Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основная потенциометров

    Многие полярографы имеют компенсатор — небольшой вспомогательный потенциометр (см. рис. 1,1.5), предназначенный для подачи то <а смещения в рамку гальванометра. Направление тока смещения выбирается противоположным току основного потенциометра и электролизера. Это позволяет сдвинуть показания гальванометра в сторону меньших значений без потери чувствительности. Компенсатор также используется для совмещения начальной точки полярографической волны с нулем гальванометра с целью частичной компенсации остаточного тока. С помощью его можно также уменьшить волну одного иона во время наблюдения волны другого, труднее восстановимого. [c.166]


    Многие полярографы имеют приспособление, известное под названием компенсатора или регулятора тока смещения. Он состоит из небольшого некалиброванного вспомогательного потенциометра 11, на рис. 56). Его назначение заключается в подаче к гальванометру регулируемого тока направления, противоположного току, протекающему от основного потенциометра и электролизера. Компенсатор смещает показания гальванометра в сторону более низких значений чувствительность при этом не снижается. Компенсатор можно также использовать для совмещения исходной точки полярографической волны с нулем гальванометра и таким образом автоматически вводить поправку на остаточный ток. С помощью его можно погасить волну одного иона во время наблюдения волны другого, труднее восстанавливаемого. [c.81]

    Отечественная промышленность производит автоматические потенциометры следующих основных типов ЭПД — электронный потенциометр с записью на дисковой диаграмме ЭПП — электронный потенциометр с записью на рулонной диаграмме и др. [c.57]

    ДО 180° С, при атмосферном давлении, а свыше 180° С — под вакуумом. Основные элементы аппарата (колба, ректификационная колонка на 50 теоретических тарелок, конденсатор-холодильник, приемники дистиллятов) выполнены из молибденового стекла и соединены между собой при помощи шлифов. Работа колонки частично автоматизирована автоматически поддерживается постоянство количества орошения, а при работе под вакуумом — постоянство остаточного давления и отбор нужного количества фракций ведется непрерывная запись температуры паров с помощью электронного потенциометра. Для автоматического поддержания постоянства количества орошения предусмотрен специальный наклонный манометр, связанный с регулятором перепада давления между верхней и нижней частями колонки. Автоматический отбор фракций обеспечивается применением электромагнитного клапана. [c.118]

    В потенциометрии используют два основных класса индикаторных электродов.  [c.115]

    В настоящее время известно около 50 различных ферментных электродов. Они могут быть рассмотрены по типам реакций, по характеру субстрата или фермента, по типу электрохимически активного компонента. Последнее представляется наиболее целесообразным с точки зрения достижений потенциометрии. При всем разнообразии происходящих процессов можно выделить следующие основные типы превращений, приводящих к возможности осуществления электрохимических измерений  [c.58]


    Основные преимущества амперометрической индикации конца титрования обусловлены значительно большей чувствительностью по сравнению с потенциометрией. Метод селективен, поскольку, подбирая потенциал индикаторного электрода, можно вести титрование интересующего иона в смеси веществ. Возможности амперометрического титрования расширяются использованием органических реактивов. [c.306]

    Разделение методом газовой хроматографии, так же как и методом жидкостной хроматографии, основано на различии в коэффициентах распределения компонентов смеси между неподвижной и подвижной фазами. За ходом разделения наблюдают, непрерывно исследуя газ, выходящий из хроматографической колонки с помощью прибора-детектора. Последний непрерывно измеряет концентрацию компонентов у выхода из колонки и преобразует ее в электрический сигнал, регистрируемый потенциометром. На ленте самописца получается выходная кривая, которую называют хроматограммой. Основными типами детекторов являются детекторы, основанные на измерении теплопроводности, плотномеры, ионизационные и термохимические детекторы. Наиболее распространенным детектором, реагирующим на изменение теплопроводности, является катарометр, действие которого основано на разности теплопроводностей компонента смеси и газа-носителя. [c.353]

    Широкое применение в практике аналитической химии нашел другой раздел потенциометрии, известный под названием потенциометрического титрования. Оно заключается в регистрации изменения равновесного потенциала электрода в процессе химической реакции между потенциалопределяющим компонентом в растворе и специально введенным реагентом в качестве титранта. Потенциометрический метод титрования по своим возможностям значительно превосходит титри-метрический метод с применением цветных индикаторов и обладает по сравнению с ним следующими основными преимуществами  [c.108]

    Основными задачами в прямой потенциометрии и в потенциометрическом титровании являются составление гальванических элементов и измерение их ЭДС. [c.81]

    В потенциометрическом анализе основными измерительными приборами являются потенциометры различных типов. Они предназначены для измерения ЭДС электродной системы. Так как ЭДС зависит от активности соответствующих ионов в [c.242]

    Потенциометрический анализ широко применяют для непосредственного определения активности ионов, находящихся в растворе (прямая потенциометрия — ионометрия), а также для индикации точки эквивалентности при титровании по изменению потенциала индикаторного электрода в ходе титрования (потенциометрическое титрование). При потенциометрическом титровании могут быть использованы следующие типы химических реакций, в ходе которых изменяется концентрация потенциалопределяющих ионов реакции кислотно-основного взаимодействия, реакции окисления — восстановления, реакции осаждения и комплексообразования. [c.116]

    Для снятия термомеханических кривых используют разновидность весов Каргина — прибор конструкции кафедры высокомолекулярных соединений Химического факультета МГУ (рис. V. 21). Основной частью прибора является пуансон 1, действующий на образец 2 при опускании груза 3 поворотом ручки 4. До начала измерений образец подводится к пуансону вращением ручки 5. Пуансон соединен с оптической системой 6, с помощью которой определяется деформация образца под действием пуансона с грузом. Эксперимент состоит в измерении деформаций, развивающихся в течение 10 с под действием статической нагрузки при различных температурах. Нагревание образца осуществляют в нагревательной печи 7. Постоянную скорость изменения температуры на 1,5°/мин обеспечивают лабораторным трансформатором 8 и электронным потенциометром 9 с термопарой 10. При исследовании резин в области отрицательных температур используют криостат, в который подают струю жидкого азота. Интенсивность подачи охлаждающего агента регулируют изменением тока накала спирали нагревательного элемента, погружаемого в сосуд Дьюара. [c.160]

    Уравнение (23) показывает, что потенциал электрода является в кислотно-основной среде исключительно функцией [Н+, следовательно, такой электрод может применяться при кислотно-основном потенциометрическом титровании и измерении pH (при прямой потенциометрии) растворов. [c.59]

    Основные характеристики некоторых электронных гальванометров (электрометров), рН-метров и потенциометров для измерения э. д. с. электрохимических цепей [c.289]

    Принципиальная схема компенсационной установки с потенциометрами постоянного тока приведена на рис. IX. 17. Она состоит из следующих основных частей источник тока Ак система переменных сопротивлений Н] для регулировки силы рабочего тока набор очень точных сопротивлений и [c.556]


    На рис. 109 приведена схема газо-жидкостного хроматографа. В современных хроматографах можно выделить три основные части. Это системы ввода образцов и подготовки измерения и регулировки газов-носителей. Температурные режимы колонки, детектора и дозирующих устройств обеспечивает система термостатирования и измерения температуры. Получение хроматограмм осуществляется с помощью системы детектирования, в которую кроме детектора входят блок его питания, усилители сигнала, автоматические потенциометры и на современных хроматографах интеграторы и небольшие ЭВМ, управляющие работой прибора и производящие обработку хроматограмм. На рис. ПО приведена типичная хроматограмма смеси углеводородов, полученная с программированным изменением температуры. [c.296]

    Топливо в камеру подается из основной емкости 12 под давлением азота от баллона 13. Необходимое избыточное давление топлива в камере регулируют газовым редуктором Ии контролируют по манометру 10. Топливо до заданной температуры нагревают электроподогревателем 5, смонтированным в корпусе камеры 1, и контролируют при помощи термопары 6 и потенциометра 7. Приводом плоского диска является электродвигатель 8. Силу трения в зоне контакта контрольной пары измеряют при помощи тензобалки 19 и тензометрической аппаратуры 20. [c.157]

    Катализатор загружают в кварцевый реактор емкостью около 150 мл, который вставляют в трубчатую электропечь, имеющую две секции обмотки, основную и дополнительную. Температура печи регулируется ЛАТР. В сеть включен также амперметр на 10 а. Температура измеряется трехточечпой термопарой, вставленной в карман реактора и соединенной с потенциометром. Вода (дистиллированная) дозируется микродозером, основанным на принципе выдавливания воды газамп, которые образуются при электролизе. Скорость электролиза регулируется и контролируется миллиамперметром ПМ-70 (шкала 0—10), благодаря которому можно с большой точностью [c.811]

    Схема прибора показана на рис. ХХХП. 27, а — д. Основные элементы прибора колонка и прибор для определения теплопроводности газа с регистрирующим электронным потенциометром. [c.847]

    Основные элементы установки сырьевой насос, подогреватель, реакционная камера, редукционный вентиль, холодильник, приемник для дистиллята, абсорбер, га-."1овые часы, четырехточеч-][ый потенциометр. Сырьевой насос — плунншрный с электроприводом производительностью 0,4—20 л/ч может развивать давление до 4—4.5 МПа (40— [c.119]

    Для установления заданной температуры окисления основные аппараты — колонна, сырьевые емкости, приемники битума, трубопроводы снабжены электрообогревом и термоизоляцией, что обеспечивает безопасность работы. Установка оборудопапа следующими средствами автоматического коптроля термопарами в каждой емкости для контроля температуры сырья термопарами в нижней, средней и верхней часта окислительной колонны для контроля и регулирования температуры процесса окисления потенциометрами, регулирующими температуру в указанных точках окислительной колонны. [c.278]

    Следующий этап исследований — изучение потенциалов фильтрации углеводородных жидкостей. Исследования проводили на специальной установке. Основной ее элемент — измерительная ячейка, в которой находились образцы естественных кернов в виде цилиндров диаметром 0,03 м и длиной 0,04 м. Для измерений потенциалов использовали хлорсеребряные электроды диа метром 0,002 м, которые помещались в измерительную ячейку В процессе фильтрации создавались перепады давления в жидкости и наружного давления на керн. Потенциал регистрировали высокоомным потенциометром, а в качестве индикатора нуля использовали микроамперметр. Исследования проводили на экстрагированных образцах керна Арланского месторождения с проницаемостью 0,149 мкм (по воздуху) и пористостью 25,3 %. Методика измерения потенциалов фильтрации заключалась в следующем. Перед проведением экспериментов образец насыщали исследуемой жидкостью и при атмосферном давлении определяли потенциал асимметрии, который в опытах был равен 3 мВ. Результаты предварительных исследований показали практическую независимость потенциала фильтрации от нагрева ячейки на 3— 4 К, вызванного длительной работой электромагнита. Эксперименты проводились на модельных углеводородных жидкостях при различных скоростях фильтрации. При этом перепады давления составляли от 0,35 до 0,45 МПа. В процессе эксперимента заме-рялось количество отфилътровавщейся жидкости, а время фильтрации фиксировалось по секундомеру. Каждый эксперимент повторяли три раза. Полученные результаты для двух значений линейных скоростей фильтрации приведены на рис. 22. Эти результаты сравнивались с теоретической зависимостью, рассчитанной по формуле (4.6) при = 0,3 В. Как видно из рисунка, расчетные и экспериментальные данные совпадают, что свидетельствует о справедливости зависимости Гельмгольца—Кройта для принятых условий фильтрации полярных углеводородных жидкостей. [c.123]

    В системе фирмы Брико топливо из бака мембранным топливным насосом подается в специальную камеру постоянного уровня. Эта камера имеет обычный для карбюраторов поплавковый механизм и фильтр-отстойник. Из этой камеры насосом подается топливо в кольцевую магистраль с четырьмя форсунками с электромагнитным управлением и специальным стабилизатором давления. Принцип стабилизации давления топлива основан на перепуске части топлива обратно в камеру постоянного уровня. Следует отметить, что циркуляция топлива обеспечивает надежную защиту от паровоздушных пробок (давление 0,18 МПа). Основной командный параметр (главный датчик) — абсолютное давление во впускном трубопроводе. Применен потенциометрический датчик с мембраной в качестве чувствительного элемента. Полость, где находится потенциометр и токосъемный элемент, герметизирована, и из нее откачен воздух, что создает благоприятные условия работы. [c.92]

    Единичные потенциометрические определения были предложены еще в прошлом столетии. Наиболее интенсивное разйитие метода наблюдалось в 20-е годы нашего века в связи с запросами развивающейся промышленности и других областей народного хозяйства. Однако в то время разработка потенциометрических методик определения различных веществ носила эмпирический характер. Лишь в связи с установлением основных закономерностей Теоретической электрохимии в 40-е годы потенциометрия приобретает характер стройной прикладной науки, развитие которой базируется на достижениях теории и практики электрохимических исследований и отражает потребности научной и практической деятельности человека. Ярким примером в этом отношении является стремительное развитие в последние годы такой области потенциометрии, как ионометрия. [c.19]

    Электродный потенциал - один из основных электрохимичесз-ких параметров, измерение которого составляет суть метода потенциометрии, - был предметом многочисленных исследований. Впервые в 1889 г. В. Нернст вывел термодинамическую зависимость э.д.с. от концентрации ионов в растворе. В настоящее время под термином "электродный потенциал" понимают э.д.с. электрохимической цепи ( ), составленной из стандартного водородного электрода и электрода, представляющего любую другую окислительно-восстановительную полуреакцию. Таким образом, данная формулировка включает два основных типа электродов электроды, функционирующие на основе а) электронного и б) электронно-ионного равновесия, иными словами, электроды, обладающие электронной и смешанной (электронноионной) проводимостью. Однако необходимо принять также во внимание третий тип, а именно электроды, перенос зарядов в которых осуществляется за счет ионов, т.е. электроды с ионной проводимостью. По этому принципу функционируют так называемые мембранные электроды, которые рассматриваются в разделе "Ионометрия". [c.20]

    Ионометрия - современное прогрессивное направление в развитии потенциометрического метода анализа и исследования. Основная задача ионометрии заключается в разработке, изучении и примене1у1и разнообразных ионоселективных электродов, обратимых и достаточно селективных к различным катионам и анионам. К ионометрии относятся давно известный метод -рН-метрия и новые методы прямой потенциометрии - катионо-метрия и анионометрия. Ионометрия находит широкое применение в науке и технике в технологии для автоматического конт роля производственных процессов, при анализе и контроле чистоты водного пространства и окружающей атмосферы, в аналитической химии, биологии, геологии, почвоведении, медицине, океанологии и т.д. С помощью метода ионометрии успешно решаются задачи анализа и исследования применительно к сложным многокомпонентным системам. [c.38]

    Потенциометрический метод исследования химического равновесия применим в тех случаях, когда возникновение и установление равновесного потенциала электрода отвечают состоянию химического процесса в растворе иными словами, когда выполняется строгая термодинамическая зависимость Е =/(а), где а - активность потенциалопределяюшего компонента, участвующего одновременно в химической реакции. Среди различных типов химического равновесия, изучаемых методами потенциометрии, кислотно—основные процессы и комплексообрааование занимают одно из ведущих мест. [c.103]

    При этом используют методы и прямой потенциометрии, и потенциометрического титрования. Следует так же отметить, что основное отличие проведения потенциометрических измерений с целью определения констант равновесия от обьиного титрования, применяемого для аналитических целей, заключается в необходимости строгой стандартизации условий эксперимента. Титрование выполняют в термостатированных условиях и при постоянной ионной силе раствора (обычно 0,1 - 1 М). Необходимо выбрать также оптимальные концентрации изучаемых компонентов, реагента и величину общего объема раствора. [c.104]

    Рассмотрим основные направления исследований по принципу использования отдельных тйпов индикаторных электродов и методов потенциометрии. [c.109]

    Принадлежность ионометрии к разделу прямой потенциометрии лозволяет считать, что основным расчетным методом является использование уравнения электродного потенциала, по которому па основании измеренных значений э. д. с, соответствующих гальванических элементов вычисляют активность потенциалопределяющего компонента. Однако применение прямого расчетного метода сопряжено с определенными затруднениями, из которых следует выделить основные. [c.111]

    Основная часть установки для электрохимического получения магния показана на рис. 23.1. Электролизная ячейка представляет собой кварцевый стакан 7, вставленный в стальной стакан 8, который, в свою очередь, помещен в электрическую печь 9. Катодом служит пластинка из нержавеющей стали 2. В качестве анода использован плоский графитовый электрод 3, находящийся в кварцевой трубе 5. Труба выполняет роль диафрагмы. Сверху труба плотно закрыта резиновой пробкой 4, на которой держится анод. Для предохранения пробки от обгора-ния и разрушения хлором имеется фторопластовая прокладка. Наверху кварцевой трубы имеется отвод для хлора. Для поглощения хлора используют систему барбатеров с раствором щелочи. В ячейку вставляют термопару 1 в кварцевом чехле. Сверху ячейку закрывают крышкой 6 из шамота или асбеста. Температуру поддерживают автоматически с помощью электронного потенциометра. [c.146]

    Изложенных сведений о принципах построения основных электрохимических приборов достаточно, чтобы самостоятельно сделать для лабораторных работ или научных исследований нейоторые простые устройства. Например, на одной микросхеме ОУ серий К 140, К 153 или К 544 легко изготовить повторитель напряжения (см. рис. 1.25), который, по существу, является вольтметром с достаточно высоким входным сопротивлением ( 10 -10 Ом) и может быть использован для измерения разности потенциалов в электрохимических ячейках. При этом, если ко входу + подключен электрод сравнения, а рабочий электрод заземлен, то выходное напряжение / ых равное —Ср.э, можно фиксировать обычным низкоомным вольтметром или с помощью самопишущих потенциометров (КСП-4, Н-306 и т. п.). В последнем случае для согласования выходного напряжения изготовленного вольтметра со входом самописца их следует соединить через масштабирующий (инвертирующий) усилитель (см. рис. 1.23) таким образом, чтобы, например, разности потенциалов 2 В соответствовала полная шкала потенциометра 50 мВ. Из уравнения (1.11) следует, что в этом случае RllR(, 2/0,05 40. Так как параметры работы ОУ ограничены максимальными напряжением и током ( 12 В и 10 мА соответственно), то R(, должно быть порядка 12 В/0,01 А зё 1 кОм или больше. Таким обра.зом, если / 1 кОм, то Rl 40 кОм. Так как усилитель (см. рис, 1.23) является инвертирующим, то на самописец подается сигнал, совпадающий по знаку с ,,, , относительно электрода сравнения. [c.51]

    Для поддержания достаточно стабильной температуры ячейки рабочая температура основной печи должна быть по крайней мере на 10° выше комнатной температуры. Для регулирования величины тепловых потерь температура вспомогательной печи должна быть. установлена на 3—10° ниже температуры основной печи. Регулировка температуры производится при помощи потенциометров, шкалы которых расположены на правой стороне верхней части прибора (см. рис. VIII.3). Приведение показаний шкал потенциометров к температурам проводится по графикам, приложенным к прибору. Как только пронзведепа регулировка, шкалы потенциометров должны быть зафиксированы в требуемом положении при помощи специальных за-жимов-фикоаторов. [c.138]

    Обычно улучшение условий титрования в неводных растворителях так велико, что титрование в описанных выше случаях может быть проведено не только потенциометри-чески, но и с индикаторами. Титрование с индикаторами в неводных растворах ограничивается недостаточностью данных о константах диссоциации и интервалах перехода индикаторов. Ниже приводим основные данные о свойствах индикаторов в неводных средах. [c.460]

    Определение момента завершения кулонометрического титрования. Почти все способы индикации конечной точки реакции, используемые в титриметрических методах анализа, пригодны й при кулонометрическом титровании. Применяются цветные индикаторы (в основном при кислотно-основных и окислительно-восстановительных реакциях), а также ряд инструментальных методов (потенциометрия, кондуктометрия, амперометрия, спектрофотометрия, радиометрия и т. д.). Из них наиболее часто применяют потенциометрию и амперометрию, особенно биамперометрию. Большая концентрация вспомогательного реагента отрицательно сказывается при использовании кондуктометрического метода индикации конечной точки, так как электропроводность является функцией всех ионов в растворе, и поэтому небольшое ее изменение в процессе кулонометрического титрования трудно обнаружить. [c.203]

    В книге представлены все основные области электрохимических методов анализа потенциометрия, кулонометрия, кондукто-метрия, вольтамперометрия и диэлекгрометрня. [c.2]


Смотреть страницы где упоминается термин Основная потенциометров: [c.167]    [c.337]    [c.2]    [c.27]    [c.267]    [c.3]    [c.8]    [c.167]    [c.138]    [c.60]   
Монтаж наладка и эксплуатация автоматических устройств химических производств (1972) -- [ c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Основные ограничения метода прямой потенциометрии

Потенциометр

Потенциометрия

Электронные потенциометры основная погрешность



© 2025 chem21.info Реклама на сайте