Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутадиен, полимеризация реакция с этиленом

    Этилен СН2 = СНг, пропилен СНз—СН = СНг, бутилен СНз—СНз—СН = СНг, бутадиен (дивинил) СНг = СН—СН = СНг, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации, хлорирования, окисления, гидратации, оксосинтеза и некоторые другие. [c.499]


    Этилен СН2=СН2, пропилен СНд—СН=СН2, бутилен СНз— —СНз—СН=СН2, бутадиен (дивинил) СН2=СН—СН=СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропи-,лен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. В настоящее время этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пищевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. стр. 230)  [c.190]

    Такой процесс называется теломеризацией. Полимеризация проходит по той же самой схеме, однако число присоединяющихся молекул резко увеличивается (до многих тысяч). Эта реакция — одна из самых важных в производстве пластических масс. Наиболее часто используются следующие мономеры этилен СН2=СНа, пропилен СНа=СН—СНд, хлористый винил СН2=СН—С1, винил ацетат СНа=СН—ОСОСН,, тетрафторэтилен Ср2=СРз, акрилонитрил СН2=СН—СМ, метилакрилат СН2=СН- ООСНз, метил-метакрилат СН2=С(СНз)СООСНз, стирол СН2=СН—С Нь, бутадиен СНз=СН—СН=СН2, хлорбутадиен (хлоропрен) СН2=С(С1)—СН=СНа и др. [c.433]

    Анионно-координационной полимеризацией называют процесс, происходящий под действием катализаторов Циглера — Натта, которые представляют собой комплексы галогенидов переходных металлов с металлорганическими соединениями. Типичными катализаторами этого типа являются системы тетрахлорид титана — триэтилалюминий и тетрахлорид ванадия — диэтилалюмининхло-рид, известны и другие системы. По-видимому, аналогично действуют и другие катализаторы, например дикобальтоктакарбонил и некоторые л-аллилникельгалогениды. Точная природа реакционноспособных промежуточных соединений, образуемых этими системами, продолжает оставаться предметом обсуждения, но полимеризация, по всей вероятности, протекает путем внедрения ви-нильного мономера по связи переходный металл — углерод (схема 19 М—металл). Важнейшими мономерами, вступающими в реакцию координационной полимеризации, являются этилен, пропилен, бутадиен-1,3 и изопрен. [c.307]


    Непредельные углеводороды — этилен СН2 = СН2, пропилен СНз—СН=СНг, бутилен СНз—СНг—СН= СНг, бутадиен (дивинил) СНг = СН—СН = СНг —являются соединениями, легко вступающими в реакции хлорирования, окисления, гидратации, полимеризации и др. Это объясняется тем, что все эти соединения имеют двойную связь (ненасыщенную). [c.202]

    Интересно сравнить реакции присоединения метильного радикала к этилену и бутадиену с реакциями роста цепи при полимеризации. [c.217]

    При полимеризации в растворе существенно облегчается отвод теплоты из реакционных объемов, перемешивание и транспортирование продуктов реакции, возможность организации непрерывного лроизводства и автоматизации управления им. Для полимеризации углеводородов и их производных (этилен, бутадиен и их производные) в качестве растворителей используются гексан, гептан, бензин, толуол, циклогексан и другие углеводороды. Очистка растворителей и реагентов от влаги и кислорода осуществляется осушением и проведением процесса в среде инертных газов. Концентрация мономера в растворе не должна превышать 20%, чтобы избежать роста вязкости системы. Для сокращения расхода растворителя его регенерируют после проведения процесса полимеризации. В образующемся полимере необходимо дезактивировать (или удалять) катализатор, так как он ухудшает свойства полимера и изделий из него (устойчивость к старению, действию химических сред и др.). [c.82]

    Этилен, применяемый для полимеризации, должен иметь высокую степень чистоты, так как реакции, протекающие по радикальному механизму, крайне чувствительны к примесям, обрывающим полимерную цепь. Такие примеси как ацетилен и бутадиен ингибируют полимеризацию этилена. Сероводород и двуокись углерода вызывают обрыв цепи. При циркуляции этилена примеси [c.243]

    Наконец, третью схему механизма впервые высказал Давидсон, позднее ее подробнее разработал Уилер с сотрудниками. Согласно этим взглядам, основным элементом реакции является этилен, который в результате полимеризации может превратиться в бутилен. Из последнего путем дегидрогенизации образуется молекула бутадиена. Далее бутадиен вступает в реакцию еще с одной молекулой этилена, образуя гексадиен и циклогексен. Последний в результате дегидрогенизации дает бензол. [c.19]

    Наряду с полимеризацией в высшие олефины и изомеризацией в циклопарафины, олефины могут подвергаться еще частичному разложению, с образованием низших углеводородов. В настоящее время неясно, как именно происходит разрыв молекулы в самом деле, такое расщепление может осуществляться различными способами. Так, молекула может разорваться с образованием двух низших олефинов (превращение, аналогичное процессу деполимеризации), либо же отщепить парафиновый углеводород, с одновременным выделением диоле-фина. Расщепление амилена по первой схеме дало бы этилен и пропилен, тогда как в результате разложения по второй реакции получились бы метан и бутадиен  [c.95]

    Полимеры с боковыми группами могут быть получены и при полимеризации таких линейных, неполярных мономеров, как этилен, бутадиен и др. Образование линейной цепи, не содержащей или же содержащей боковые группы, зависит от условий реакции (температуры, катализатора идр.). [c.58]

    Этилен, применяемый для полимеризации, должен иметь высокую степень чистоты, так как реакции, протекающие по радикальному механизму, крайне чувствительны к примесям, обрывающим полимерную цепь. Такие примеси как ацетилен бутадиен ингибируют полимеризацию этилена. Сероводород и диоксид углерода вызывают обрыв цепи. При циркуляции этилена примеси накапливаются, и содержание их увеличивается. Поэтому на полимеризацию должен поступать этилен 99,9—99,99 %-ной степени чистоты. [c.551]

    Тот факт, что характер продуктов пиролиза при высоких температурах остается постоянным независимо от исходного сырья, объясняется тем, что они образуются из одного и того же промежуточного продукта. Долгое время считали, что этим продуктом является ацетилен, образующий при термической полимеризации бензол и другие ароматические углеводороды. Позднее установили, что при пиролизе ниже 1000° образуются минимальные количества ацетилена и что в случае метана он появляется лишь при температуре выше 1200°, как уже отмечалось выше. В настоящее время выяснили, что промежуточными продуктами при образовании ароматических углеводородов являются этилен и получающийся из него бутадиен. Эти углеводороды конденсируются по типу диенового синтеза, образуя в обратимой реакции циклогексен, который дегидрируется [c.397]

    Этилен, у которого есть только одна относительно доступная электронная пара, а именно я-электроны двойной связи, может участвовать в образовании комплексов этого типа, но диены, такие, как бутадиен или изопрен, могут занимать два свободных уровня двумя электронными парами обеих сопряженных двойных связей. Поскольку я-электронные нары этих соединений не так доступны, как неподеленные электронные пары в атомах кислорода или азота, то образующиеся комплексы менее устойчивы и их труднее выделить в чистом виде и охарактеризовать. Возможно, что именно малая устойчивость таких комплексов делает их весьма реакционноспособными переходными состояниями для реакции полимеризации. [c.36]


    На рис. 27 пунктирным прямоугольником очерчена группа мономеров, способных к радикальной гомополимеризации. У винилового эфира, изобутилена и других соединений, расположенных вне прямоугольника, показатель е имеет большую отрицательную величину, и они легко вступают в реакцию катионной полимеризации, а соединения с большой положительной величиной е (нитроэтилен, винилиденцианид и др.)—в реакцию анионной полимеризации. Кроме того, легко поддаются анионной полимеризации некоторые соединения, входящие в прямоугольник, например акрилонитрил, метилметакрилат и ряд других. Этилен, бутадиен, стирол и прочие неполярные мономеры способны к полимеризации всех трех видов радикальной, катионной и анионной. [c.88]

    Химические превращения углеводородов в ходе пиролиза можно условно разделить на две категории первичные и вторичные. В результате первичных реакции образуются олефины этилен, пропилен, бутилен, бутадиен. В ходе вторичных реакций олефиновые и диеновые углеводороды подвергаются реакциям конденсации, полимеризации с одновременным более глубоким разложением, в результате чего образуются ароматические углеводороды бензол, нафталин, дифенил, более конденсированная ароматика. Кроме того, в ходе процесса образуются кокс и сажа. [c.20]

    При радикальной полимеризации функции активных промежуточных продуктов выполняют свободные радикалы — частицы, несущие непарный электрон. Это типичная цепная реакция. Распространенными люномерами, легко вступающими в радикальную полимеризацию, являются этилен, винилхлорид, винилацетат, винилиденхлорид, тетрафторэтилен, акрилонитрил, метилметакрилат, стирол, бутадиен, хлоропрен и др. [c.356]

    Облучение к-гептапа силой в 8,7 10 электронвольт (эв) дает смесь, содержащую 16 соединений, включающих к-пептан и 3-метилпентан наиболее тяжелый — н-додекан циклогексан да ет н-гексан и дициклогексан. Интересно, что электронная иррадиация этана и дейтероэтана показывает, что молекулы водорода могут внутримолекулярно разрываться [763]. Образование полимеров сопровождает эту парафиновую иррадиацию этилен, бутадиен образуются от этана вместе с небольшим количеством ацетилена, который в конце выделяется как твердое тело. Реакция, вероятно, представляет собой полимеризацию прибавления, инициированную радикалами. Полиэтиленовые синтетические смолы могут образовываться гамма-лучевой иррадиацией этилена [764,, 765]. [c.151]

    Этилен СНа = СН2, пропилеи СНз—СН = СНг, бутилен СНз—СНг—СН = СНг, бутадиен (дивинил) СНг = СН—СН = СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пишевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. с. 205) синтетический спирт из этилена в несколько раз дешевле пишевого и требует меньших затрат труда. Синтетический спирт широко применяется в различных отраслях промышленности для получения синтетического каучука, целлулоида, ацеталь-дегида, уксусной кислоты, искусственного шелка, лекарственных соединений, душистых веществ, бездымного пороха, бутадиена, инсектицидов, в качестве растворителя и т. п. [c.169]

    Для объяснения выходов ароматики и конденсированных систем при крекинге были использованы положения этиленовой теории с тем только отличием от последней, что бутадиен как промежуточный продукт на пути превращения в ароматику и конденсированные соединения сам возникаег вследствие полимеризации этилена с последующей дегидрогенизацией бутилена до бутадиена. Шестичленные ненасыщенные циклические углеводороды образуются в результате реакций бутадиена с этиленом. Нафталин является продуктом конденсации бензола с бутадиеном, а нз нафталина аналогичным путем могут получаться антрацен и фенантрен [8]. [c.18]

    Полиалломеры получаются при последовательной сополимеризации двух мономеров. В этом случае в реактор, содержащий растворитель и катализатор, состоящий из триэтилалюминия с треххлористым титаном в Соотношении А1(С2Н5)з ТЮ1з = 1,5 1, при 70—80° С и давлении 30— 32 ат подается пропилен, в результате чего начинается его полимеризация. Полимеризация проводится до желаемой степени конверсии пропилена, а затем добавляется второй более реакционноспособный мономер, аапример, этилен , в требуемом количестве и тогда завершают полимеризацию. Если второй мономер менее реакционноспособен, чем первый (например, бутен-1), то проводится дегазация реакционной массы для удаления первого мономера, для чего спускается давление. Потом следует продувка азотом, после чего вводится второй мономер. По этому методу был получен полиалломер пропилена с этиленом, пропилена с буте-иом-1, пропилена с бутадиеном, пропилена со стиролом, пропилена с ви-нилхлоридом и пропилена с изопреном. Полиалломеры представляют собой блоксополимеры с кристаллическими участками, состоящими из соответствующих мономеров. Если проводить полимеризацию заранее приготовленной смеси пропилена с этиленом, то блоксоиолимера не ползгчает-ся и остатки мономеров распределены равномерно по всей длине макромолекулы. В этом случае иолучается не кристаллический, а каучукообразный полимер. Инфракрасные спектры сополимера и полиалломера этилена с пропиленом значительно различаются, что говорит о различной их структуре. Интересно отметить, что из методики получения полиалломеров следует, что макроионы, образующиеся при полимеризации, сохраняют свою активность даже при перерыве в полимеризации, что имеет место при дегазации реакционной массы реакция начинается вновь при добавлении нового мономера в реакционную массу, из которой удален первый мономер. [c.100]

    У ГФБ наблюдается значительное понижение активности в реакциях полимеризации и совместной полимеризации. Это нельзя объяснить за счет стерических препятствий, так как тетрафторэтилеп, у которого все атомы водорода также замещены на фтор, превосходят по своей активности в реакциях радикальной полимеризации этилен и даже бутадиен. Возможно, что это понижение активности ГФБ но сравнению с тетрафтор-этиленом п другими рассмотренными диеновыми соединениями, связано с тем, что под влиянием полярных атомов фтора электронная плотность в молекуле ГФБ обладает ограниченной способностью к смещению и тс-электроны локализованы у каждой двойной связи, что ослабляет эффект сопряжения или полно- [c.67]

    Bahr исследовал полимеризацию ацетилена при умеренных температурах в присутствии различных катализаторов, В случае сернистого железа при 300° образуетоя коричневаточерная смола, при 430° происходит выделение углерода. С 50% никеля и 50% олова получается бесцветный прозрачный конденсат, который позднее приобретает зеленую или коричневую окраску углерод выделяется приблизительно при 430°. Применяя железные стружки, покрытые оловом, при 250° удалось получить немного жидкости, но с хлористым оловом и пемзой реакция не идет даже при 500°. В присутствии хлористого цинка при 420—430° Лозовому удалось получить газообразные продукты, состоящие из 32% ацетилена, 2% изоолефинов, 10% нормальных олефинов, 12% водорода и 41% насыщенных парафиновых углеводородов. Среди ненасыщенных углеводородов идентифицированы этилен, пропилен, метилацетилен, а.длен и бутадиен. В жидких продуктах было немного олефинов, бензола, толуола и нафталина, но не было парафинов или нафтенов. [c.730]

    В качестве исходного материала для наиболее важных, в техническом отношении, продуктов полимеризации, которые получаются соединением нескольких молекул одной органической группы веществ, без отщепления продукта реакции (воды и др.), наибольшее значение приобретают прежде всего ацетилен, а также этилен и пропилен [1,2]. Ацетилен получают в Германии частично по карбидному способу (в отношении сточных вод которого уже говорилось в разделе IV, глава 3, 12), частично из газообразных углеводородов в электрических дуговых печах. Его превращение с водой в ацетальдегид, дальнейшая обработка которого приводит через альдоль и бутиленгликоль (бутол) к бутадиену, дает исходный продукт для производства синтетического каучука (буна). Другой исходный продукт —стирол (винилбензол), который содержится, между прочим, в каменноугольной смоле, получают присоединением бензола к ацетилену или из этилбензола (последний — из бензола и этилена) хлорированием, с отщеплением от хлорэтилбензола соляной кислоты. [c.565]

    Диэтил-, дипропил-, дибутил- или дифенилртуть совместно с солями элементов переходной группы, например хлористым кобальтом, хлористым никелем или треххлористым титаном, при полимеризации диенов при низком давлении способствуют образованию с высокими скоростями превращения полимеров 1,4-структуры, практически свободных от катализатора. Полимеризация ускоряется при облучении ртутной дуговой лампой. Наибольшие скорости конверсии достигаются в случае низших сопряженных диенов, таких как бутадиен и изопрен с высшими гомологами скорость ниже, реакция обычно проводится в несколько стадий в инертной углеводородной суспензии при 0—50° С и давлении выше 35 ат. В сочетании с другими сокатализаторами алкильные соединения ртути полимеризуют олефиныз , виниловые углеводороды , хлористый винил 2 , а также сополимеризуют этилен и а-олефины [c.61]

    Кроме приведенных выше наших результатов, в работе [40], установлена взаимосвязь между и реакционной способностью к полимеризации. В этой работе с помощью квантово-механических расчетов показано, что для многих винильных мономеров (акрилонитрил, акролеин, метилвинилкетон, метилакрилат, бутадиен, стирол, а- и р-метилстиролы, изопрен, этилен и др.) изменение 1/2 происходит параллельно их анионной полимеризуемости . Хотя в настоящее время имеется очень мало данных для установления такой корреляции в случае других групп мономеров (полимеризующихся по радикальному механизму), такая взаимосвязь между константами скорости полимеризации и уг вполне реально. В пользу этого говорит то обстоятельство, что эмпирическое уравнение Хаммета — Тафта в настоящее время находит широкое применение для характеристики влияния заместителей как на константы скорости многих радикальных реакций (в том числе реакций полимеризации и сополимеризации [707, 708]), так и на полярографические потенциалы полуволн. Значение такой взаимосвязи трудно переоценить. Так как определение значений потенциалов полуволн неизмеримо проще, чем определение кинетических характеристик мономеров, то о реакционной способности мономера удобней судить по полярографическим показателям. [c.179]

    Этиленовые углеводороды (олефины), обладающие высокой реакционной способностью, широко применяются для промышленного синтеза множества ценных продуктов. Промышленной переработке подвергают главным образом этилен, пропилен, бутилены и бутадиен. В основе переработки их лежат процессы гидратации, окисления, хлорирования, полимеризации, оксосинтеза, окислительного аммоноли-за и другие, протекающие как реакции электрофильного присоединения по ненасыщенным углерод-углеродным связям. [c.288]

    В реакции цепной полимеризации могут вступать мономеры, содержащие в молекуле одну или несколько двойных связей (например, этилен, пропилен, стирол, винилхлорид, бутадиен). Процесс полимеризации протекает с огромной скоростью. Молекулярная масса, или конечная степень полимеризации, достн- [c.15]

    Реакция между алкилтитанатами и алюминийалкилами приводит к комплексным соединениям, по-видимому, содержащим трех- и двухвалентный титан. Эти соединения имеют теперь большое практическое значение, так как они показали себя очень эффективными катализаторами полимеризации этиленовых соединений, таких, как этилен, бутадиен и, особенно, пропилен (см. гл. 11). [c.59]


Смотреть страницы где упоминается термин Бутадиен, полимеризация реакция с этиленом: [c.305]    [c.70]    [c.125]    [c.131]    [c.5]    [c.96]    [c.198]    [c.389]    [c.131]    [c.161]    [c.9]    [c.78]    [c.78]   
Теория абсолютных скоростей реакций (1948) -- [ c.259 , c.260 ]




ПОИСК





Смотрите так же термины и статьи:

Бутадиен из этилена

Бутадиен полимеризация

Реакции полимеризации

Реакции этилена

Этилен полимеризация

бутадиен реакции



© 2025 chem21.info Реклама на сайте