируют примеси отгонкой основной массы германия в виде ОеС14. [c.175]


Смотреть страницы где упоминается термин Царская водка, растворение металлов,: [c.28]    [c.50]    [c.418]    [c.439]    [c.340]    [c.496]    [c.512]    [c.383]    [c.440]    [c.569]    [c.133]    [c.197]    [c.197]    [c.388]    [c.864]   
Аналитическая химия благородных металлов Часть 2 (1969) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Водка царская

Водки

Металлы растворение



© 2025 chem21.info Реклама на сайте