Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение вольфрама сплавах

    Выполнение определения содержания хро-ма в присутствии ванадия. Навеску металла от 0,1 до 2 г (в зависимости от содержания хрома) растворяют в конической колбе емкостью 500 мл простые стали—в 50 мл серной кислоты 1 4 стали, содержащие вольфрам и ниобий — в смеси, состоящей из 10 мл серной кислоты (пл. 1,84), 5—7 мл фосфорной кислоты (пл. 1,7) и 40 мл воды сплавы на основе никеля растворяют в 40 мл царской водки. Растворение сначала идет на холоду, а потом при подогревании на песчаной бане. После полного растворения навески к раствору добавляют по каплям 3—4 жл азотной кислоты (пл. 1,4) для разрушения карбидов и окисления железа. Раствор кипятят до удаления окислов азота без соляной кислоты и до начала выделения паров SO3 в присутствии соляной кислоты. В сталях, содержащих большое количество карбидов, раствор лучше вначале выпарить до появления паров SO3, а затем разрушить карбиды азотной кислотой, после чего раствор вновь упарить до появления паров SO3. [c.332]


    В металлическом молибдене, вольфраме и их сплавах натрий определяют методами пламенной атомно-эмиссионной и атомно-абсорбционной спектрометрии [35, 82, 179, 443, 469, 790, 798, 862, 898, 1013]. Молибден и вольфрам в пламени излучают сплошной спектр, который мешает определению малых количеств натрия, поэтому пред- [c.166]

    Метод определения рения а-фурилдиоксимом отличается большой чувствительностью и избирательностью. Молибден, вольфрам и ванадий, обычно сопутствующие рению в природных соединениях и сплавах, в соответствующих условиях не мешают определению малых количеств рения а-фурилдиоксимом. Соединение рения с а-фурилдиоксимом, полученное в присутствии хлорида олова (И) и ацетона (24— 26 об. %), при кислотности 0,6—1,0 и. НС поглощает при Хтах 530 нм е = 4,3 10". Раствор реагента в ацетоне поглощает в УФ-об-ласти спектра (220—330 пм) и не мешает измерению оптической плотности комплексного соединения рения. [c.196]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    Г. Определение рения в сплавах рений-вольфрам [c.198]

    Вольфрам электрохимически из водных растворов не выделяется, однако при определенных условиях могут быть получены его сплавы с другими металлами. Для выяснения аномального поведения вольфрама рядом ученых исследовался механизм электровыделения сплавов этого металла. [c.51]


    Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий). [c.39]

    Определение натрия в вольфраме [533]. Метод позволяет. определять 5-10 —10 % натрия в вольфраме и сплавах вольфрам—рений, предел обнаружения натрия равен Спектры возбуждают [c.110]

    Вольфрам — медь — никель ( тяжелый сплав ). При отсутствии взаимной растворимости металлов в системе вольфрам—медь оба металла растворимы в никеле, вследствие чего при определенных соотношениях компонентов можно получить, используя методы металлокерамики, тройные сплавы с высоким содержанием вольфрама (напр., 90% W, 6% N1, 4% Си). Сплавы обладают большой плотностью (>16), повышенной коррозионной стойкостью и высоким коэфф. поглощения радиоактивных излучений. Применяются в атомной и авиационной технике, приборостроении и др. об.ластях, [c.329]

    Разработаны методы определения кобальта в металлических никеле [88, 109, 584, 775, 957, 1002, 1082, 1188, 1200, 1417, 1518], натрии [1321, 1458], меди [686], магнии [343, 830], алюминии [1395], цирконии и титане [343, 927, 1071, 1081, 1445, 1499], свинце [186], висмуте [233], уране [1387], стеллите [73], победите [357], в сплавах кобальт — платина [1488], хром — кобальт [96], вольфрам— кобальт [520], в карбидах вольфрама и титана [1208] и других объектах [227]. [c.198]

    Это позволяет проводить реакцию окисления марганца практически до конца. Титрование ионов Мп проводят с применением биметаллической пары вольфрам—платина. Большинство элементов не мешает определению, мешает ванадий и сурьма. Метод достаточно точный, быстрый и применим для определения марганца в металлах и сплавах при содержании его от 0,1 до 95%. [c.328]

    ЛЕГИРОВАНИЕ (нем. legieren — сплавлять, от лат. ligo — связываю, соединяю) — введение в металлы и сплавы легирующих материалов для получения сплавов заданного хим. состава и структуры с требуемыми физ., хим. и мех. св-вами. Применялось еще в глубокой древности, в России — с 30-х гг. 19 в. Л. осуществляют введением легирующих материалов (в виде металлов и металлоидов в свободном состоянии, в виде различных сплавов, напр, ферросплавов, или в газообразном состоянии) в шихту или в жидкий (при выплавке) сплав. Иногда добавки легирующих материалов вводят в ковш. В закристаллизовавшемся сплаве легирующие материалы распределяются в твердом растворе и др. фазах структуры, изменяя его прочность, вязкость и пластичность, повышая износостойкость, увеличивая глубину прокаливаемости и др. технологические св-ва. Л. существенно влияет па положение критических точек стали. Никель, марганец, медь и азот расширяют по температурной шкале область существования аустенита, причем при известных соотношениях содержания углерода и этих элементов аустенит существует в области т-р от комнатной и ниже до т-ры плавления. Хром, кремний, вольфра.м и др. элементы сужают эту область и при определенных концентрациях углерода и легирующего элемента расширяют область с>тцествоваиия альфа-железа (см. Железо) до т-р плавления. При некоторых концентрациях углерода и легирующего материала сталь даже после медленного охлаждения имеет структуру закалки. Легирующие материалы, не образующие карбидов (напр., никель, кремний и медь), находятся в твердых растворах, карбидообразующие материалы (хром, марганец, молибден, вольфрам и др.) частично растворяются в железе, однако в основном входят в состав карбидной фазы и при больших концентрациях сами образуют карбиды (напр.. [c.681]

    Метод обладает высокой чувствительностью и селективностью. Недостатком метода является то, что устойчивость и интенсивность окраски комплекса зависит от концентрации ионов роданида, кислотности раствора, порядка смешения реактивов и т. д. Поэтому надежные результаты могут быть получены только при соблюдении определенных условий выполнения анализа. Мето применим для определения молибдена в легированных сталях и сплавах, содержащих Сг, Ni, V, Со, Nb, Та, Re. Мешающее влияние вольфрама (VI) устраняют добавлением лимонной кислоты, связывающей вольфрам в цитратный комплекс. [c.350]

    Еще в предвоенные годы С. И. Скляренко и О. С. Дружинина [123] высказали предположение, что вольфрам, как и его аналог молибден, не может быть выДелен из водных растворов вследствие низкого перенапряжения водорода на этих металлах. Однако при экспериментальном определении перенапряжения водорода на сплавах использовались образцы, поверхность которых была покрыта естественной окисной пленкой. Отсутствие данных для неокис-ленных металлов и сплавов делает невозможной проверку предположения С. И. Скляренко и О. С. Дружининой. [c.51]

    Определенный интерес представляет система вольфрам— шнк. Тем более, что цинк является низкоплавким металлом и не образует твердого раствора с вольфрамом. Поскольку цинк легко может быть отогнан, весьма заманчива идея получения вольфрама из цинк-вольфрамового сплава. Введение вольфрама в цинковое гальваническое покрытие может способствовать улучшению эксплуатационных характеристик очень распространенных цинковых покрытий. [c.101]


    Для определения фосфора в никеле и его сплавах [41] применен метод. Описанный в разделе III. 8.3. Установлено, что вольфрам и рений при их содержании 10% не мешают определению фосфора. [c.102]

    НЛ1. Определению не мешают медь и олово при содержании каждого из них до 5% и вольфрам при содержании до 1%. Незначительное мешающее влияние тантала и циркония можно учесть влияние железа устраняют, связывая его в комплекс с тиогликолевой кислотой. Молибден и титан должны быть предварительно отделены. Метод применим для анализа сплавов, содержащих 7—20% ниобия. Относительная ошибка определения составляет 1%. [c.133]

    Метод основан на измерении светопоглощения комплекса титана с диантипирилметаном при Я=480 нм. Определению не мешают алюминий, магний, кадмий, цинк, железо, ванадий, ниобий, тантал, молибден, вольфрам, марганец, церий, цирконий и лантаноиды. При содержании титана в ниобиевых сплавах до 50,0% относительная ошибка определения составляет 0,5%. [c.146]

    Поскольку вольфрам совсем не мешает определению рения, оставаясь в виде вольфрамовой кислоты в водной фазе, метод рекомендуется для анализа W—Ке-сплавов. Для устранения ме-шаюш,его действия Мо, 8е и V используется метод дифференциальной снектрофотометрии в варианте, описанном Пешковой и Громовой [381]. Используя этот метод, устраняется влияние 100 — 200-кратных (по отношению к весовому содержанию ренпя) количеств Мо, Зе и V. [c.115]

    Для выделения молибдена при анализе сплавов, содержащих большие количества тантала, а также вольфрам [1123], в тарт-ратноаммиачный раствор пропускают H2S, подкисляют серной кислотой, пропускают еще HsS при 80° С, осадок M0S3 отфильтровывают, промывают сероводородной водой, содержащей НС1, и заканчивают определение молибдена в форме РЬМоО , [c.115]

    А. В. Виноградов и Т. И. Евсеева [84] успешно определяли молибден в его концентратах осаждением в форме Мо02(СэНбОЫ)2 из 0,1 N Н2504 в присутствии комплексона III (без отделения железа и других элементов). Если присутствует вольфрам, то его маскируют добавлением щавелевой кислоты. Определение молибдена заканчивают взвешиванием промытого и высушенного при 120—140° С осадка. Метод дает точные результаты. Он был применен для определения молибдена в сплавах на основе ниобия и циркония [85]. [c.165]

    Выполнение определения. Навеску 0,2—0,5 г чугуна, стали или сплава, взвешенных с точностью до 0,0002 г, помещают в колбу емкостью 250 мл и растворяют в 50 мл серной кислоты (1 4). Окисление карбидов проводят азотной кислотой (пл. 1,4), добавляя ее порциями по 5—7 капель (около 3 мл). Стали, содержащие вольфрам, растворяют в смеси кислот 20 мл НС1 (пл. 1,19), 10 мл HNO3 (пл. 1,4) и 2 мл Н3РО4 (пл. 1,7). [c.355]

    Фотометрический метод определения ниобия в сплавах с цирконием [10] основан на образовании окрашенного комплекса Н[КЬО(ЗСЫ)4] в присутствии большого избытка роданида. Интенсивность желтой окраски зависит от концентрации соляной кислоты и остается постЬянной 5—6 час. Полученные окрашенные растворы сравнивают с эталонными растворами ниобия, приготовленными аналогично. Окрашенный комплекс ниобия экстрагируется эфиром. Не мешают 2г(1У), Та (V) и Ре (П1). Вольфрам должен отсутствовать. [c.200]

    Много органических реактивов было также снова исследовано при совместном их действии с комплексонами. Уже известное определение урана 8-оксихинолином (стр. 157) было успешно применено при анализе сплавов урана с висмутом [45]. В щелочном растворе в присутствии комплексона уран количественно выделяется оксином. Затем, подкисляя фильтрат, выделяют количественно висмут в виде оксихинолята. Весовое определение алюминия оксином в растворе комплексона, цианида калия и тартрата следует считать высоксселективным [46], поскольку оно позволяет определять алюминий в присутствии целого ряда элементов, в том числе и железа. Этот метод был использован для анализа сплавов алюминия с медью. Оксиновый метод определения вольфрама (стр. 159) был практически использован для анализа смеси вольфрама и тория [47]. В аликвотной части раствора определяют вольфрам осаждением оксихинолином с последующим йодометрическим титрованием. В другой части раствора можно определить торий прямым титрованием комплексоном при одновременном Маскировании вольфрама перекисью водорода. [c.540]

    Для ванадия известно несколько степеней окисления. Для титрования ванадия(II) в модельных растворах и искусственных смесях предложено использовать электрогенерированное железо(III) с биамперометрической индикацией к. т. т. После растворения пробы амальгамой цинка восстанавливают ванадий(У) и (IV) до V" и титруют его железом(1П) на фоне серной кислоты при pH > 1 [474]. Разработаны методики определения и V в смесях ионов марганца, хрома и ванадия [475], сталях, содержащих молибден и вольфрам [476, 477], и в сплавах [478, 480—482]. Для индикации к. т. т. предложены потенциометрический и биамперометрический методы. Электрогенерированные титранты из металлоактивных электродов — металлического ванадия, олова, меди и хрома —применены для определения ванадия в инструментальных сталях, сплавах, хромитовых рудах [483, 484—490, 497], латунях, бронзах [494— 497], металлическом цинке [497—499]. [c.75]

    Голубцова [45] этим реактивом определяла 0,8 мкг Мо в хромоникелевом сплаве (из навески 0,01 г). В качестве зкст-, рагента применяли толуол. Вольфрам связывали фосфорной ки слотой. Определение вели в объеме 2 мл — по методу стандартных серий, 4 мл—при спектрофотометрическом окончании. [c.166]

    Все методы анализа основаны на использовании зависимости физико-химического свойства вещества, называемого аналитическим сигналом или просто сигналом, от природы вещества и его содержания в анализируемой пробе. В классических методах химического анализа в качестве такого свойства используются или масса осадка (гравиметрический метод), или объем реактива, израсходованный на реакцию (титриметрический анализ). Однако химические методы анализа не в состоянии были удовлетворить многообразные запросы практики, особенно возросшие как результат научно-технического прогресса и развития новых отраслей науки, техники и народного хозяйства в целом. Наряду с черной и цветной металлургией, машиностроением, энергетикой, химической промышленностью и другими традиционными отраслями большое значение для промышленноэнергетического потенциала страны стали иметь освоение атомной энергии в мирных целях, развитие ракетостроения и освоение космоса, прогресс полупроводниковой промышленности, электроники и ЭВМ, широкое применение чистых и сверхчистых веществ в технике. Развитие этих и других отраслей поставило перед аналитической химией задачу снизить предел обнаружения до 10 . .. 10 °%. Только при содержании так называемых запрещенных примесей не выше 10 % жаропрочные сплавы сохраняют свои свойства. Примерно такое же содержание примеси гафния допускается в цирконии при использовании его в качестве конструкционного материала ядерной техники. (Вначале цирконий был ошибочно забракован как конструкционный материал этой отрасли именно из-за загрязнения гафнием). Еще меньшее содержание загрязнений (до 10 %) допускается в материалах полупроводниковой промышленности (кремнии, германии и др.). Существенно изменяются свойства металлов, содержание примесей в которых находится на уровне 10 % и меньше. Например, хром и бериллий становятся ковкими и тягучими, вольфрам и цирконий становятся пластичными, а не хрупкими. Определение столь малых содержаний гравиметрическим или титриметрическим методом практически невозможно, и только применение физико-химических методов анализа, обладающих гораздо более низким пределом обнаружения, позволяет решать аналитические задачи такого рода. [c.4]

    Разработаны методы [94] комплексонометрического определения гафния в сплавах Hf — V — С и Hf — W — С, основанные на прямом титровании гафния в присутствии КО и перекиси водорода в среде 0,2-н. Нг504. Перекисиый комплекс ванадия не мешает титрованию. При анализе вольфрамовых сплавов в раствор дополнительно вводится лимонная кислота, связывающая вольфрам в комплекс, не мешающий определению гафния. [c.390]

    Особенно широко распространены визуальные анализы по методу гомологических пар, ставящие своей задачей определение марки металла. Эти анализы используются, например, для маркировки сталей, алюминиевых сплавов, латуней, бронз и т. д. Для их проведения разработана специальная аппаратура — стилоскоп (см. 24). Исследуемый металл в виде прутка, готового изделия, детали машины и т. д., включается в качестве одного из электродов дуги вторым электродом служит обычно при анализе сталей пругок углеродистой стали, при анализе бронз и латуней — пруток из электролитической меди, и т. д. Спектр дуги рассматривается с помощью стилоскопа и наблюдатель, оценивая интенсивность выбранных для анализа линий легирующих элементов по отношению к соседним линиям основного элемента, получает возможность оценить с помощью специальных таблиц примеров содержание каждого элемента в пробе. Совокупность анализов по зсем элементам позволяет определить марку металла. В качестве примера мы приводим на рис. 169 вид одной из групп линий, используемых при анализе на хрой и вольфрам. [c.174]

    Для одновременного определения молибдена и вольфрама в сплавах железа анализируемую пробу растворяли в смеси серной и фосфорной кислот и после разбавления аликвотную часть раствора пропускали через ионообменную колонку с сильно основным анионитом в S N-форме. Молибден, вольфрам, медь, олово и часть железа сорбируются. Раствором 0,5 Л4 по хлориду натрия и 0,5 М. по едкому натру вымывали молибден, вольфрам и олово. Из аликвотной части раствора бутилацетатом экстрагировали комплексы молибдена и вольфрама с толуол-3,4-дитиолом. Экстракт спектрофогометрировали при 610 и 660 нм, определяя молибден и вольфрам. [c.22]

    Определению вольфрама не мешают 300-кратный избыток N1- и Со +, 100-кратный—30-кратный—Си , 10-кратный—Мо . Мешают определению Ре +, Сг и при их наличии в растворе даже в меньшем количестве, чем вольфрам. Метод применен для определения вольфрама в вольфрамникелевых сплавах. [c.368]

    Молибден и вольфрам до яекоторого определенного содержания, зависящего от температуры, слабо влияют на сопротивление окислению. При более высоком содержании этих металлов и его дальнейшем ро сте быстро усиливается поглощение кислорода, а окисные слои, по-видимому, утрачивают практически всю свою защитную способность, что свидетельствует о наступлении линейного окисления. Ясно, что это объясняется большой летучестью МоОз, а при наличии влаги и УОз. Испарение одного окисла, являющегося составной частью окалины, приводит к непреры-вному разрушению окисного слоя и обнажению нее новой поверхности металла, начинающей взалмодействовать с газом. Поглощение кислорода сопровождается убылью веса образца, тем большей, чем выше содержание молибдена или вольфрама. Это наблюдалось при окислении хромомолибденовых сплавов при 1250°С [401], 980 и 815° С [727]. Относительно высокое содержание молибдена и вольфрама в сплавах вредит их сопротивлению окислению. [c.310]

    Остин [506] определял изменение веса кобальтникелевых сплавов с 2,5% Т1 и от 8% до 16% Ре с добавкой разных количеств хрома, алюминия, молибдена, вольфрама, ванадия или кремния (по методу измерения убыли веса образцов весовым методом за 400 ч в ходе окисления при 800—1100° С в атмосфере воздуха, уделяя особое внимание сцеплению окаляны с основой. Лучшими оказались сплавы, содержавшие хром, особенно два сплава следующего состава 1) 46% N1, 25% Со, 7.5% Ре, 2,5% Т1. 20% Сг, 2,5% А1 2) 23% N1, 47% Со, 7,5% Ре, 2,5% Т и 2,5% А1. Какого-либо определенного вывода о влиянии одного кобальта из результатов этих измерений сделать нельзя. При более ВЫС01КИХ температурах все сплавы, содержавшие вольфрам, равно как и сплавы, близкие по составу к сплаву конал (73% N1, 17% Со, 7,5% Ре и 2,5% Т1), покрывались чешуйчатой окалиной, которая легко отделялась от основы. Присадка ферротитана в большом количестве сопровождалась образованием окалины, которая отслаивалась при охлаждении и хранении образцов. На сплавах с содержанием 2% V окалина оплавлялась. [c.343]

    Хороший метод выделения незначительных количеств ванадая в определенных случаях основан на том, что из слабокислого раствора (рн около 4—5) извлекают хлороформом соединение ванадия с о-оксихинолином V2 b( 9H5N)4 хром (VI) не извлекается После выпаривания хлороформа остаток можно сплавить с карбонатом натрия и перевести таким образом ванадий в ванадат. Железо (III) и молибден (VI) также извлекаются, и поэтому метод не применим к материалам, содержащим железо. Алюминий, силикат, фосфат, фторид и т. п. не препятствуют извлечению ванадия. Вольфрам, дающий с о-оксихинолином осадок (нерастворимый в хлороформе), должен отсутствовать допустимо его присутствие лишь в очень малых количествах. Об отношении других металлов к о-оксихинолину см. на стр. 117. Некоторые результаты анализа силикатов, приведенные на стр. 166, свидетельствуют об удовлетворительном отделении ванадия от 100—200-кратного количества хрома. [c.161]

    Ферраро [6301 определял 1,96—10,33% W в ниобиевых высокотемпературных сплавах, содержащих V, Zr, Ti, Mo, Та, Nb, гравиметрически, осаждая W0a-a H20 азотной кислотой. Ошибка определения 0,03%. Предварительно вольфрам отделяют ионообменным методом на ионите дауэкс-1. [c.84]

    По мнению Исаевой [155], реагент является одним из лучших осадителей вольфрама. Молибден заметно соосаждается с вольфрамом, однако при уменьшении концентрации вольфрама количество соосажденного молибдена уменьшается. Достаточно полно 2 мг WOg в присутствии 20 мг МоОд или 3 мг WOg в присутствии 30 мг МоОд можно осадить смесью -нафтохинолина с хинином. Клейс [586] получал удовлетворительные результаты при определении вольфрама в присутствии сравнимых количеств молибдена только после переосаждения вольфрама в присутствии HNOg и Н2О2, маскирующей молибден. Мухина и соавт. [254] определяли вольфрам в сплавах W—Мо после отделения молибдена тионалидом. [c.87]


Смотреть страницы где упоминается термин Определение вольфрама сплавах: [c.16]    [c.116]    [c.690]    [c.137]    [c.738]    [c.774]    [c.209]    [c.356]    [c.227]    [c.127]    [c.538]    [c.102]    [c.198]   
Аналитическая химия вольфрама (1976) -- [ c.87 , c.93 , c.101 , c.103 , c.112 , c.114 , c.123 , c.150 , c.152 , c.174 ]




ПОИСК





Смотрите так же термины и статьи:

Быковская. Определение вольфрама и ниобия в высоколегированных сплавах

Весовое определение рения в сплаве вольфрам-рений

Вольфрам сплавы

Определение рения в сплавах молибден-рений и вольфрам-рений с предварительным выделением его хроматографическим методом

Определение свинца в меди, никеле, кадмии, кобальте, цинке, молибдене, вольфраме, реактивных солях этих металлов, в сплавах— медных, никелевых, цинковых и др

Определение содержания кобальта, ттгана, тантала, ниобия, вольфрама, железа рентгенофлюоресцентным методом в твердых сплавах

Свинец определение в вольфраме сплавах

Сплавы молибденовые, определение вольфрама



© 2025 chem21.info Реклама на сайте